自支撑硼掺杂金刚石膜生长及其硼分布、应力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用电子辅助热灯丝化学气相沉积(EA-HFCVD)制备自支撑硼掺杂金刚石膜,对其制备、性质进行了研究。介绍了硼掺杂金刚石膜的生长特性,包括形貌、取向、生长速率等。通过硼掺杂金刚石膜的Raman光谱分析,研究了金刚石膜中硼掺杂相关的Fano干涉现象及硼在膜中的分布情况,即在同等掺杂水平下,(111)晶面的硼掺杂浓度比(110)晶面的大,中心位置的硼浓度高于边界处,晶界处的含硼量高于晶粒;而对于整个自支撑膜来说,表面的硼浓度是最高的。利用XRD(sin2ψ)方法对硼掺杂金刚石膜的应力进行分析,随着硼流量的增加,薄膜的残余应力为压应力,而微观应力经历了拉应力和压应力转化的过程。残余应力和微观应力的变化是由于硼掺杂导致的晶粒尺寸、孪晶生成及(110)和(111)晶面取向变化共同作用的结果。
Diamond is an important material for many applications due to its unique properties such as high hardness, high thermal conductivity, wide band gap (5.5eV), and so on. Pure diamond is known as an insulator. Generally boron doping can induce an acceptor level (p-type semiconductor). Moreover when the boron doping level increased, the metallic conduction even superconductivity will appear. Recently, heavily B-doped (superconductivity) has been investigated extensively.
     Freestanding boron-doped CVD diamond films were synthesized by EA-HFCVD process with different B(OCH3)3 flow rates. The growth behavior with different texture, boron concentration, and residual stress of the as grown films were characterized by SEM, XRD and Raman spectra.
     Based on the XRD and SEM results, the variation in morphology, grain size and crystalline texture are dependent on the incorporation of boron. The undoped diamond film mainly consists of (111) facet with average size of ~50μm. When boron source was introduced (2 - 10 sccm), the appearance of (110) facets is enhanced with respect to (111) facets and the average size decreases to around 8μm, and importantly, the large number of twin appear. However, as the B-flow rate increased up to 20 sccm, the grains show dominated morphologies of both (110) and (111) facets and the number of twin decreases.
     Fano-type interference can be induced by boron doping and the asymmetry parameter q represents the asymmetric of one-phonon line shape which has been proposed that the smaller the q is, the higher the boron concentration is, so we can obtain the distribution of boron by fitting the Raman spectra. The results show that the values of q for (111) facets, grain boundaries and the center of the whole film are smaller than that for (110) facets, grain surface and the edge of the whole film for all the B-doping levels, respectively. This suggests that, at given boron doping levels, (111) facets take up higher concentrations of boron into the crystal than (110) facets, the boron concentration at grain boundaries is higher than that in grain, the boron concentration is higher at center than that at edge. The q increases from top surface to bottom along the cross section, suggesting that the boron concentration near the surface is higher than that beneath.
     Generally, doped boron atoms substitute for the carbon atoms and/or occupy neutrally interstitial positions depending on doping level. In these cases, the boron doping leads to stress and consequently influence the structure and properties of those B-doped films. In this paper, the residual and micro stresses were analyzed by XRD. The results show that the residual stress is compressive. With increasing boron flow rate, the stress is gradually decreased. The micro-stress varies as tensile→compressive→tensile in the films fabricated with increasing boron flow rate in the growth processes. It is demonstrated by XRD and SEM that the variations in residual stress and micro-stress as a function of boron doping level are strongly dependent on grain size, growth orientation, and appearance of twins in the boron-doped diamond films. The results are available for designing the high performance diamond-based optoelectronic devices with controlled stress.
引文
[1] J E Field. The Properties of Natural and Synthetic Diamond [M]. New York: Academic Press, 1992.
    [2] JIN Zengsun, JIANG Zhigang, H U Hang, CAO Qingzhong. The growth behavior and internal stress of diamond thick films synthesized by hot-cathode DC-PCVD [J]. New Carbon Materials, 2003, 18: 65.
    [3] Paiter, Ellis, Lubinsky. Ab Initio Calculation of the Electronic Structure and Optical Properties of Diamond Using the Discrete Variational Method [J]. Phys. Rev. B, 1971, 4: 3611-3622.
    [4] Warren, et al. Lattice Dynamics of Diamond [J]. Phs. Rev. 1967, 158: 805-808.
    [5] Spear K E. Diamond-cearamic coating of the future [J]. J. Am. Ceram. Soc., 1989, 72:171-191
    [6] Spear K E, Dismukes J P. Synthetic diamond: emerging CVD science and technology [M]. A wiley-Interscience Publication, New York, 1994: 1-20.
    [7]卢文壮,基于过渡层在硬质合金上沉积CVD金刚石薄膜的研究[D],南京航空航天大学硕士学位论文, 2002.
    [8] C Wang, A Garcia, D C Ingram, and M E Kordesh. Cold field emission from CVD diamond films observed in emission electron microscopy [J]. Electronics Letters, 1991 27: 1459-1461.
    [9] Dan Wu, Y C Ma, Z L Wang. Optical properties of boron-doped diamond [J]. Phys.Rev.B, 2006, 73: 012501.
    [10] Z L Wang, Q Luo, L W Liu. The superconductivity in boron-doped polycrystalline diamond thick films [J]. Diamond and Related Materials, 2006, 15: 659-663.
    [11] N Fujimori. New Diamond, 1986, 2:10.
    [12] M Kamo and H Yurimoto. Synthesis of semi conductive diamond on diamond substrate from gas phase [J]. J.Vac. Sci. Technol. A, 1988, 6:1818.
    [13] K Okano, Y Akiba, T Kurosa, et al. Synthesis of B-doped diamond film [J]. J. Cryst. Growth, 1990, 99: 1192-1195.
    [14] J Mort, D. Kuhman, M. Machonkin, et al. Boron doping of diamond thin films [J]. Appl. Phys, Lett, 1989, 55: 1121.
    [15] N Setaka. Diamond synthesis from vapor phase and its growth process [J]. Spring MRS Meeting, 1989, 4(3): 664-670.
    [16] J Cifre, J Puigdollers, M C Polo, et al. Trimethylboron doping of CVD diamond thin films [J]. Diamond and Related Materials, 1994, 3: 628-631.
    [17] G Sh Gildenblat, et al. Proc of Fall 1989 MRS, pp. 297-302.
    [18] K Nishimura et al., Proc. Of NATO Adv . Res. Workshop on Phys. And Chem. Of Carbides [J]. Nitrides and Borides, Manchester, UK, 1989,11
    [19] N. Tujimori, H. Nakahata and T. Imai. Properties of Boron-Doped Epitaxial Diamond Films [J]. Japanese journal of applied physics, 1990, 29: 824-827.
    [20] M C Polo et al. Comparative study of trimethylboron doping of hot filament chemically vapour deposited and microwave plasma chemically vapour deposited diamond films [J]. Thin Solid Films, 1994, 253(1-2): 136-140.
    [21] A W Phelps and R Koba, Proc. I st. Int. Symp. On Diamond and diamond-like Films, 1989, 89(12): 38.
    [22]减建兵,黄浩,赵玉成.含搀杂的金刚石[J].金刚石与磨料磨具工程, 2002, 1(127): 17.
    [23] Ekimov E A, Sidorov V A. Superconductivity in diamond [J].Letters to nature, 2004, 428: 542-545.
    [24] Yoshihiko Takano, Masanori Nagao, Isao Sakaguchi. Superconductivity in diamond thin films well above liquid helium temperature [J]. Appl. Phys. Lett, 2004, 85 (14): 2851-2853.
    [25] Li C Y, Li B, LüX Y, Li M J, Wang Z L, Gu C Z. Superconductivity in heavily boron-doped diamond films prepared by electron assisted chemical vapour deposition method [J]. Chinese Phys Lett 2006, 23: 2856-2863.
    [26] Vinokur N, Miller B, Avyigal Y et al. Electrochemical Behavior of Boron-Doped Diamond Electrodes [J]. J. Electrochem. Soc., 1996, 143:L238-L240.
    [27] Swain G M. The Susceptibility to Surface Corrosion in Acidic Fluoride Media: A Comparison of Diamond, HOPG, and Glassy Carbon Electrodes [J]. J. Electrochem.Soc.,1994, 141: 3382-3393.
    [28] Rao T N, Yagi I, Miwa T, et al .Electrochemical Oxidation of NADH at Highly Boron-Doped Diamond Electrodes [J]. Anal. Chem., 1999, 71(13): 2506.
    [29] Xu J, Chen Q, Swain G M. Anthraquinonedisulfonate Electrochemistry: A Comparison of Glassy Carbon, Hydrogenated Glassy Carbon, Highly Oriented Pyrolytic Graphite, and Diamond Electrodes [J]. Anal. Chem.,1998, 70(15): 3146.
    [30] Chen Q, Swain G M. Structural Characterization, Electrochemical Reactivity, andResponse Stability of Hydrogenated Glassy Carbon Electrodes [J]. Langmuir, 1998, 14(24):7010.
    [31] Xu J, Granger M C, Wang J et al. Eletrochemical Society Proceedings, 1999, 99(32): 403.
    [32] Troster I, Fryda M, Herrmann D, et al. Electrochemical advanced oxidation process for water treatment using DiaChem (R) electrodes [J]. Diamond Relat . Mater.,2002, 11(3P6): 640.
    [33]胡陈果.高硼掺杂金刚石膜电极的电化学应用研究[J].物理学和高新技术, 2002, 31(2): 93-96.
    [34]朱沛林,朱建中,杨申仲等.硼掺杂金刚石膜电极电化学特性的研究[J].功能材料与器件学报, 1996, 2(4): 207-214.
    [35] Rao T N, Loo B H, Fujishima A, et al. Electrochemical Detection of Carbonate Pesticides at Conductive Diamond Electrodes [J]. Anal chem., 2002, 74: 1578-1583.
    [36] Marken F, Paddon C A, Asgan D. Direct cytochrome electrochemistry at boron-doped diamond electrodes [J]. Electrochemistry Communications, 2002, (4): 62-66.
    [37] Rao T N, Fujishima A. Recent adrances in electrochemistry of diamond [J]. Diamond and Related Materials, 2000, (9): 384-389.
    [38] Lowery S N, Carey J J, Christ C S, et al. Method of electrolysis employing a doped diamond anode to oxidize. US 5 399, 247, 1995.
    [39] BAI Yizhen, LüXianyi, HAN Xuemei, JIN Zengsun, LüTianshan, BAI Yuan, Influences of deposition technologies on stress-strain properties of thick diamond [J]. Journal of Jilin University(science edition), 2006, 44(5): 784.
    [40] R J Nemanich, J T Glass, G Lucovsky, et al. Raman Scattering Characterization of Carbon Bonding in diamond and diamond like Thin Film, J Vac Sci Tech, 1988, A6(3): 1783-1787.
    [41] D S KAnigh and W B White. Characterization of Dianmond film by Raman Spectroscopy, J, Master Res,1989, 4(2): 385-393.
    [42] R J Nemanich and S A Solin. First-and Second-order Raman Scatter From Finite-size crystals of Graphite [J]. Phys Rev B, 1979, 20(2): 392-401.
    [43] Li Chunyan. Preparation and Electrical Properties of Boron-doped Diamond Films[J]. Ph.D Thesis, JiLin University, (2006).
    [44] A van der Drift. Evolutionary selection:a principle governing growth orientation in vapour deposited layers [J]. Philips Res. Rep., 1967, 22: 267.
    [45] LIU Weiping, YU Qingxuan, TIAN Yuquan, LIAO Yuan, WANG Guanzhong, Fang Rongchuan. Effects of Boron Doping on the Growth Characteristic of Diamond Film [J]. Journal of Inorganic Materials, 2005, 20(5): 1270.
    [46] N G Ferreira, E Abramof, E J Corat, V J Trava-Airoldi. Residual stresses and crystalline quality of heavily boron-doped diamond films analysed by micro-Raman spectroscopy and X-ray diffraction. Carbon, 2003, 41: 1301–1308.
    [47]王玉光.化学气相合成金刚石膜的特性研究[D].北京:中国科学院物理研究所, 2000.
    [48] Tom Feng, and Bradley D Schwartz. Characteristics and origin of the 1.681 eV luminescence center in chemical-vapor-deposited diamond films [J]. J. Appl. Phys, 1993, 73: 1415-1425.
    [49] H Sternschulte, K Thouke, and R Sauer, P C Munzinger, P Michler. 1.681-eV luminescence center in chemical-vapor-deposited homoepitaxial diamond films [J]. Phys. B, 1994, 50: 14554-14560.
    [50] J A Freitas, J E Vutler, and U Storm. J. Mat. Res, 1990, 5: 2502.
    [51] C D lark, H Kanda, I Kiflawi, G Sihas. Silicon defects in diamond [J]. Phys. Rev B, 1995, 51: 16681-16688.
    [52] S W Brown, and S C Rand. Site symmetry analysis of the 738 nm defect in diamond [J]. J Appl Phys, 1995, 78: 4069-4075.
    [53] J P Goss, R Jones, S J Breuer, P R Briddon S Obery. The Twelve-Line 1.682 eV Luminescence Center in Diamond and the Vacancy-Silicon Complex [J]. Phys. Rev. lett., 1996, 77: 3041-3044.
    [54] S Dannelaer, W Zhu, T Bretagnon, D Kerr. Vacancies in polycrystalline diamond films [J]. Phys. Rev B, 1996, 53: 1979-1984.
    [55] J W Ager III, W Walukiewicz, M McCluskey, M A Plano, and M I Landstrass. Fano interference of the Raman phonon in heavily boron-doped diamond films grown by chemical vapor deposition [J]. Appl. Phys. Lett., 1995, 66: 616.
    [56] K Ushizawa, M Nishitani-Gamo, K Watanabe, I Sakaguchi, Y Sato, and T Ando, Raman Spectroscopic Study on (100) Facet of Boron-doped Chemical-vapour-deposited Diamond Crystals with Fano Line Fitting [J]. J. Raman Spectrosc. 1999, 30: 957.
    [57] Y G Wang, S P Lau, and B K Tay, Resonant Raman scattering studies of Fano-type interference in boron doped diamond [J]. J APPL PHYS 2002, 92(12): 7253-7256.
    [58] Koichi Ushizawa, Mikka N.-Gamo, Kenji Watanabe, Isao Sakaguchi, Yoichiro Sato and Toshihiro Ando. Raman Spectroscopic Study on (100) Facet of Boron-doped Chemical-vapour-deposited Diamond Crystals with Fano Line Fitting [J]. J. Raman Spectrosc. 1999, 30:957–961.
    [59] Koichi Ushizawa, Kenji Watanabe, Toshihiro Ando, Isao Sakaguchi, Mikka Nishitani-Gamo, Yoichiro Sato, Hisao Kanda. Boron concentration dependence of Raman spectra on {100} and {111} facets of B-doped CVD diamond [J]. Diamond & Related Materials, 1998, 7: 1719-1722.
    [60] Zoya Mehmood Shah, Alison Mainwood. A theoretical study of the effect of nitrogen, boron and phosphorus impurities on the growth and morphology of diamond surfaces [J]. Diamond & Related Materials, 2008, 17: 1307–1310.
    [61] Koichi Ushizawa, Kenji Watanabe, Toshihiro Ando, Isao Sakaguchi, Mikka Nishitani-Gamo, Yoichiro Sato, Hisao Kanda. Boron concentration dependence of Raman spectra on {100} and {111} facets of B-doped CVD diamond [J]. Diamond and Related Materials, 1998, 7: 1719-1722.
    [62] I H Choi,P Weisbecker,S Barrat, E Bauer. Growth of highly oriented diamond films by the MPCVD technique using CO–H2, CH4–H2 and CH4–N2–H2 gas mixtures [J]. Diamond Relat. Mat., 2004, 13(4-8): 574.
    [63] Shigeharu Morooka, Terumi Fukui, Kiyohiko Semoto, Toshiki Tsubota, Takeyasu Saito, Katsuki Kusakabe, Hideaki Maeda, Yasunori Hayashi, Tanemasa Asano. Electrical properties of homoepitaxial boron-doped diamond thin films grown by chemical vapor deposition using trimethylboron as dopant [J]. Diamond and Related Materials, 1999, 8: 42–47.
    [64] V V Brazhkin, E A Ekimov, et al. Lattice parameters and thermal expansion of superconducting boron-doped diamonds [J]. PHYSICAL REVIEW B 2006, 74: 140502.
    [65] T C Au Yeung, T C Chiam, Chang Q Sun, Mingxia Gu, W Z Shangguan, and C H Kam, Effect of surface bond-order loss on the electronic thermal conductivity of metallic polycrystalline films [J]. JOURNAL OF APPLIED PHYSICS, 2005, 98: 113707.
    [66] Gajewski W, Achatz P, Williams OA, Haenen K, Bustarret E, Stutzmann M, and.Garrido JA. Electronic and optical properties of boron-doped nanocrystalline diamond films [J]. Phys. Rev. B, 2009, 79: 045206.
    [67]李春燕.掺硼金刚石膜的制备及其电学性能研究[D].吉林:吉林大学超硬材料国家重点实验室, 2006.
    [68] ZHANG Ming, HE Jiawen. The Effect of Fiber Texture on the Stress Analysis of Thin Films by X-ray Diffraction [J]. Materials For Mechanical Engineering, 2001, 25(5): 21.
    [69] ZHAO Nanfang, YANG Qiaoqin, ZHAO Lihua, LI Deyi, XIAO Hanning, Intrinsic stress in diamond film growth by hot filament CVD [J]. Mining and Metallurgical Engineering, 18(3), 67(1998)
    [70] H Windischmann, K J Gray. Stress measurement of CVD diamond films [J]. Diamond Relat.Mat., 1995, 4(5-6): 837.
    [71] M Hempel, M H?rting. Characterisation of CVD grown diamond and its residual stress state [J]. Diamond Relat. Mat., 1999, 8(8-9): 555.
    [72] H Windischmann, G F Epps,Yue Cong, R.W.Collins. Intrinsic stress in diamond films prepared by microwave plasma CVD [J]. J.Appl. Phys., 1991, 69(4): 2231.
    [73] B D Culllity. Element of X-ray Diffraction [M]. London: Addison-Wesley, 2nd ed, 1978.
    [74] I C Noyan, T C Huang, B R York. Residual stress/strain analysis in thin films by X-ray diffraction [J]. Crit. Rev. Solid State Mater. Sci., 1995, 20: 125.
    [75] M S Haque, H A Naseem, A P Malshe, W D Brown. A Study of Stress in Microwave Plasma Chemical Vapor Deposited Diamond Films Using X-Ray Diffraction [J]. Chem. Vap. Deposition, 1997, 3(3): 129.
    [76] ZHU Hongxi, MAO Weimin, FENG Huiping, Influence of texture on residual strain in CVD free standing diamond films [J]. Chinese Journal of Materials Research, 2007, 21(1): 32.
    [77] S K Choi, D Y Jung, H M Choi. Intrinsic stress and its relaxation in diamond film deposited by hot filament chemical vapor deposition [J]. J. Vac. Sci. Technol. A, 1996, 14(1): 165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700