三面受火的矩形钢管混凝土柱抗火性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土以其承载力高、塑性韧性好、施工方便及抗火性能好等优点,在多、高层建筑中得到了广泛的应用。矩形钢管混凝土柱作为钢管混凝土结构的一种重要的构件形式,除兼具上述优点外,还因其抗弯刚度大、节点构造简单而备受结构工程师的青睐。结构的抗火性能是决定结构能否安全工作的重要因素之一,现行钢管混凝土结构的抗火规范或规程,如《矩形钢管混凝土结构技术规程》(CECS159:2004)和《钢管混凝土结构技术规程》(DBJ13-51-2003)等,均假设钢管混凝土柱承受四面火灾作用,而实际结构中由于墙体的阻隔作用,框架柱除可能承受四面均匀火灾作用之外,尚可能遭遇三面火灾作用。由于非对称的温度分布,构件截面材料的劣化程度也非对称,导致截面材料的强度中心发生偏移,从而形成附加的偏心距;此外,非对称的温度分布导致柱子受火面膨胀变形大,背火面膨胀变形小,从而产生向受火面挠曲的附加变形。综上所述,矩形钢管混凝土柱三面受火与四面受火存在诸多差异,有必要对三面受火矩形钢管混凝土柱的抗火性能进行研究。据此,本文对三面受火的矩形钢管混凝土柱进行了试验研究和有限元分析,具体包括以下三部分内容:
     (1)三面受火的矩形钢管混凝土柱试验研究和分析
     进行了2根三面受火1根四面受火的矩形钢管混凝土柱足尺抗火试验,实测了受火全过程中构件的截面关键位置的温度、轴向变形和侧向挠曲,获得了三面受火的矩形钢管混凝土柱的破坏模式,基于试验数据,分析了荷载比和受火边界对耐火极限的影响规律。
     (2)三面受火的矩形钢管混凝土柱有限元分析
     基于ABAQUS建立了可用于分析三面受火的矩形钢管混凝土柱温度场和抗火性能的三维有限元分析模型,并得到了相关试验验证。进而对三面受火的矩形钢管混凝土柱的受力机理进行了深入研究,包括矩形钢管混凝土柱的温度分布、破坏模式、应力应变的分布以及发展等。
     (3)三面受火的矩形钢管混凝土柱抗火性能的参数分析
     进行了三面受火的矩形钢管混凝土柱抗火性能的参数分析,包括升温时间、截面尺寸、含钢率、保护层厚度和截面高宽比对温度场的影响规律;荷载比、截面周长、长细比、含钢率、钢材强度、混凝土抗压强度、荷载偏心率、截面高宽比和保护层厚度对耐火极限的影响规律;提出了可考虑不同背火边界的三面受火矩形钢管混凝土柱耐火极限的简化计算公式,以期为工程应用提供参考。
Concrete filled steel tubular (CFST) columns have gained wide applicatioin in multi-storey and high-rise buildings for their advantages of high load carrying capacity, good ductility, flexibility of construction and high fire resistance. As one form of CFST columns, Rectangular Hollow Section (RHS) columns acquire more attention for their high flexural rigidity, simple construction of joint besides advantages metioned above. Fire resistance is one of the most important factors affecting building safety, current criterions and specifications in operation, CECS159:2004 and DBJ13-51-2003, etc. assume CFST columns being exposed to fire uniformly. But in fact, because of the barrier effect of adjacent walls, columns maybe under three-surface fire loading, which would result in asymmetry thermal field and then form additional eccentricity owning to offset of section material strength center. In addition, asymmetry thermal field causes dilatational strain of surface exposed to fire is greater than that not exposed to fire, which arouses additional dilatational strain. It’s therefore significant need to investigate RHS columns under three-surface fire loading based on previous research on those under four-surface fire loading. Experimental research and finite element analysis are carried out for RHS columns under three-surface fire loading, includeing:
     (1) Experimental research of RHS columns under three-surface fire loading
     Three full-scale RHS columns, including one column subjected to four-surface fire loading and the others three-surface fire loading, were tested, thermal field of cross section, axial deformation and lateral deformation were measured. The failure mode of the columns was obtained and the affection of load level and fire boundaries to fire resistance was analysed.
     (2) Finite element analysis of RHS columns under three-surface fire loading
     Three-dimensional FEM model was developed using ABAQUS to analyze thermal field and fire resisrance of RHS columns and the results were validated by the experimental results. Then the mechanism of RHS columns under three surface fire loading and sustained load was researched, including thermal field, failure mode, distribution of stress, strain and evolution, etc.
     (3) Parametric studies of RHS columns under three-surface fire loading
     Parameters were studied to investigate their influence on thermal field and fire resistance, including the influence of exposure time, dimension of cross-secition, steel ratio, thickness of fire proof and depth to width ratio on thermal field; the influence of load level, dimension of cross-section, slenderness ratio, steel ratio, strength of steel and concrete, load eccentricity, depth to width ratio and thickness of fire proof on fire resistance, summarize the rules of their affection. A simple equation was put forward for predictinig the fire resistance of RHS columns under three-surface fire loading, which may provide a reference for engineering applications.
引文
1韩林海.钢管混凝土结构——理论与实践.第二版.科学出版社,2007
    2钟善桐.钢管混凝土结构.第3版.清华大学出版社,2003
    3李国强,韩林海,楼国彪,蒋首超.钢结构及钢-混凝土组合结构火设计.中国建筑工业出版社,2006
    4 W. Klingsch. New developments in fire resistance of hollow section structures, Symposium on Hollow Structural Sections in Building Construction. ASCE, Chicago Illinois, 1985: 1~34
    5 W. Klingsch. Optimization of Cross Sections of Steel Composite Columns. Proc. of the Third International Conference on Steel-Concrete Composite Structures (II), ASCCS, Fukuoka, 1991: 99~105
    6 R. Hass. On Realistic Testing of the Fire Protection Technology of Steel and Cement Supports. Translations of BHPR/NL/T/1444. 1991:171
    7 Timo Inha. A Simple Method for the Structural Fire Design of Composite Structures. Proc. of an Engineering Foundation Conference on Steel-Concrete Composite Structures. New York, the Structure Division of the ASCE, 1992: 210~223
    8 Tadayoshi Okada, Tanemi Yamaguchi, Yoshifumi Sakumoto and Koichiro Keira. Loaded Heat Tests of Full-Scale Columns of Concrete-Filled Tubular Steel Structure Using Fire-Resistance Steel for Buildings. Proc. of 4th International Conference on Steel-Concrete Composite Structures of ASCCS, Fukuoka, Japan, 1991, 9: 101~106
    9 T. T. Lie. Fire and buildings. Applied Science Publishes LTD. 1972
    10 T. T. Lie, M. Chabot. Experimental studies on the fire resistance of hollow steel columns filled with plain concrete. NRC-CNRC Internal Report, 1992, No.611
    11 T. T. Lie, D. C. Stringer. Calculation of the fire resistance of steel hollow structural section columns filled with plain concrete. Canadian Journal of civil Engineering. 1994, 21: 382~385
    12 T. T. Lie, M. Chabot. A Method to predict the fire resistance of circular concrete filled hollow steel columns. Journal of Fire Engineering. 1990, 2(4):111~126
    13 T. T. Lie, R. J. Irwin. Evaluation of Fire Resistance of Reinforced Concrete Columns with Rectangular Cross-Section. NRC-CNRC Internal Report, 1990, No.601
    14 T. T. Lie, R. J. Irwin. Method to calculate the fire resistance of reinforced concrete columns with rectangular cross section. ACI Structural Journal. 1993, 90(1): 52~60
    15 T. T. Lie, E. M. A. Denham. Factors affecting the fire resistance of circular hollow steel columns filled with bar-reinforced concrete. NRC-CNRC Internal Report, 1993, No.651
    16 T. T. Lie. Fire resistance of circular steel columns filled with bar-reinforced Concrete. Journal of Structural Engineering, 1994, 120: 1489~1509
    17 T. T. Lie, R. J. Irwin. Fire resistance of rectangular steel columns filled with bar-reinforced Concrete. Journal of Structural Engineering, 1995, 121(5): 797~805
    18 V. K. R. Kodur, T. T. Lie. Fire resistance of steel columns filled with Fiber-reinforced concrete. Journal of Structural Engineering, 1996, 122(7): 776~782
    19 T. T. Lie, V. K. R. Kodur. Fire resistance of steel columns filled with bar-reinforced concrete. Journal of Structural Engineering, 1996, 122(1): 30~36
    20 T. T. Lie, M. Chabot. Evaluation of fire resistance of compression members using mathematical models. Fire Safety Journal, 1993(20): 135~149
    21 T. T. Lie, M. Chabot. Fire resistance of hollow steel columns filled with carbonate aggregate concrete: test results. NRC-CVRC Internal Report, 1998, No.573
    22 T. T. Lie, S. E. Cargon. Fire resistance of hollow steel columns filled with silicate aggregate concrete: test results. NRC-CVRC Internal Report, 1998, No.573
    23 V. K. R. Kodur, D. H. MacKinnon. Design of concrete filled hollow section columns for fire endurance. Engineering Journal, AISC. 2000, 37(1): 13~24
    24 D. K. Kim, S. M. Chot, K. S. Chung. Structural characteristics of cft columns subject to fire loading and axial force. Proceedings of the 6th ASCCS Conference, Los Angeles, USA, 2000: 271~278
    25 Y. C. Wang, J. M. Davies. An Experimental Study of the Fire Performance of Non-Sway Loaded Concrete-Filled Steel Tubular Column Assemblies with Extended End Plate Connections. Journal of Constructional Steel Research. 2003, 59(7): 819~838
    26 A. H. Varma, J. Srisa-Ard, S. Hong. Analytical Investigations of the Fire Behavior of Concrete Filled Steel Tube (CFT) Columns. Proceedings of the 2004 Structures Congress-Building on the Past: Securing the Future. 2004: 1171~1181
    27 S. Hong, A. H. Varma. Behavior of CFT Beam-Columns under Elevated Temperatures from Fire Loading. Annual Stability Conference, Structural Stability Research Council. 2004: 557~580
    28 K. H. Tan, C. Y. Tang. Interaction Model for Unprotected Concrete Filled Steel Columns under Standard Fire Conditions. Journal of Structural Engineering. 2004, 130(9): 1405~1413
    29 J. Ding, Y. C. Wang. Realistic modelling of thermal and structural behaviour of unprotected concrete filled tubular columns in fire. Journal of Constructional Steel Research. 64(2008):1086~1102
    30 S. Hong, A. H. Varma. Analytical modeling of the standard fire behavior of loaded CFT columns. Journal of Constructional Steel Research, 65(2009): 54~69
    31钟善桐.钢管混凝土耐火性能研究的几个问题和方法.哈尔滨建筑大学学报,1997,30(5):53~57
    32贺军利,钟善桐.钢管混凝土柱耐火全工程分析.哈尔滨建筑大学学报,1997,30(5):71~76
    33钟善桐.钢管混凝土的防火.建筑结构,1999,(7):55~61
    34 X. X. Zha, S. T. Zhong. Behaviour of concrete filled steel tubular columns under fire. Journal of Harbin Institute of Technology. 2002, 9(3):292~296
    35李易,查晓雄,王靖涛.端部约束对钢管混凝土柱抗火性能的影响.哈尔滨工业大学学报(增刊),2005,37:438~441
    36徐超,张耀春.四面受火方形薄壁钢管混凝土轴心受压短柱抗火性能分析.哈尔滨工业大学学报(增刊),2005,37:417~420
    37温海林,余志武,丁发兴.高温下钢管混凝土温度场的非线性有限元分析.铁道科学与工程学报,2005,2(5):32~35
    38丁发兴,余志武.恒高温下混凝土及钢管混凝土受压力学性能研究.铁道科学与工程学报,2005,2(6):9~14
    39 J. Yin, X. X. Zha. Fire Resistance of Axially Loaded Concrete Filled Steel Tube Columns. Journal of Constructional Steel Research. 2006, 62(7): 723~729
    40王卫华,陶忠.钢管混凝土平面框架温度场有限元分析.工业建筑,2007,37(12):39~42
    41王卫华,陶忠.钢管混凝土柱-钢筋混凝土梁框架结构温度场试验研究.工业建筑,2009,39(4):18~21
    42王卫华,陶忠.火灾下圆钢管混凝土柱的有限元分析.工业建筑,2009,39(4):28~32
    43过镇海,时旭东.钢筋混凝土的高温性能及其计算.清华大学出版社, 2003
    44查晓雄,钟善桐.钢筋混凝土构件在受火时的力学性能分析.华中科技大学学报(城市科学版),2002,19(1):86~90
    45吴波,唐贵和,王超.不同受火方式下混凝土柱耐火性能的试验研究.土木工程学报,2007,40(4):27~31
    46 Kenichi IKEDA, Kazuyuki MATSUI, Hideto SAITO. Fire safety engineering ofconcrete filled steel tubular column without fire protection. Yokohama, Japan, SEWC 2002:1~8
    47吴国忠,齐晗兵,张文福,鲁刚.方形截面钢管混凝土非均匀受火温度场的数值模拟.大庆石油学院学报,2003,27(4):87~89,124
    48杨华.三面火灾作用下方钢管混凝土柱抗火性能与设计.哈尔滨工业大学博士后出站报告. 2006
    49顾锋.单面火灾作用下方钢管混凝土柱耐火性能与设计.哈尔滨工业大学硕士学位论文.2009
    50 Eurocode 4. Design of composite steel and concrete structures-part1-2:General rules-structural fire design. EN1994-1-2:2005,European committee for standardization, Brussels, 2005
    51 British standards Institutions. Structural Use of Steelwork in Building, part 8: Code of Practice for Fire Resistance Design, London, UK, 1990
    52 ECCS-Technical committee 3.European recommedations for the fire safety of steel structures, 1983
    53李引擎,马道贞,徐坚.建筑结构防火设计计算和构造处理.中国建筑工业出版社,1991
    54时旭东.高温下钢筋混凝土杆系结构试验研究和非线性有限元分析.清华大学博士学位论文.1992
    55 T. Harada, J. Takeda, S. Yamane, F. Furumura. Strength, elasticity and thermal properties of concrete subjected to elevated temperature. Concrete for nuclear reactors, ACISP-34, Detroit. 1972: 377~406
    56 ISO 834-1. Fire-resistance tests–elements of building construction-Part 1: General requirements. International Standard ISO 834, Geneva, 1999
    57李国强,蒋首超,林桂祥.钢结构抗火计算与设计.中国建筑工业出版社,1999
    58孔祥谦.有限单元法在传热学中的应用.第三版.科学出版社,1998.9
    59吕学涛.非均匀受火的方钢管混凝土柱耐火性能与设计.哈尔滨工业大学博士学位论文.2010
    60徐蕾.方钢管混凝土柱耐火性能及抗火设计方法研究.哈尔滨工业大学博士学位论文.2002
    61 K. W. poh.Stress–strain–temperature relationships for structural steel. Journal of materials in Civil Engineering 2001;13(5):371~379
    62孙金香,高伟(译).建筑物综合防火设计.天津科技翻译出版公司,1992
    63陆洲导.钢筋混凝土梁对火灾反应的研究.同济大学博士学位论文.1989
    64吕彤光.高温下钢筋的强度和变形的试验研究.清华大学硕士学位论文. 1996
    65 L. Y. Li, J. Purkiss. Stress-strain constitutive equations of concrete material at elevated temperatures. Fire safety journal. 40(2005) : 669~686
    66 S. Hong. Fundamental Behavior and Stability of CFT columns under Fire Loading. PH.D dissertation, School of Civil Eng., Purdue University; May 2007
    67王静峰.高温对钢管混凝土柱节点刚性的影响.清华大学博士后出站报告.2007
    68 C. W. Roeder, B. Cameron, C. B. Brown. Composite action in concrete filled tubes. Journal of Structural Engineering, 1999, 125(5): 477~484
    69 Y. Morishita, M. Tomii, K. Yoshimura. Experimental studies on bond strength in concrete filled square and octagonal steel tubular columns subjected to axial loads. Transactions of Japan Concrete Institute, 1979b: 359~336
    70 Y. Morishita, M. Tomii. Experimental studies on bond strength between square steel tube and encased concrete core under cyclic shearing force and constant axial force. Transactions of Japan Concrete Institute, 1982, (4): 363~370
    71 T. T. Lie, Barbaros Celikkol. Method to Calculate the Fire Resistance of Circular Reinforced Concrete Columns. ACI Materials Journal, 1991, 88(1): 84~91
    72杨有福.矩形截面钢管混凝土构件力学性能的若干关键问题研究.哈尔滨工业大学博士学位论文. 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700