生物纳米复合镀层的微细观结构与力学行为的实验与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金由于具有生物可降解性从而可作为生物体植入材料,因而在生物医学领域具有非常重要的应用意义,但镁合金存在着耐磨和耐蚀性较差的缺点,在镁合金表面进行刷镀则能很好的改善镁合金的这一缺点。本文主要研究了在镁合金表面电刷镀纳米羟基磷灰石颗粒(Hydroxyapatite particles, HAP)与纳米碳管(Carbon nanotubes, CNTs)混杂增强镍钴合金纳米复合镀层的微细观结构和力学行为。在Ni-Co/(HAP+CNTs)复合镀层中,Ni-Co合金作为金属基体,而纳米HAP及CNTs用做混杂增强相。该复合镀层表面光亮致密、与镁合金结合牢固、镀层综合力学性能优良,与人体组织具有良好的生物相容性,因此在生物工程中是一种具有潜在应用前景的新型生物复合镀层。
     本研究根据镁合金特点确定了其优化的刷镀工艺,制备出不同含量和混杂比的纳米颗粒与纤维增强的复合镀层,并运用金相显微镜(OM)、扫描与透射电子显微镜(SEM)、拉伸试验等手段分析了复合镀层的表面与截面形貌、微观结构以及膜基体系的拉伸力学性能等。结果表明:复合镀层中纳米增强相分布比较均匀,颗粒及纤维增强的复合镀层/基体体系拉伸性能优于纯镍钴镀层/基体体系,随着混杂增强相中颗粒含量的增多,镀层拉伸性能随之进一步提高;但随着纤维含量的增加,镀层结合力变差,镀层的性能在一定程度上随之下降;在实验范围内,当镀液中颗粒浓度为及纤维的混杂浓度分别为5g/L和0.1g/L时,镀层具有较高的强度和硬度等优良的综合性能。
     同热喷涂、气相沉积等涂层沉积过程相比,虽然电刷镀过程中的温度变化较小,但由于镁合金的热膨胀系数较大,所以对镀层热应力及其影响因素的分析是非常必要的,它直接关系到镀层的表面质量。本文利用有限元软件ABAQUS对镀层热残余应力进行了模拟分析。为了进一步表征热残余应力对镀层性能的影响,本文还对其进行了压痕过程的有限元模拟分析。结果表明,随着刷镀过程中温度的增高,镀层的最大热残余应力变大,这一点已通过理论计算与有限元模拟进行了双重检验。在压痕模拟过程中,对于相同的压深,初始温度越高,所需的压力越小,镀层的硬度也相应的越低。为了进行对比,文中对带有粗糙度的膜基体系进行了热分析及压痕模拟,结果表明,带有粗糙度的膜基体系的结合力更大,涂层的硬度也相对更高。此外,对热残余应力状态下的垂直裂纹镀层在拉伸作用下的开裂过程及裂纹尖端处的应力进行了模拟计算,计算结果有助于优化镀层的结构设计。
     对于复合镀层本身的拉伸力学性能,基于镀层微观结构的高分辨率扫描电子显微镜(SEM)及透射电子显微镜图像(TEM),采用软件coreltrace进行图形矢量化,建立了基于实际微观结构的复合镀层有限元模型,根据代表体元法对其施加周期性边界条件,对其准静态拉伸力学性能进行了模拟计算,并研究了镀层内颗粒与纤维的体积分数、混杂比、粒度分布等对镀层拉伸性能的影响。结果表明,纤维含量越多,镀层的抗拉性能越好,镀层内盒维数(分维数)越大,颗粒与纤维分布越均匀,镀层的抗拉性能也越好,拉伸模拟结果与拉伸实验结果相吻合。复合镀层力学性能大为改善的主要原因可归结为位错强化、晶粒细化、基体和混杂增强相的热胀失配及复合承载效应共同作用的结果。
Because magnesium and its alloys can be used as biodegradable material for implants, the corresponding research has very important significance in the biomedical field. However, magnesium alloy has poor wear and corrosion resistance and brush-plating on its surface can overcome the shortcoming. In this paper, the microstructure and mechanical behavior of nanocomposite coating reinforced with HAP (Hydroxyapatite) and CNTs (Carbon nanotubes) on the surface of AZ91D Mg alloy have been studied. The Ni-Co was used as the metal matrix, and nano-HAP and CNTs were chosen as the hybrid reinforcements. The composite coating is bright and compact, and it has strong interface binding strength and excellent biocompatibility. So the coating is a new type of potential biomaterial in bone tissue engineering.
     According to the characteristics of magnesium alloys, its optimal brush plating process was determined and composite coatings with different content and ratio of nano-sized HA particles and CNTs were prepared. The surface and cross section morphology, microstructure and tensile performance of the coatings were analyzed by the means of optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tensile testing. The results show the hybrid nano-reinforcements is well distributed in the coating, the tensile properties of particle and fiber reinforced composite coatings are better than that of pure nickel and cobalt coating. The tensile properties of the coating are increased with the increase of particle content, while the tensile properties and interface bonding strengths are decreased with the increase of fiber content. In the experimental range, the coating has excellent comprehensive properties such as higher strength and hardness when the concentration of HAP is 5g/L and the concentration of CNTs is 0.1 g/L.
     Comparing with thermal spraying and vapor deposition etc., there are small temperature changes in the brush plating process. However, there often existed large thermal stress due to bigger thermal expansion coefficient changes. Using ABAQUS finite element software, the thermal residual stresses of the coating during the cooling process are calculated and the simulation of indentation is also conducted to describe the influence of the thermal residual stresses. The results show that the maximum thermal residual stress is increased with the increase of temperature, which has been verified by theoretical calculation and FEM. In the simulation of indentation, for the same impression depth, the higher the initial temperature is, the smaller the pressure is, and so the lower the hardness of the coating is. In order to compare with the above results, the thermal stress analysis and indentation simulation of rough film-substrate systems are also carried out.The results show that the binding strength is greater and the coating hardness is relatively higher for rough film-substrate systems.Cracking process and its stress distribution of vertical crack under thermal residual stresses have been simulated.
     Using periodic boundary conditions, the finite element model based on graphical vectorization of SEM and TEM images by software coretrace is built, and the tensile properties of coating are simulated. Effects of volume fraction, hybrid ratio and size distribution on the coating are calculated. The results show that when more CNTs are added and the box dimension is bigger, the more uniform the distribution of the particles and fibers are, thus the better the tensile properties of coatings are. The simulation results are consistent with that of the experiment. The mechanical property improvements of the hybrid nanocomposites can be attributed to CTE mismatch between the matrix and the reinforcements, Orowan strengthening, grain refinement, and the load bearing effects.
引文
[1]孔令云.不锈钢基Ni-HAP生物材料的复合电镀研究.江苏:江苏大学材料学,2007.
    [2]朱晏军,沈春华,戴红莲等.生物医用纳米羟基磷灰石(HAP)的制备及性能测试[J].佛山陶瓷,2004,84(1):13-16.
    [3]郭连峰,张文光,王成焘.纳米羟基磷灰石的制备及结晶尺寸的控制.无机化学学报.2004,(03):59-64.
    [4]刘洪涛.人工关节磨屑表征及磨屑生物反应研究.北京:中国矿业大学,2008.
    [5]T.Laha,Y.Chen,D.Lahiri,A.Agarwal.Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming.Composites:Part A 40 (2009) 589-594.
    [6]G.Gao, T.Cagin, W.A.Goddard.Energetics, Structure, Mechanical and Vibrationl Properties of Single Walled Carbon Nanotubes.Nanotechnolgoy.1998,9(3):184-191.
    [7]解思深,李王宝.神奇的纳米碳管.新材料工业.2000,(11):71-72.
    [8]N.Ghasemi, N.Mehrdad, D.Askari.Mechanical Properties Modeling of Carbon Single Walled Nanotubes:A Finite Element Method. Journal of Computational and Theoretical Nanoscience.2005,2(2):298-318.
    [9]Y.Fu, X.Xu.Analysis of Material Mechanical Properties for Single Walled Carbon Nanotubes.Acta Mechanica Solida Sinica.2005,18(1):46-51.
    [10]朱宏伟,吴德海,徐才录.碳纳米管.北京:机械工业出版社2003.1.
    [11]徐滨士,朱绍华等.表面工程的理论与技术[M].北京:国防工业出版社,1999.
    [12]董允,张廷森,林晓聘.现代表面工程技术[M].北京:机械工业出版社,2000,170-175.
    [13]钱苗根,姚寿山,张少宗.现代表面技术[M].北京:机械工业出版社,1999.60-67.
    [14]白晓军.复合镀层的历史及生成机理[J].电镀与环保,1993,13(2):9.
    [15]Iijima.S. Helical microtubles of graphite carbon. Nature,1991,354:56-58.
    [16]L. Sun, F.Banhart, A.V.Krasheninnikov et al.Carbon Nanotubesas High-pressure Cylinders and Nanoextruders [J]. Seience,2006,312:1199-1202.
    [17]M.Zhang, S.L.Fang, A.A.Zakhidov et al.Strong, TransParent, Multifunetional, Carbon Nanotube Sheets [J]. Science,2005,309:1215-1219.
    [18]D.CiuParu, Y.Chen,5.Lim et al.Uniform Diameter Single Walled Carbon Nanotubes Catalytieally Grown in Cobalt-IneorporatedMCM-41[J].Phys.Chem.B.2004, 108(28):10196-10196.
    [19]C.L.Cheung, A.Kurtz, H.Park et al.Diameter-Controlled Synthesis of Carbon Nanotubes[J].J.Phys.Chem.B,2002,106(10):2429-2433.
    [20]成会明.纳米碳管制备、结构、物性及应用[M].北京:化学工业出版社,2002:32.
    [21]梁志杰.刷镀技术实用指南.北京:中国建筑工业出版社,1988:2.
    [22]郭鹤桐等,复合镀层,天津:天津大学出版社,1991:23.
    [23]顾卓明,黄婉娟.耐磨复合镀层工艺的研究.表面技术,2002,31(2):14-17.
    [24]解培民,吴以波.复合电刷镀镀层耐磨性研究.专用汽车,1994,2:35-36.
    [25]张天顺,李耀红,张晶瑞.复合镀层电刷镀工艺的研究.电镀与环保,2000,20(1):13-15.
    [26]匡建新,汪新衡.Ni-P-B4C复合电刷镀工艺研究.常德师范学院学报(自然科学版),2001,13(2):58-61
    [27]华希俊,陈嘉真.金属基-陶瓷电刷镀复合镀层高温摩擦磨损性能研究.中国机械工程,51-54
    [28]陈靖心.耐磨复合镀层的研究及其工程应用.机械工程材料,1994,18(3):19-23.
    [29]董允,林晓娉.电沉积SIC颗粒增强抗磨复合材料研究.河北工业大学学报,1998,27(1):88-93.
    [30]李屏,刘锦辉,付华萌.电刷镀Ni-Co-P-x复合镀层力学性能.辽宁工程技术大学学报(自然科学版),2001,20(3):355-357.
    [31]徐龙堂,徐滨士,马世宁.电刷镀含纳米SIC粉复合镀层的EPMA分析.材料工程,2000,6:34-36.
    [32]徐龙堂,徐滨士,马世宁.电刷镀镍基Ni包纳米AIZ03粉复合镀层的组织性能.兵器材料科学与工程,2000,23,(4):7-12.
    [33]徐龙堂,徐滨士,周美玲.电刷镀镍/镍包纳米A1203颗粒复合镀层微动磨损性能研究.摩擦学学报,2001,21(1):24-27.
    [34]张玉峰.复合刷镀纳米Ni-ZrO2:高温耐磨性的研究.电镀与涂饰,2000,19(4):18-21.
    [35]张玉峰.(Ni-P)-纳米Si3N4微粒复合刷镀工艺研究.电镀与精饰,2001,23(6):5-7.
    [36]尹健,朱建培.注塑模电刷镀纳米复合涂层的耐磨性研究.电加工与模具,2002,3:25-27.
    [37]杜则裕,喻群,陈延青.三价铬镀层强化机理及结合机理.天津人学学报,1994,27(3):272-276.
    [38]徐龙堂.电刷镀镍基含纳米粉复合镀层性能、结构和共沉积机理.北京:北京工业大学,2000.
    [39]徐江,揭晓华.]Ni-W(D)刷镀层再强化机理的研究.电镀与精饰,1999,21(3):30-32.
    [40]贺军.镍钻合金镀层薄膜的制备及其变形腐蚀行为的研究.湖南:湘潭大学.2008.
    [41]郭超.碳纳米管增强镍基复合镀层的性能及影响因素分析.北京:北京化工大学.2007.
    [42]韩辉.电磁搅拌下杠91镁合金的显微组织与性能研究.武汉:武汉理工大学.2008
    [43]常立民.脉冲电沉积(Ni-Co)/A12O3复合镀层及其性能研究.哈尔滨:哈尔滨工业大学.2006.
    [44]李赞.铝合金上Ni-Co-P/Si3N4复合电镀层的制备与性能研究.重庆:重庆大学.2009.
    [45]Yan Liu, Luquan Ren, Sirong Yu et al. Influence of current density on nano-A12O3/Ni+Co bionic gradient composite coatings by electrodeposition. Journal of University of Science and Technology Bei.
    [46]周永强,李午申,冯灵芝.表面工程技术的发展与应用.焊接技术.2001,30(4):5-7.
    [47]万建松,岳珠峰.采用压痕实验获得材料性能的研究现状.实验力学.2002,17(2):131-139.
    [48]J.M.Pitarresi,GD.Manolis.Tem Poral Finite Element Methodin Sturcutral Dynamics.Com Putersand Sturcutres.1991,41(4):647-655.
    [49]S.LalithaS.ChattoPadhyay, N.Ghosh.Develo Pmentof Sotfwareon Finite Element Mesh Generation For Metallugrical applications.Engineering Fracutre Mechanics.1990, 36(3):527-530.
    [50]Kaprinski, Gene.ImPlementing CAE/CAD. Proceedings of the National Electronics Conefrence.1987,80:1049-1052.
    [51]杨鼎宁,邹经湘,盖登宇.计算机辅助工程(CAE)及其发展.力学与实践.2000,27(3):8-14.
    [52]J.D.Bressan,A.Tranmontin,C.Rosa.Modeling of nanoindentation of bulk and thin film by finite element method[J].Wear,2005,258:115-122.
    [53]S.I.Bulychev,V.P.Alekhin,M.Kh.Shorshorov,A.P.Tenovskii,and G.D.Shnyrev Determining Young Modulus from the Indenter Penetration Diagram Zavod.Lab[J].Vol41(No.9),1975:1137-1140
    [54]张泰华.微纳米力学测试技术及其应用[M].北京:机械工业出版社.2004,10:20-28
    [55]A.Bolshakov, W.C.Oliverl and GM.Pharr. An Explanation for the Shape of Nanoindentation Unloading Curves Based on Finite Element Simulation, in Thin Films-Stresses and Mechanical Properties V,MRS Symposium Proc[J].Vol356,Materials Research Society,1995:675-680
    [56]张江涛.颗粒增强金属基复合材料动态力学性能的实验研究与数值模拟.武汉理工大学,武汉。
    [57]Srinivasa R. Bakshi, Ruben G. Batista, Arvind Agarwal. Quantification of carbon nanotube distribution and property correlation in nanocomposites. Composites:Part A 40 (2009) 1311-1318
    [58]何春霞,肖声明.基于纳米SiC/PTFE复合材料微观结构SEM的图像处理及分析.南京农业大学工学院,南京
    [59]C.S. Goh, J. Wei, L.C. Lee, M. Gupta.Properties and deformation behaviour of Mg-Y2O3 nanocomposites. Acta Materialia 55 (2007) 5115-5121
    [60]Z. P. LUO& J. H. KOO.Quantifying the dispersion of mixture microstructures. Journal of Microscopy, Vol.225, Pt 2 February 2007, pp.118-125

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700