几种中药材的化学成分及其定性定量检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文由四部分组成。第一部分报道了藏药佛手参的化学成分研究,建立了该药材活性成分的高效液相含量测定方法,进行了高效液相指纹图谱的探索,并采用液质联用技术鉴定了药材提取物的主要色谱峰;第二部分报道了中药丹参及其复方制剂的特征图谱研究;第三部分探讨了中药两面针生物碱的电喷雾质谱裂解规律,并采用液质联用技术分离鉴定了该药材提取物中的多种生物碱。第四部分为综述,概述了液质联用在药物代谢研究中的运用。
     第一部分包括第一、第二和第三章。第一章针对佛手参(Gymnadenia conopsea)块茎的甲醇提取物,采用大孔吸附树脂和反相硅胶柱层析等各种分离方法,首次从佛手参中分离纯化出4个琥珀酸葡萄糖苷类化合物,通过波谱分析将它们的结构分别鉴定为dactylorhin B(1)、loroglossin(2)、dactylorhin A(3)和militarine(4)。第二章采用高效液相色谱法对西藏、四川、河北、青海和尼泊尔等不同地区产的十个佛手参样品进行腺嘌呤核苷和对羟基苯甲醇的定量分析,结果表明这2个成份的共同出现可视为鉴定佛手参药材的成分特征,但也注意到产地不同这2个特征成分的含量也有所不同。第三章采用标准中药指纹图谱相似度计算软件,以不同产地的10个佛手参样品HPLC图谱的平均值为相似性评价对照模板,对它们进行了相似度评价。此外,经液质联用分析指认了7个共有峰,其结构分别为腺嘌呤核苷(1)、对羟基苯甲醇(2)、对羟基苯甲醛(3)、dactylorhin B(4)、loroglossin(5)、dactylorhin A(6)和militarine(7)。
     第二部分包括第四、第五、第六和第七章。第四章运用电喷雾质谱检测了对照药材和五个不同产地的丹参药材中脂溶性和水溶性成分,系统地探讨了多种成分的电喷雾质谱规律,并以对照药材为标准建立了特征指纹图谱。五个产地的药材通过与对照药材相对比,采用聚类分析的方法,得到了定性的鉴别与判断。此外,采用液质联用技术对丹参药材提取液中的化学成份进行分析,推测了九个特征峰,并对六样品的液相色谱图进行了聚类分析。第五章探讨了三七皂苷的电喷雾质谱电离和裂解规律,并采用电喷雾质谱法对三七标准药材以及血通片中的皂苷成分进行了分析。第六章运用电喷雾质谱研究复方丹参片提取液的特征图谱,并和单味药材丹参和三七的特征图谱进行了对比研究,并运用HPLC-ESI MS~n分析鉴定了复方丹参片提取液中的化学成分,推测出12个色谱峰所对应化学成份的结构。第七章总结了电喷雾质谱和液质联用技术在分析丹参药材、三七药材及复方丹参制剂中的运用应用情况以及其优势和局限性。
     第三部分(第八章)研究了两面针生物碱中二氢白屈菜红碱(1)、二氢两面针碱(2)、8-酮基二氢白屈菜红碱(3)、8-丙酮基二氢两面针碱(4)、两面针碱(5)、和1,3-二(8-二氢两面针碱)丙酮(6)等六个苯并菲啶型生物碱的电喷雾质谱裂解规律,其中二氢两面针碱和二氢白屈菜红碱,8-丙酮基二氢两面针碱和8-酮基二氢白屈菜红碱是两对二个甲氧基分别在C-9和C-10,C-10和C-11的同分异构体。实验结果表明,在相同的碰撞能下,这类位置异构体的ESI-MS~2质谱二级碎片离子的相对丰度存在很大差异,这可以用于区分该类同分异构体。受此提示,我们采用液-质联用成功地对两面针总生物碱提取物中的这些同分异构体加于区分,并通过与对照品的保留时间、紫外吸收光谱及质谱图对照,共鉴定出11个主要色谱峰。
     第四部分(第九章)是针对液质联用技术在药物代谢中的运用进行了综述。
This dissertation consisted of four sections. The first two sections elaborated the phytochemical investigation of the rhizomes Gymnadenia conopsea R. Br., method development for rapid identifying and qutifying the chemical condtituent of this tibetant medicine, and the chemical fingerprint analysis of rhizomes of G. conopsea, Salviae miltiorrhiza and P. notoginseng. The third section studied the fragmentation mechanism of six alkaloids from Zanthoxylum nitidium and method development for rapid identifying varieties of alkaloids from the extract of this herbal medicine. The fourth section reviewed HPLC-MS method in drug metabolism studies.
     The first section consisted of chapters 1, 2 and 3. Chapter 1 elaborated the phytochemical investigation of G conopsea. Four succinate derivative esters were isolated from the methanol extract of the rhizomes of G. conopsea through repeated column chromatography on normal and reversed phase silica gel, their structures were determined by ESI-MS, 1D and 2D NMR evidence. They were firstly discovered from this species. In chapter 2, a high-performance liquid chromatography-diode array detection (HPLC-DAD) method has been firstly developed for quantitation of two characteristic constituents, adenosine and 4-hydroxybenzyl alcohol, from the extract of rhizomes of G conopsea. All 10 samples of G. conopsea contained different amount of adenosine and 4-hydroxybenzyl alcohol. Adenosine and the 4-hydroxybenzyl alcohol can be applied in identification and quality control for the roots of G. conopsea. In chapter 3, a high-performance liquid chromatography-diode array detection-tandem mass spectrometry (HPLC-DAD-MS~n) method has been firstly developed for chemical fingerprint analysis of rhizomes of G. conopsea and rapid identification of major compounds in the fingerprints. Comparing the UV and MS spectra with those of authentic compounds, seven main peaks in the fingerprints were identified as adenosine, 4-hydroxybenzyl alcohol, 4-hydroxybenzyl aldehyde, dactylorhin B, loroglossin, dactylorhin A and militarine. The Computer Aided Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine (CASES) was employed to evaluate the similarities of 10 samples of the rhizomes of G. conopsea collected from Sichuan, Qinghai and Hebei provinces and Tibet autonomous region of China, and Nepal. These samples from different sources had similar chemical fingerprints to each other.
     The second section consisted of chapters 4, 5, 6 and 7. In chapter 4, both the characteristic spectra of liposoluble tanshinones and aqueous-soluble salvianolic acids were established by the electrospray ionization mass spectrometry (ESI-MS) technique and the differences between standard and crude rhizomes of S. miltiorrhiza from 5 sources were analyzed. The law of electrospray ion trap mass (ESI-ITMS) of typical tanshinones and salvianolic acids is studied.
     The analysis of the chemical constituent of rhizomes of S. miltiorrhiza by liquid chromatography coupled with mass spectrum (LC/MS) technique was established, and the distances among standard herb and crude herb from 5 sources were calculated by clustering analysis. According the DAD spectra and MS~2 data, 9 tanshinones could be speculated. In chapter 5, the character spectra of total saponins in P. notoginseng extracts were established by ESI ITMS and selective ion monitoring (SIM) technology. The law of notoginsenosides by ESI-MS~2 was studied. In chapter 6, the characteristic spectra of Compound Danshen Tablet established and compared by ESI-MS and HPLC/DAD/MS, 6 known tanshinones and 3 saponins were speculated. In chapter 7, the advantage and disadvantage of the strategy, using the ESI-ITMS and LC/MS techniques for study of characteristic spetra of danshen and Compound Danshen Tablet, were summerized.
     The third section (chapter 8) studied the fragmentation mechanism of six alkaloids, dihydronitidine, dihydrochelerythrine, 8-acetonyl dihydronitidine, 8-acetonyldrochelerythrine, nitidine and l,3-bis(8-dihydronitidinyl)-acetone, by ESI-MS~n. Tandem mass spectrometry experiments indicated that different substitution sites of the methoxyl groups at C-9 and C-10 or at C-10 and C-11 determined the different abundances of the MS~2 fragmentation ions using the same collision energy. According to the different abundances of MS~2 product ions, positional isomeric benzo[c] phenanthridine alkaloids can be differentiated. Moreover, ten constituents in the crude alkaloids extract from the roots of Z. nitidium were rapidly identified by high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS~n), through comparing the retention times and ESI-MS~n spectra with the authentic standards.
     The fourth section (chapter 9) is a review on HPLC-MS method development in drug metabolism studies.
引文
1.中华人民共和国卫生部药典委员会.中国药典(一部).北京:人民卫生出版社,1977 (1):106
    2.中华人民共和国卫生部药典委员会.藏药标准.1995(1):15.
    3.江苏新医学院.中药大辞典.上海:上海科学技术出版社,1986(1):436
    4.李帅,王栋,匡海学,冈田嘉仁,奥山徹.手掌参化学成分的研究.中草药,2001,32(1):18-19
    5.邸迎彤,中国科学院成都生物所,中国科学院成都生物所硕士学位论文.2003.
    6.JPN.Ko-Kai Tokkyo koho JP 2005 41788.2005.
    7.袁永生,张莉.反相高效液相法测定虫草菌粉中核苷类成分的含量.中国药学杂志,2002,37(10):776-778
    8.石上梅,孙婕,杜庆鹏.天麻药材HPLC指纹图谱的研究.待中国药学杂志,2005 40(10)739-741
    9. L.W. Yang, D.H. Wu, X. Tang, W. Peng, W.W. Su. Fingerprint quality control of Tianjihuang by high-performance liquid phromatography-photodiode array detection. J. Chromatogr. A, 2005, 1070: 35-42.
    10. G.H. Lu, K.Chan, Y.Z. Liang, K. Leung, C.L. Chan, Z.H. Jiang, Z.Z. Zhao. Development of high-performance liquid chromatographic fingerprints for distinguishing Chinese Angelica from related Umbelliferae herbs. J. Chromatogr. A, 2005,1073: 383-392.
    11. L.Z. Zhao, C.Y. Huang, Z. Shan, Bingren Xiang, L. Mei. Fingerprint analysis of Psoralea corylifolia L.by HPLC and LC-MS. J. Chromatogr. B, 2005, 821: 67-74.
    12. P.Zou, Y. Hong, H.L. Koh. Determination of patchoulic alcohol in Herba Pogostemonis by GC-MS-MS. J. Pharm. Biomed., Anal, 2005, 38: 564-570.
    13.王玺,王文字,张克荣,毕开顺.中药HPLC指纹图谱相似性研究的探讨.沈阳药科大学学报,2003,20:36-39.
    14.王龙星,肖红斌毕开顺.一种评价中药色谱指纹谱相似性的新方法:向量夹角法.药学学报,2002,37:713-717.
    15.黄胜阳,石建功,杨永春,胡世林.长苞凹舌兰化学成分研究.药学学报,2002,37:199-203.
    16. S.Y. Huang, G.Q. Li, J.G. Shi, S.Y. Mo, S.J. Wang, Y.C. Yang. Chemical constituents of the rhizomes of Coeloglossum viride var. Bracteatum. J. Asian Nat. Products Reasearch, 2004, 6: 49-61.
    17. H. Kizu, E.I. Kaneko, T. Tomimori. Chemical constituents of Panch Aunle, the roots ofDactylorhiza hatagirea D.Don. Chem. Pharm. Bull, 1999, 47: 1618-1625.
    18. A. Aasen, D. Behr, K. Leander, Acta Chem. Scand. Ser. B 1975, 29: 1002-1004.
    19. V.R.W. Gray, A. Guggisberg, K.P. Segebarth, M. Hesse, H. Schmid. The constitution ofloroglossin. Helv. Chim. Acta, 1977, 60:1304-1311
    20.卢卫红,张洪,王文芝.手参的药效学研究.中医药研究,2002,18(2):43—44
    21.PCT 1NT.APPL.WO 2004 58244,2004.
    22.高秋娜.红景天的药理与临床研究概述.河南中医,2001,21(2):76-77
    23.金永日,雎大员,于晓风,吕忠智,王黎.红景天茎叶提取物的抗衰老作用研究.中国老年学杂志,2001,21(2):228-229
    24.陈亚东,曹秀兰,天长有,王洪生,张红英.高山红景天对小鼠耐缺氧、抗疲劳及低温作用的影响.中国中医药科技,2002,9(3):157-158
    1. 国家药典委员会.中华人民共和国药典(一部)2000年版.北京:化学工业出版社,2000:20
    2. 罗厚蔚,丹参酮及其有关成分的质谱与高效薄层鉴定.[J]药学学报1989,24(5):341-317
    3. 李伟,高效薄层色谱在丹参脂溶性成份指纹图谱的应用[J].世界科学技术,2003,23(12)123-124
    4.于文佳,何坚,等.高分辨率电喷雾飞行时质谱测定丹参脂溶性组分.[J]高等学校化学学报.2003,24(4):621-623
    5.郑虎占,董泽宏,佘靖.中药现代研究与应用第二卷.北京:学苑出版社,1997:1093-1193.
    6. 丹参酮药理作用及临床应用研究进展[J]中草药,2000,31(4):304-306
    7. Lin LZ, Cordell GA, Lin P. [J] . Phytochemistry, 1995, 40(3): 1469-1472
    8. Lin HC, Chang WL, Wu PL, et al. J Chin Chem. Soc (Taipei), 1996, 43(6):199-202
    9. 张文生,叶正良,岳洪水.丹参药材指纹图谱研究.[J]中成药2001,24(7):478-450
    10.倪力军,李鹏,郑荣.丹参提取物红外指纹图谱间相似度的定量分析.[J]中成药2002,24(2):79-82
    11.张尊健,李茜,丹参及丹参注射液指纹图谱的HPLC-MS研究.[J]中草药,2002,33(12):1074-1076
    12.王书林,郭萍,鄢丹,等.中江丹参药材指纹图谱研究.[J]天然产物研究与开发.2003,1 5(3):227-228
    13.李茜,张尊建,许风国.丹参葡萄糖注射液的HPLC指纹图谱研究.[J]中药新药与临床药理,2002,13(6):401-405
    14.施欧超,陆萍.丹参注射液主要成分的HPLC及LC-MS定性分析.[J]世界科学技术,2001,3(4):29-33
    15.黎莲娘.丹参及其同属植物的水溶性活性成分.[J]Journal of Chinese Pharmaceutical Sciences(中国药学:英文版),1997,6(2):57-64
    16.国家药典委员会.中华人民共和国药典(一部)1995年版.北京:化学工业出版社。1995:545
    17.邸峰 孙毅坤.高效液相色谱法测定复方丹参片三七皂苷R1的含量.中国中药杂志,1996,21(11):672-673
    18.国家药典委员会.中华人民共和国药典(一部)1995年版.北京:化学工业出版社,1995:3—4
    19.李琦,叶蕴华,邢其毅.三七水溶性化学成分及其药理研究新进展.[J]高等学校化学学报,1996,17(12):1886-1892
    20.王梅范亚刚.RP-HPLC梯度法测定血塞通滴丸中三七皂苷R1、人参皂苷Rb1及人参皂苷Rg1的含量.[J]中成药,2002,24(9):681-684
    21.周雨,莫文俊,刘淑莹.电喷雾串联质谱快速分析人参皂苷混合物.化学通报,1998,02:37-40
    22.RichardB.VanBreeme,刘春华.人参皂苷的电喷雾液相色谱/质谱测定.[J]特产研究.1997,04:48-51
    23.王雁,毕开顺.三七HPLC指纹图谱的建立.[J]中国中药杂志,2003,28(24):316-320
    24.黄永焯,王宁生.HPLC—ELSD法测定复方丹参滴丸中人参皂苷Rg1、Rb1和三七皂苷R1的含量.[J]中药新药与临床药理.2002,13(3):174-177
    25.郑璐,郑健,刘庆荣等.红参中水溶性成分三七素的生理活性研究.[J]中成药,2001,23(12):905-909
    26.吴笛,刘法锦,廖彩震.中药配伍对化学成分的影响.[J]中成药,2003,25(2):153-156
    27.曹林林,孙月娥.从中药化学成分探讨配伍变化在现代研究中的应用.陕西中医学院学报,2003,26(1):49-52
    28.商洪才,高秀梅,张伯礼,王永炎.复方丹参方标本同治机制的诠释.中国中医基础医学杂志,2003,9(9):683-684
    1.国家药典委员会编.中华人民共和国药典(一部).第一版.北京:化学工业出版社,2005,116-117
    2.姚荣成,胡疆.两面针化学成分及其药理活性研究概况.药学实践杂志,2004,22(5):264-267
    3. A Zadlova, R Vrzal, M Rypka, J Ulrichova, Z Dvorak. Investigation of sanguinarine and chelerythrine effects on CYP1A1 expression and activity in human hepatoma cells. Food Chem. Toxicol, 2006, 44: 242-249.
    4. H Ishii, T Ishikawa, M Akaike, T Tohjoh, M Toyoki, M Ishikawa, IS Chen, ST Lu. Studies on the chemical constituents of rutaceous plants. LⅨ. The chemical constituents of Xanthoxylura nitidum (Roxb.) D.C. (Fagara nitida Roxb.) (1) Examination of the alkaloidal fraction of the bark. Yakugaku Zasshi, 1984, 104(10): 1030-1042.
    5. H Ishii, M Imai, S Johji, S Tan, I S Chert, T Ishikawa. Studies on the chemical constituents of Xanthoxylurn nitidum (ROXB.) D. C. (Fagara nitida ROXB.). Ⅱ: Examination of the chemical constituents by membrane filtration: identification of magnoflorine, a water-soluble quaternary aporphine alkaloid. Chemical & Pharmaceutical Bulletin, 1994, 42 (1): 108-111.
    6. T Ishikawa, M Seki, K Nishigaya, Y Miura, H Seki, IS Chen, H Ishii. Studies on the chemical contituents of Xanthoxylurn nitidum (ROXB.) D.C. (Fagara nitida ROXB.).Ⅲ: The chemical constituents of the wood. Chemical & Pharmaceutical Bulletin, 1995, 43 (11): 2014-2018.
    7. DY Kong, AI Gray, TG Hartley, PG Waterman. Alkaloids from an Australian accession of Zanthoxylum nitidum (Rutaceae). Biochem. Syst. Ecol. 1996, 24:87-88
    8.沈建伟,张晓峰,彭树林,丁立生.两面针中的化学成分.天然产物研究与开发.2005,17(1):33-34.
    9. J Hu, WD Zhang, RH Liu, C Zhang, YH Shen, HL Li, MJ Liang, XK Xu. Benzophenanthridine alkaloids from Zanthoxylum nitidum (ROXB.) DC, and their analgesic and anti-inflammatory activities. Chemistry & Biodiversity, 2006, 3:990-995.
    10. J Hu, WD Zhang, Y H Shen, C Zhang, L Xu, RH Liu, B Wang, XK Xu. Alkaloids from Zanthoxylum nitidum (Roxb.) DC. Biochemical Systematics and Ecology, 2007, 35:114-117.
    11.沈建伟,张晓峰,汤子俊,彭树林,丁立生.两面针中的香豆素成分.中草药.2004,35:619-621.
    12.汪艳,周本杰,张守尧.高效液相色谱法测定不同部位两面针原植物中L-芝麻脂素和L-细辛脂素的含量.第一军医大学学报.2002,22(7):654-655.
    13. XL Wang, QF Li, M Cai, SL Peng, LS Ding. Fitoterapia 2006 (in submission)
    14. IL Tsai, T Ishikawa, H Seki, IS Chen. Terihanine from Zanthoxylum nitidum Chinese Pharmaceutical Journal (Taipei) 2000, 52(1): 43-49.
    15. JJ Brophy, RJ Goldsack, Paul I Forster, I HuRon. Composition of the leaf oils of the Australian and Lord Howe Island species of Zanthoxylum (Rutaceae). Journal of Essential Oil Research 2000, 12(3): 285-291.
    16.王恒山,欧尚瑶,潘英,陈振锋.毛两面针挥发油化学成分及其生物活性.天然产物研究与开发,2006,18(2):251-253.
    17.王恒山,欧尚瑶,潘英明,向花俏.毛两面针挥发油化学成分.广西植物2006,26(1):105-106,87.
    18.张守尧,王桂芳.HPLC法测定两面针中氯化两面针碱的含量.中草药.1998,29(7):445-446.
    19.刘绍华,覃青云,唐献兰,方堃,杨卫豪.HPLC法测定广西十个不同产地两面针中新棒状花椒酰胺的含量.天然产物研究与开发.2005,17(3):337-339.
    20. M Moriyasu, M Ichimaru, Y Nishiyama, A Kato, J Wang, H Zhang, GB Lu. (R)-(+)-Isotembetarine, a Quaternary Alkaloid from Zanthoxylum nitidium. Journal of Natural Products 1997, 60(3): 299-301.
    
    21. MJ Liang, WD Zhang, J Hu, RH Liu, C Zhang. Simultaneous analysis of alkaloids from Zanthoxylum nitidum by high performance liquid chromatography-diode array detector-electrospray tandem mass spectrometry. J. Pharm. Biomed. Anal. 2006,42: 178-183.
    
    22. DW Wang, ZQ Liu, MQ Guo, SY Liu. Structural elucidation and identification of alkaloids in Rhizoma Coptidis by electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 2004,39: 1356-1365.
    1. Sinko PJ. Drug selection in early drug development: screening for acceptable pharmacokinetic properties using combined in vitro and computational approaches. Curr. Opin. Drug Discov. Dev. 1999; 2: 42-48.
    2. Kennedy T. Managing the drug discovery/development interface. Drug Discove. Today 1997; 2: 436-444.
    3. DiMasi JA, Caglarcan E, Wood-Armany M. Emerging role of pharmacoeconomics in the research and development decisionmaking process. Pharmacoeconomics 2001; 19: 753-766.
    4. Gibson GG, Skett P. Pathways of Drug Metabolism. In Introduction to Drug Metabolism, Gibson GG, Skett P (eds). Blackie Academic and Professional: London, 1994; 1-34.
    5. Clarke BC, Burchell B. The uridine diphosphate glucuronosyltransferase multigene family: function and regulation in conjugation-deconjugation reactions. In Drug Metabolism and Toxicity, Kauffrnan FC (ed). Springier: Berlin,1994; 3-43.
    6. Parkinson A. Biotransformation of xenobiotics. In Casarett & Doull's Toxicology, Klaassen CD (ed). McGraw-Hill: New York, 2001; 133-224.
    7. Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab. Rev. 1997; 29: 413-580.
    8. Paul D, Standifer KM, Inturrisi CE, Pasternak GW. Pharmacological characterization of morphine-6-P-glucuronide, a very potent morphine metabolite. J. Pharmacol. Exp. Ther. 1989; 251: 477-483.
    
    9. Cone EJ, Darwin WD, Buchwald WF. Assay for codeine, morphine, and ten potential urinary metabolites by gas chromatography-mass fragmentography. J. Chromatogr. 1983; 275: 307-318.
    
    10. Burchell B, Brierley CH, Rance D. Specificity of human UDPglucuronosyltransferases and xenobiotic glucuronidation. Life Sci. 1995; 57: 1819-1831.
    
    11. Mulder GJ, Coughtrie MWH, Burchell B. Conjugation Reactions in Drug Metabolism: an Integrated Approach. Mulder GJ (ed). Taylor and Francis: London, 1990; 42-91.
    
    12. Sinz MW,Podoll T. The mass spectrometer in drugmetabolism. In Mass Spectrometry in Drug Discovery, RossiDT, SinzMW (eds). Marcel Dekker: New York, 2002; 271-335.
    
    13. Poon GK. Drug metabolism and pharmacokinetics. In Electrospray Ionization Mass Spectrometry, Fundamentals, Instrumentation and Applications,Cole RB (ed). Wiley: NewYork, 1997; 499-526.
    
    14. Cox KA, Clarke NJ, Rindgen D, Korfmacher WA. Higher throughputmetabolite identification in drug discovery: current capabilities and future trends. Am. Pharm. Rev. 2001; 4: 45,46,48,50,52.
    
    15. Cole MJ, Janiszewski JS, Fouda HG. Electrospray mass spectrometry in contemporary drug metabolism and pharmacokinetics. In Appl. Electrospray Mass Spectrom, Pramanik BN, Ganguly AK, Gross ML (eds). Marcel Dekker Inc.: New York, 2002; 211-249.
    
    16. Oliveira EJ, Watson DG. Liquid chromatography—mass spectrometry in the study of the metabolism of drugs and other xenobiotics. Biomed. Chromatogr. 2000; 14: 351-372.
    
    17. Dole M, Mack LL, Hines RL, Mobley RC, Ferguson LD, Alice MB. Molecular beams of macroions. J. Chem. Phys. 1968; 49: 2240-2249.
    
    18. Yamashita M, Fenn JB. Electrospray ion source. Another variation on the free-jet theme. J. Phys. Chem. 1984; 88:4451-4459.
    
    19. Aleksandrov ML, Gall LN, Krasnov VN, Nikolaev VI, Pavlenko VA, Shkurov VA. Ion extraction from solutions at atmospheric pressure—a method for mass-spectrometric analysis of bioorganic substances. Dokl. Akad. Nauk SSSR 1984; 277: 379-383.
    
    20. Shahin MM. Ion-molecule interaction in the cathode region of a glow discharge. J. Chem. Phys. 1965; 43: 1798-1815.
    
    21. Horning EC, Carroll DI, Dzidic I, Haegele KD, Horning MG, Stillwell RN. Liquid chromatograph-mass spectrometer-computer analytical systems. Continuous flow system based on atmospheric pressure ionization mass spectrometry. J. Chromatogr. 1974; 99: 13-21.
    
    22. Horning EC, Carroll DI, Dzidic I, Haegele KD, Horning MG, Stillwell RN. Atmospheric pressure ionization (API) mass spectrometry. Solvent-mediated ionization of samples introduced in solution and in a liquid chromatograph effluent stream. J. Chromatogr. Sci. 1974; 12: 725-729.
    
    23. Robb DB, Covey TR, Bruins AP. Atmospheric pressure photoionization: an ionization method for liquid chromatography-mass spectrometry. Anal. Chem. 2000; 72: 3653-3659.
    
    24. Syage JA, Evans MD. Photoionization mass spectrometry as a powerful new tool for drug discovery. Spectroscopy 2001; 16: 14-20.
    
    25. Keski-Hynnil¨aH, KurkelaM, ElovaaraE, AntonioL, Magdalou J, Luukkanen L, Taskinen J, Kostiainen R. Comparison of electrospray, atmospheric pressure chemical ionization, and atmospheric pressure photoionization in the identification of apomorphine, dobutamide, and entacapone phase II metabolites in biological samples. Anal. Chem. 2002; 74: 3449-3457.
    
    26. Schwartz JC, Wade AP, Enke CG, Cooks RG. Systematic delineation of scan modes in multidimensional mass spectrometry. Anal. Chem. 1990; 62: 1809-1818.
    
    27. Perhalski RJ, Yost RA, Wilder BJ. Structural elucidation of drug metabolites by triple quadrupole mass spectrometry. Anal. Chem. 1982; 54: 1466-1471.
    
    28. Lee MS, Yost RA. Rapid identification of drug metabolites with tandem mass spectrometry. Biomed. Environ. Mass Spectrom. 1988; 15: 193-204.
    
    29. ClarkeNJ, RindgenD, KorfmacherWA, CoxKA. Systematic LC/MS metabolite identification in drug discovery. Anal. Chem. 2001; 73: 430A-439A
    
    30. Baillie TA.Advances in the application of mass spectrometry to studies of drug metabolism, pharmacokinetics and toxicology. Int. J. Mass Spectrom. Ion Processes 1992; 118-119: 289-314.
    
    31. March RE, Todd JFJ (eds). Practical Aspects of Ion Trap Mass Spectrometry, CRC Press: Boca Raton, FL, 1995.
    
    32. ZhangN, FountainST, BiH, RossiDT. Quantification and rapid metabolite identification in drug discovery using API time-of-flight LC/MS. Anal. Chem. 2000; 72: 800-806.
    
    33. Zhang H, Henion J, Yang Y, Spooner N. Application of atmospheric pressure ionisation time-of-flight mass spectrometry coupled with liquid chromatography for the characterization of in vitro drug metabolites. Anal. Chem. 2000; 72: 3342.
    
    34. Keski-Hynnil¨a H, Raanaa K, Forsberg M, M¨annist¨o P, Taskinen J, Kostiainen R. Quantitation of entacapone glucuronide in rat plasma by on-line coupled restricted-access media column and liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2001; 759: 227-236.
    
    35. Kubalec P, Brandsteterova E. Determination of propafenone and its main metabolite 5-hydroxypropafenone in human serum with direct injection into a column-switching chromatographic system. J. Chromatogr. B 1999; 726: 211-218.
    
    36. Pedersen-Bjergaard S, Rasmussen KE. Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Anal. Chem. 1999; 71: 2650-2656.
    
    37. Rasmussen KE, Pedersen-Bjergaard S, Krogh M, Ugland HG, Grφnhaug T. Development of a simple in-vial liquid-phase microextraction device for drug analysis compatible with capillary gas chromatography, capillary electrophoresis and high-performance liquid chromatography. J. Chromatogr. A 2000; 873: 3-11.
    
    38. Kuuranne T, Kotiaho T, Pedersen-Bjergaard S, Rasmussen KE, Leinonen A, Westwood S, Kostiainen R. Feasibility of a liquid phase microextraction sample clean-up and LC-MS/MS screening method for selected anabolic steroid glucuronides in biological samples. J. Mass Spectrom. 2003; 38: 16-26.
    
    39. Wong PSH, Yoshioka K, Xie F, Kissinger PT. In vivo microdialysis/ liquid chromatography/tandem mass spectrometry for the online monitoring of melatonin in rat. Rapid Commun. Mass Spectrom. 1999; 13: 407-411.
    
    40. Bergstr¨om SK, Markides KE. On-line coupling of microdialysis to packed capillary column liquid chromatography-tandem mass spectrometry demonstrated by measurement of free concentrations of ropivacaine and metabolite from spiked plasma samples. J. Chromatogr. B 2002; 775: 79-87.
    
    41. Hop CECA, Tiller PR, Romanyshyn L. In vitro metabolite identification using fast gradient high performance liquid chromatography combined with tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2002; 16: 212-219.
    
    42. Dierks EA, Stams KR, Lim HK, Cornelius G, Zhang H, Ball SE. A method for the simultaneous evaluation of the activities of seven major human drug-metabolizing cytochrome P450s using an in vitro cocktail of probe substrates and fast gradient liquid chromatography tandem mass spectrometry. Drug Metab. Dispos. 2001; 29: 23-29.
    
    43. Onorato JM, Henion JD, Lefebvre PM, Kiplinger JP. Selected reaction monitoring LC-MS determination of idoxifene and its pyrrolidinone metabolite in human plasma using robotic highthroughput, sequential sample injection. Anal. Chem. 2001; 73: 119-125.
    
    44. Zell M,Husser C,Hopfgartner G. Low picogram determination of Ro 48-6791 and its major metabolite, Ro 48-6792, in plasma with column switching microbore high performance liquid chromatography coupled to ion spray tandem mass spectrometry. Rapid Commun. Mass Spectrom. 1997; 11: 1107-1114.
    
    45. Ayrton J, Clare RA, Dear GJ, Mallett DN, Plumb RS. Ultra high flow rate capillary liquid chromatography with mass spectrometric detection for the direct analysis of pharmaceuticals in plasma at sub-nanogram per milliliter concentrations. Rapid Commun. Mass Spectrom. 1999; 13: 1657-1662.
    
    46. Dear GJ, Ayrton J, Plumb R, Fraser IJ. The rapid identification of drug metabolites using capillary liquid chromatography coupled to an ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 1999; 13: 456-463.
    
    47. Wolfe RR. Radioactive and Stable Isotope Tracers in Biomedicine. Wiley-Liss: New York, 1992.
    
    48. Hendee WR. Radioactive Isotopes in Biological Research. Wiley-Interscience: New York, 1973.
    
    49. Veltkamp AC, Das HA, Frei RW, Brinkman UATh. On-line low-level radiometric detection of [~(14)C] remoxipride in liquid chromatographic effluents. Application to urine samples. J. Chromatogr. 1987; 384: 357-369.
    
    50. Egnash LA, Ramanathan R. Comparison of heterogeneous and homogeneous radioactivity flow detectors for simultaneous profiling and LC-MS/MS characterization of metabolites. J. Pharm. Biomed. Anal. 2002; 27: 271-284.
    
    51. Fouda HG, Avery MJ, Navetta K. Simultaneous HPLC radioactivity and mass spectrometry monitoring. A drug metabolism application. 41st Annual ASMS Conference On Mass Spectrometry and Allied Topics, San Francisco, CA, 1993; 49a.
    
    52. Nassar AEF, Bjorge SM, Lee DY. On-line liquid chromatography-accurate radioisotope counting coupled with a radioactivity detector and mass spectrometer for metabolite identification in drug discovery and development. Anal. Chem. 2003; 75: 785-790.
    
    53. Sinz MW, Podoll T. The mass spectrometer in drugmetabolism, In Mass Spectrometry in Drug Discovery, RossiDT, SinzMW (eds). Marcel Dekker: New York, 2002; 271-336.
    
    54. Cole MJ, Janiszewski JS, Fouda HG. 2002 Electrospray mass spectrometry in contemporary drug metabolism and pharmacokinetics. In Appl. Electrospray Mass Spectrom. Pramanik BN, Ganguly AK, Gross ML (eds). Marcel Dekker Inc.: New York, 2002; 211-249.
    
    55. ClarkeNJ, RindgenD, KorfmacherWA, CoxKA. Systematic LC/MSmetabolite identification in drug discovery. Anal. Chem. 2001; 73:430A.
    
    56. Weidolf L, Covey TR. Studies on the metabolism of omeprazole in the rat using liquid chromatography/ionspray mass spectrometry and the isotope cluster technique with [~(34)S] omeprazole. Rapid Commun. Mass Spectrom. 1992; 6: 192-196.
    
    57. Baillie TA, Halpin RA, Matuszewski BK, Geer LA, Chavez-Eng CM, Dean D, Braun M, Doss G, Jones A, Marks T, Melillo D, Vyas KP. Mechanistic studies on the reversible metabolism of rofecoxib to 5-hydroxyrofecoxib in the rat: evidence for transient ring opening of a substituted 2-furanone derivative using stable isotope-labeling techniques. DrugMetab. Dispos. 2001; 29: 1614-1628.
    
    58. Shirley MA, Wheelan P, Ho well SR, Murphy RC. Oxidative metabolism of a rexinoid and rapid phase II metabolite identification by mass spectrometry. Drug Metab. Dispos. 1997; 25: 1144-1149.
    
    59. Jacob P III, Wilson M, Yu L, Mendelson J, Jones RT. Determination of 4-hydroxy-3-methoxyphenylethylene glycol 4-sulfate in human urine using liquid chromatography-tandem mass spectrometry. Anal. Chem. 2002; 74: 5290-5296.
    
    60. Gu J, Zhong D, Chen X. Analysis of O-glucuronide conjugates in urine by electrospray ion trap mass spectrometry. Fresenius' J. Anal. Chem. 1999; 365: 553-558.
    61.Kuuranne T, Vahermo M, Leinonen A, Kostiainen R. Electrospray and atmospheric pressure chemical ionization tandem mass spectrometric behavior of eight steroid glucuronides. J. Am. Soc. Mass Spectrom. 2000; 11: 722-730.
    
    62. Blum W, Aichholz R, Ramstein P, K¨uhn¨ol J, Br¨uggen J, O'Reilly T, Florsheimer A. In vivo metabolism of epothilone B in tumor-bearing nude mice: identification of three new epothilone B metabolites by capillary high-pressure liquid chromatography/mass spectrometry/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2001; 15:41-49.
    
    63. Kassahun K, Davis M, Hu P, Martin B, Baillie T. Biotransformation of the naturally occurring isothiocyanate sulforaphane in the rat: identification of phase I metabolites and glutathione conjugates. Chem. Res. Toxicol. 1997; 10: 1228-1233.
    
    64. Sin CH, Lee ED, Lee ML. Atmospheric pressure ionization time-of-flight mass spectrometry with a supersonic ion beam. Anal. Chem. 1991; 63: 2897-2900.
    
    65. Sundstrom I, Hedeland M, Bondesson U, Andren PE. Identification of glucuronide conjugates of ketobemidone and its phase I metabolites in human urine utilizing accurate mass and tandem time-of-flight mass spectrometry. J. Mass Spectrom. 2002; 37: 414-420.
    
    66. Matuszewski BK, Constanzer ML, Chavez-Eng CM. Matrix effect in quantitative LC/MS/MS analyses of biological fluids: a method for determination of finasteride in human plasma at picogram per milliliter concentrations. Anal. Chem. 1998; 70: 882-889.
    
    67. Gilbert JD, Olah TV, McLoughlin DA.High performance liquid chromatography with atmospheric pressure ionization tandem mass spectrometry as a tool in quantitative bioanalytical chemistry. In Biochemical and Biotechnological Applications of Electrospray Ionization Mass Spectrometry. ACS Symposium Series, vol. 619, Snyder AP (ed). American Chemical Society: Washington, DC, 1995.
    
    68. Lee MS, Kerns EH. LC/MS applications in drug development. Mass Spectrom. Rev. 1999; 18: 187-279.
    
    69. M¨uckW. Quantitative analysis of pharmacokinetic study samples by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Pharmazie 1999; 54: 639-644.
    
    70. Olah TV, McLoughlin DA, Gilbert JD. The simultaneous determination of mixtures of drug candidates by liquid chromatography/atmospheric pressure chemical ionization mass spectrometry as an in vivo drug screening procedure. Rapid Commun. Mass Spectrom. 1997; 11: 17-23.
    
    71. Keski-Hynnil¨aH, AndersinR, LuukkanenL, TaskinenJ, Kostiainen R. Analysis of catechol-type glucuronides in urine samples by liquid chromatography-electrospray ionization-tandem mass spectrometry. J. Chromatogr. A 1998; 794: 75-83.
    
    72. Suzuki KT, Yoneda S, Itoh M, Ohmichi M. Enriched stable isotopes of elements used as tracers: methods of presenting high-performance liquid chromatographic-inductively coupled argon plasma mass spectrometric data. J. Chromatogr. B 1995; 670: 63-71.
    
    73. Sutton KL, Caruso JA. Liquid chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A 1999; 856: 243-258.
    
    74. Axelsson B-O, J¨ornten-Karlsson M, Michelsen P, Abou-Shakra F. The potential of inductively coupled plasma mass spectrometry detection for high-performance liquid chromatography combined with accurate mass measurement of organic pharmaceutical compounds. Rapid Commun. Mass Spectrom. 2001; 15: 375-385.
    
    75. Corcoran O, Nicholson JK, Lenz EM, Abou-Shakra F, Castro-Perez J, Sage AB, Wilson ID. Directly coupled liquid chromatography with inductively coupled plasma mass spectrometry and orthogonal acceleration time-of-flight mass spectrometry for the identification of drug metabolites in urine: application to diclofenac using chlorine and sulfur detection. Rapid Commun. Mass Spectrom. 2000; 14: 2377-2384.
    
    76. Duckett CJ, Bailey NJC, Walker H, Abou-Shakra F, Wilson ID, Lindon JC, Nicholson JK. Quantitation in gradient high performance liquid chromatography/inductively coupled mass spectrometry using diclofenac and chlorpromazine. Rapid Commun. Mass Spectrom. 2002; 16: 245-247.
    
    77. Nicholson JK, Lindon JC, Scarfe GB, Wilson ID, Abou-Shakra F, Sage AB, Castro-Perez J. High-performance liquid chromatography linked to inductively coupled plasma mass spectrometry and orthogonal acceleration time-of-flight mass spectrometry for the simultaneous detection and identification of metabolites of 2-bromo-4-trifluoromethyl-[~(13)C]-acetanilide in rat urine. Anal. Chem. 2001; 73: 1491-1494.
    78. Lindon JC, Nicholson JK, Wilson ID. Directly coupled HPLC-NMR and HPLC-NMR-MS in pharmaceutical research and development. J. Chromatogr. B 2000; 748: 233-258.
    79. Shockcor JP, Unger SE, Savina P, Nicholson JK, Lindon JC. Application of directly coupled LC-NMR-MS to the structural elucidation of metabolites of the HIV-1 reverse-transcriptase inhibitor BW935U83. J. Chromatogr. B 2000; 748:269-279.
    80. Dear G J, Plumb RS, Sweatman BC, Ayrton J, Lindon JC, Nicholson JK, Ismail IM. Mass directed peak selection, an efficient method of drug metabolite identificationusing coupled liquid chromatography-mass spectrometry-nuclear magnetic resonance spectroscopy. J. Chromatogr. B 2000; 748:281-293.
    81. Barker J, Garner RC. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom. Rapid Commun. Mass Spectrom. 1999; 13: 285-293.
    82. Garner RC, Gods I, Laenen AAE, Vanhoutte E, Meuldermans W, Gregory S, Garner JV, Leong D, Whattam M, Calam A, Snel CAW. Evaluation of accelerator mass spectrometry in a human mass balance and pharmacokinetic study-experience with ~(14)C labeled (R)-6-[amino (4-chlorophenyl) (1-methyl-1H-imidazol-5-yl) methyl]-4-(3-chlorophenyl)-l-methyl-2 (1H)-quinolinone (Rl15777), a farnesyl transferase inhibitor. Drug Metab. Dispos. 2002; 30:823-830.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700