HSPB8蛋白与NEFL蛋白相互作用研究及HSPB8蛋白对细胞相对活力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腓骨肌萎缩症(Charcot-Marie-Tooth disease,CMT)又称为遗传性运动感觉性神经病(Hereditary Motor and Sensory Neuropathy,HMSN),是一组最常见的具有高度临床和遗传异质性的周围神经单基因遗传病,以肢体远端肌肉进行性对称性的萎缩、腱反射减弱和远端感觉减退等为主要临床特征,发病率约为40/10万。根据电生理和病理学特点,CMT可以分为脱髓鞘型(CMT1)和轴索型(CMT2),根据遗传方式的不同,CMT可以分为常染色体显性遗传(AD),常染色体隐性遗传(AR)和X连锁遗传(XD/XR)。迄今为止,腓骨肌萎缩症的分子遗传学分型已达到29型,其中21型已克隆。最新研究表明,CMT2型的几个亚型与小分子量热休克蛋白(Small Heat Shock Proteins,sHSPs)基因以及神经丝轻链(Neurofilamem Light Chain,NEFL)基因突变密切相关。2000年,Mersiyanova等在1个俄罗斯CMT2E大家系中发现了NEFL基因的Q333P致病突变,从而证实NEFL基因为CMT2E的致病基因;2004年,Evgrafov OV等在1个俄罗斯和1个比利时CMT2F大家系中分别发现了小分子量热休克蛋白B1(heat shock protein B1,HSPBl)基因的R127W和S135F致病突变,从而证实HSPB1基因为CMT2F型的致病基因;2004年,我们将1个来自中国湖南和湖北常染色体显性遗传的CMT2大家系定位在12q24.2-12q24.3,命名为CMT2L型,随后通过候选基因排除克隆的方法,在该定位区间发现了小分子量热休克蛋白B8(heat shock protein B8,HSPB8)的423G→T点突变,导致氨基酸K141N替换,从而证实HSPB8为CMT2L型的致病基因。
     HSPB1和HSPB8属于小分子量热休克蛋白家族成员,研究发现HSPB8具有分子伴侣功能,可以稳定细胞骨架,协助其正确组装。NEFL是真核生物体内的一种主要的中间丝结构,是细胞骨架的重要组成部分。近年来,研究表明~(wt)HSPB8及~(K141N)NHSPB8均可与HSPB1发生相互作用;而HSPB1和~(wt)NEFL之间也可能存在相互作用。但~(wt)HSPB8及~(K141n)HSPB8能否直接与~(Wt)NEFL发生相互作用,目前尚不清楚。在本研究中,我们将前期工作中成功构建的pEGFP-~(wt)HSPB8和pEGFP-~(K141N)HSPB8真核表达载体分别与PCI-~(wt)NEFL真核表达载体共转染Hela细胞,通过间接免疫荧光共定位技术初步研究了~(wt)HSPB8、~(K141N)NHSPB8与~(wt)NEFL之间的相互作用,结果表明~(wt)HSPB8、~(K141N)HSPB8均与~(wt)NEFL存在共定位,即~(wt)HSPB8、~(K141N)HSPB8可能与~(wt)NEFL存在相互作用;随后应用免疫共沉淀技术,我们进一步研究了~(wt)HSPB8、~(K141N)HSPB8与~(wt)NEFL之间的相互作用,结果证实~(wt)HSPB8、~(K141N)NHSPB8与~(wt)NEFL之间均存在相互作用。
     为了解HSPB8在细胞受到致死性热休克刺激时对细胞相对活力的保护作用及K141N突变对细胞相对活力影响的改变,我们利用脂质体转染技术,将pEGFP-~(wt)HSPB8和pEGFP-~(K141N)HSPB8真核表达载体分别转染SHSY-5Y细胞,通过MTT比色法探讨了~(wt)HSPB8、~(K141N)NHSPB8过表达对细胞相对活力的影响,结果表明~(K141N)HSPB8过表达对细胞相对活力的保护作用较~(wt)HSPB8降低。我们的研究为进一步阐明HSPB8的功能奠定了基础。
Charcot-Marie-Tooth disease (CMT), also named hereditary motor and sensory neuropathy (HMSN), is the most common hereditary peripheral neuropathy with highly clinical and genetic heterogeneity.CMT is characterized by progressive and symmetric distal muscle atrophy, hyporeflexia and hypoesthesia in distal limbs. The incidence of CMT is about 40/10,0000. According to the electrophysiological and histopathological criteria, CMT can be divided into two forms: the demyelinating form (CMT1) and the axonal form (CMT2). According to different modes of inheritance, CMT can be divided into autosomal dominant (AD), autosomal recessive (AR) and X-linked dominant or recessive (XD/XR). So far 29 gene loci have been identified and 21 distinct genes have been cloned. Recent researches showed that some subtypes of CMT2 were caused by the mutations in genes encoding small heat shock proteins (sHSPs) and neurofilament light chain (NEFL). In 2000, Mersiyanova et al found the Q333P mutation in NEFL gene in a large Russian CMT2E family and confirmed NEFL as the disease causative gene of CMT2E. In 2004, Evgrafov OVet al found S135F and R127W mutation in gene encoding Heat shock protein B1 (HSPB 1) in a large Russian and a large Belgian CMT2F family respectively. In consequence, they confirmed HSPB1 as the disease causative gene of CMT2F. In 2004, we found a large Chinese CMT2 family in Hunan and Hubei provinces which was proved to be a novel genotype designated as CMT2L. After mapping the locus to chromosome I2q24.2-12q24.3, we identified a novel 423G→T mutation of HSPB8 and confirmed amino-acid change K141N as the causative gene defect in CMT2L.
     HSPB8 and HSPB 1 belong to sHSPs family. Recent studies revealed that HSPB8 is a molecular chaperone which can stabilize cytoskeletons and assist their correct assembly. NEFL, as an important structure that can maintain cytoskeleton, is a main intermediate filament. Recent studies showed that both wild type HSPB8 and K141N mutant HSPB8 can interact with wild type HSPB 1. Furthermore, S 135F mutant HSPB 1 may have interaction with wild type NEFL. However, there were no reports concerning with the interaction between wild type HSPB8 and wild type NEFL, nor the interaction between K141N mutant HSPB8 and wild type NEFL. In former studies, we have successfully constructed the wild type HSPB8 and K141N mutant type HSPB8 eukaryotic expression vectors. In this study, we co-transfected wild type HSPB8/K141N mutant HSPB8 and wild type NEFL eukaryotic expression vector into Hela cell line. We analyzed the interactions between HSPB8 and NEFL by using indirect immunofluorescence technique. Our results indicated that both wild type and K141N mutant HSPB8 co-locate with NEFL, which suggests the interactions between HSPB8 and NEFL. We further confirmed the interactions between HSPB8 and NEFL by co-immunoprecipitation technique. Our results suggested that both wild type HSPB8 and K141N mutant type HSPB8 interact with wild type NEFL.
     To investigate the influence of HSPB8 mutation on cell relative viability in heat shock stress, we transfected wild type HSPBS/K141N mutant HSPB8 eukaryotic expression vector into SHSY-SY cell line and investigated the cell relative viability by using MTT. We confirmed that SHSY-SY cell that overexpressed K141N mutant HSPB8 is less viable than the wild type. In a word, this study has set up a foundation for our following researches on HSPB8 functions.
引文
[1] Dyck PJ, Lambert EH. Lower motor and primary sensory neuron diseases with peroneal muscular atrophy. Ⅱ. Neurologic, genetic, and electrophysiologic findings in various neuronal degenerations. Arch Neurol, 1968, 18:619-625.
    [2] Lupski JR, Montes de Oca-Luna R, Slaugenhaupt S, et al. DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell, 1991, 66(2): 219-232.
    [3] Matsunami N, Smith B, Ballard L, et al. Peripheral myelin protein-22 gene maps in the duplication in chromosome 17pll.2 associated with Charcot-Marie-Tooth 1A. Nat Genet, 1992, 1(3): 176-179.
    [4] Valentijn LJ, Baas F, Wolterman RA, et al. Identical point mutations of the peripheral myelin protein22 in Trembler J mouse and Charcot-Marie-Tooth disease. Nat Genet, 1992, 2(4): 288-291.
    [5] Street VA, Bennett CL, Goldy JD, et al. Mutation of a putative protein degradation gene LITAF/SIMPLE in Charcot-Marie-Tooth disease 1C. Neurology, 2003, 60(1): 22-26.
    [6] Bellone E, Di Maria E, Soriani S, et al. A novel mutation (D305V) in the early growth response 2 gene is associated with severe Charcot-Marie-Tooth type 1 disease. Hum Mutat, 1999, 14(4): 353-354.
    [7] Hayasaka K, Takada G, Ionasescu VV. Mutation of the myelin P0 gene in Charcot-Marie-Tooth neuropathy type 1B. Hum Mol Genet, 1993, 2(9): 1369-1372.
    [8] Rogers T, Chandler D, Angelicheva D, et al. A novel locus for autosomal recessive peripheral neuropathy in the EGR2 region on 10q23. Am J Hum Genet, 2000, 67(3): 664-671.
    [9] Chapon F, Latour P, Diraison P, et al. Axonal phenotype of Charcot-Marie-Tooth disease associated with a mutation in the myelin protein zero gene. J Neurol Neurosurg Psychiatry, 1999, 66(6): 779-782.
    [10] Zhao C, Takita J, Tanaka Y, et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1B. Cell, 2001, 105(5):587 - 597.
    [11]Sambuughin N , Sivakumar K, Selenge B , et al. Autosomal dominant distal spinal muscular atrophy type V (dSMA2V) and Charcot-Marie-Tooth disease type 2D (CMT2D) segregate within a single large kindred and map to a refined region on chromosome 7pl5. J Neurol Sci, 1998,161(1): 23-28.
    
    [12]Takashima H , Nakagawa M , Suehara M , et al. Gene for hereditary motor and sensory neuropathy (proximal dominant form) mapped to 3q13. 1. Neuromuscul Disord, 1999, 9(6-7): 368-371.
    [13]Kwon JM, Elliot JL, Yee W, et al. Assignment of a second locus for Charcot-Marie-Tooth type II locus to chromosome 3q. Am J HumGenet. 1995, 57(4): 853-858.
    [14]Ionasescu V, Searby C, Sheffield VC, et al. Autosomal dominant Charcot-Marie-Tooth axonal neuropathy mapped on chromosome 7p (CMT2D). Hum Mol Genet, 1996, 5(9): 1373-1375.
    [15] Gong TWL, Burmeister M, Lomax MI, et al. The novel gene D4 Mille maps to mouse chromosome 4 and human chromosome 1p36. Mammalian Genome, 1996, 7(10): 790-791.
    [16]Kalaydjieva L, Gresham D, Gooding R, et al. N-myc downstream regulated gene 1 is mutated in hereditary motor and sensory neuropathy Lom. Am J Hum Genet, 2000, 67(1): 47-58.
    [17]Abrams CK, Bennett MVL, Verselis VK, et al. Voltage opens unopposed gap junction hemichannels formed by a connexin 32 mutant associated with X-linked Charcot-Marie-Tooth disease. Proc Nat Acad Sci, 2002, 99(6): 3980-3984.
    [18]Berger P, Young P, Suter U. Molecular cell biology of Charcot-Marie-Tooth disease. Neurogenetics, 2002, 4(1): 1-15.
    [19]Nelis E, Berciano J, Verpoorten N, et al. Autosomal dominant axonal Charcot-Marie-Tooth disease type 2 (CMT2G) maps to chromosome 12q12-q13. 3. J Med Genet, 2004, 41(3): 193-197.
    [20]Hahn AF, Brown WF, Koopman WJ, et al. X-linked dominant hereditary motor and sensory neuropathy.Brain, 1990, 113(5): 1511-1525.
    [21]Dubourg O, Tardieu S, Birouk N, et al. Clinical, electrophysiological and molecular genetic characteristics of 93 patients with X-linked Charcot-Marie- Tooth disease. Brain, 2001,124(pt 10): 1958 - 1967.
    [22] Baxter RV, Othmane BK, Rochelle JM, et al. Ganglioside induced differentiation associated protein 1 is mutant in Charcot-Marie-Tooth disease type 4A/ 8q21. Nat Genet, 2002, 30(1): 21-22.
    [23]Georgiou DM, Zidar J, Korosec M, et al. A novel NFL mutation Pro22Seris associated with CMT2 in a large Slovenian family. Neurogenetics, 2002, 4(2): 93-96.
    [24]Nelis E, Erdem S, Van Den Bergh PY, et al. Mutations in GDAP1: autosomal recessive CMT with demyelination and axonopathy. Neurology, 2002, 59(12): 1865-1872.
    [25]Bolino A, Brancolini V, Bono F, et al. Localization of a gene responsible for autosomal recessive demyelinating neuropathy with focally folded myelin sheaths to chromosome 11q23 by homozygosity mapping and haplotype sharing. Hum Mol Genet, 1996,5(7): 1051-1054.
    [26]Guilbot A, Williams A, Ravise N, et al. A mutation in periaxin is responsible for CMT4F, an autosomal recessive form of Charcot-Marie-Tooth disease. Hum Mol Genet, 2001,10(4): 415-421.
    [27]Kalaydjieva L, Nikolova A, Turnev I, et al. Hereditary motor and sensory neuropathy LOM, a novel demyelinating neuropathy associated with deafness in gypsies. Clinical, electrophysiological and nerve biopsy findings. Brain, 1998, 121(pt 3): 399-408.
    [28]Zuchner S, Noureddine M, Kennerson M, et al. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie- Tooth disease. Nature Genet, 2005, 37(3): 289-294.
    [29]Bolino A, Muglia M, Conforti F, et al. Charcot-Marie- Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nature Genet, 2000,25(1): 17-19.
    [30]Boerkoel CF, Takashima H, Stankiewicz P et al. Periaxin mutations cause recessive Dejerine-Sottas neuropathy. Hum Genet, 2001, 68(2): 325-333.
    [31]De Sandre - Giovannoli A, Chaouch M, Kozlov S, et al. Homozygous defects in LMNA, encoding lamin A/C nuclear - envelope proteins , cause autosomal recessive axonal neuropathy in human ( Charcot-Marie-Tooth disorder type 2) and mouse. Hum Genet, 2002, 70(3): 726-736.
    [32]Antonellis A, Ellsworth, RE, Sambuughin N et al. Glycyl tRNA synthetase mutations in Charcot- Marie - Tooth disease type 2D and distal spinal muscular atrophy type V. Hum Genet, 2003, 72(5): 1293-1295.
    [33] Stock AD, Spallone PA, Dennis TR et al. Heat shock protein 27 gene chromosomal and molecular location and relationship to Williams syndrome. Med Genet, 2003, 120(3): 320-325.
    [34]Cuesta A, Pedrola L, Sevilla T, et al. The gene encoding ganglioside-induced differentiation-associated protein 1 is mutated in axonal Charcot-Marie-Tooth type 4A disease. Nat Genet, 2002, 30(1): 22-25.
    [35]Senderek J, Bergmann C, Weber S, et al. Mutation of the SBF2 gene, encoding a novel member of the myotubularin family, in Charcot-Marie-Tooth neuropathy type 4B2/11pl5. Hum Molec Genet, 2003, 12(3): 349-356.
    [36]Zuchner S, Mersiyanova IV, Muglia M et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot - Marie - Tooth neuropathy type 2A. Nat Genet, 2004, 36(5): 449-451.
    
    [37]Auer-Grumbach M, Strasser-Fuchs S, Robl T, et al. Late onset Charcot-Marie-Tooth 2 syndrome caused by two novel mutations in the MPZ gene. Neurology, 2003, 61(10): 1435-1437.
    [38]Senderek J, Bergmann C, Stendel C, et al. Mutations in a gene encoding a novel SH3/TPR domain protein cause autosomal recessive Charcot-Marie-Tooth type 4C neuropathy. Am J Hum Genet, 2003, 73(5): 1106-1119.
    [39] Hunter M, Bernard R, Freitas E, et al. Mutation screening of the N-myc downstream-regulated gene 1 (NDRG1) in patients with Charcot-Marie-Tooth disease. Hum Mutat, 2003, 22(2): 129-135.
    [40]Kijima K, Numakura C, Shirahata E, et al. Periaxin mutation causes early-onset but slow-progressive Charcot-Marie-Tooth disease. J Hum Genet, 2004, 49(7):376-379.
    [41] Bergoffen J, Scherer SS, Wang S, et al. Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science, 1993,262(5142): 2039-2042.
    [42] Verhoeven K, De Jonghe P, Coen K, et al. Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy. Am J Hum Genet, 2003, 72(3): 722-727.
    [43] Nichols RC, Pal SI, Ge Q, et al. Localization of two human autoantigen genes by PCR screeing and in situ hybridization-Glycyl-tRNA synthetase locates to 7p15 and alanyl-tRNA synthetase locates to 16q22. Genomics, 1995, 30(1): 131-132.
    [44] Bolino A, Bolis A, Previtali SC, et al. Disruption of Mtmr2 produces CMT4B1-like neuropathy with myelin outfolding and impaired spermatogenesis. Cell Biol,2004, 167(4): 711-721.
    [45] Previtali SC, Zerega B, Sherman DL, et al. Myotubularin-related protein phosphatase and neurofilament light chain protein, both mutated in CMT neuropathies, interact in peripheral nerve. Hum Molec Genet, 2003, 12(14):1713-1723.
    [46] Mesiyanova Ⅳ, Perepelov AV, et al. A new variant of Charcot-Marie-Tooth Disease Type 2 is probably the result of a mutation in the Neurofilament-light gene. Am J Hum Genet, 2000, 67:37-46.
    [47] De Jonghe P, Mersivanova I, Nelis E, et al. Further evidence that neurofilament light chain gene mutations can cause Charcot-Marie-Tooth disease type 2E. Ann Neurol, 2001, 49(2): 245-249.
    [48] Jordanova A, De Jonghe P, Boerkoel CF, et al. Mutations in the neurofilament light chain gene (NEFL) cause early onset severe Charcot-Marie-Tooth disease. Brain, 2003, 126(pt3):590-597.
    [49] Leung CL, Nagan N, Graham TH, et al. A novel duplication/insertion mutation of NEFL in a patient with Charcot-Marie-Tooth disease. Am J Med Genet, 2006,140(9):1021-1025.
    [50] Tang B, Luo W, Xia K, et al. A new locus for autosomal dominant Charcot-Marie-Tooth Disease type 2 (CMT2L) maps to chromosome 12q24. Hum Genet, 2004, 114(6): 527-533.
    [51] Tang BS, Zhao GH, Luo W, et al. Small heat-shock protein 22 mutated in autosomal dominant Charcot-Marie-Tooth disease type 2L. Hum Genet, 2005,116(3): 222-224.
    [52] 张如旭,唐北沙,资晓宏,等。定位于12q24的腓骨肌萎缩症2L型10个候选基因的排除克隆。中华医学遗传学杂志,2006,23(2),189-191
    [53] Evgrafov OV, Mersiyanova I, Irobi J, et al. Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat Genet. 2004, 36(6): 602-606.
    [54] Tang B, Liu X, Zhao G, et al. Mutation analysis of the small heat shock protein 27 gene in Chinese patients with Charcot-Marie-Tooth disease. Arch. Neurol. 2005,62(8): 1201-1207.
    [55] Charpentier AH, Bednarek AK, Daniel RL, et al. Effects of estrogen on global gene expression: identification of novel targets of estrogen action. Cancer Res,2000, 60(21): 5977-5983.
    [56] Clark JI, Muchowski PJ. Small heat-shock proteins and their potential role in human disease. Curr Opin Struct Biol, 2000, 10(1): 52-59.
    [57] Haslbeck M.sHsps and their role in the chaperone network. Cell Mol Life Sci, 2002, 59(10): 1649-1657.
    [58] Arrigo AP.sHsp as novel regulators of programmed cell death and tumorigenicity. Pathol Biol, 2000, 48 (3): 280-288.
    [59] Welsh MJ, Gaestel M. Small heat-shock protein family: function in health and disease. Ann NY Acad Sci, 1998, 851: 28-35.
    [60] Arrigo AP. Small stress proteins: chaperones that act as regulators of intracellular redoxstate and programmed cell death. Biol Chem, 1998, 379(1): 19-26.
    [61] Ha Y, Kim TS, Yoon DH, et al. Reinduced expression of developmental proteins (nestin, small heat shock protein) in and around cerebral arteriovenous malformations. Clin Neuropathol, 2003, 22(5): 252-261.
    [62]Kappe G, Verschuure P, Philipsen RLA. Et al. Characterization of two hovel human small heat shock proteins: protein kinaserelated HspB8 and tesis—specific HspB9. Biochim Biophys Acta, 2001,1520(1): 1-6.
    [63] Carper SW, Rocheleau TA, Storm FK. cDNA sequence of a human heat shock protein HSP27. Nucleic Acids Res, 1990,18(21): 6457.
    
    [64]Benndorf R, Welsh MJ. Shocking degeneration. Nat Genet, 2004,36(6): 547-548.
    [65]Wagstaff MJ, Collaco Moraes Y, Smith J, et al. Protection of neuronal cells from apoptosis by HSP27 delivered with a herpes simplex virus-based vector. J Biol Chem, 1999, 274(8): 5061-5069.
    [66]Kalwy SA, Akbar MT, Coffin RS, et al. Heat shock protein 27 delivered via a herpes simplex virus vector can protect neurons of the hippocampus against kainic acid-induced cell loss. Brain Res Mol Brain Res, 2003,111(1-2): 91-103.
    [67] Akbar MT, Lundberg AM, Liu K, et al. The neuroprotective effects of heat shock protein 27 overexpression in transgenic animals against kainite-induced seizures and hippocampal cell death. J Biol Chem, 2003,278(22): 19956-19965.
    [68]Julien JP, Grosveld F, Yazdanbaksh K, et al. The structure of a human neurofilament gene (NF-L): a unique exon-intron organization in the intermediate gene family. Biochim Biophys Acta, 1987, 909(1): 10-20.
    [69]Frchs E, Weber K. Intermediate filament: structure, dynamics, function and disease. Anne Rev Biochem, 1994, 63: 375-382.
    [70]Heins S, Wong PC, Muller S, et al. The rod domain of NF-L determines neurofilament architecture, whereas the end domains specify filament assembly and network formation. J Cell Biol, 1993,123: 1517-1533.
    [71]Raul Perez-Olle, Conrad L. Leung and Ronald K. H, Liem. Effects of Charcot-Marie-Tooth-linked mutations of the neurofilament light subunit on intermediate filament formation. J Cell Sci, 2002,115(24): 4937-4946.
    [72]Xiankui Sun, Jean-Marc Fontaine, Joshua S, et al Interaction of Human HSPB8 (HSPB8) with Other Small Heat Shock Proteins. J Biol Chem, 2004 279(4): 2394-2402.
    [73]Irobi J, Impe KV, Seeman P, et al. Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nat Genet, 2004, 36(6): 597-601.
    [74] 张如旭,唐北沙,资晓宏,等。pEGFPNl-(wt)HSPB8和pEGFPNl-(mt)HSPB8载体的构建及其在人神经母细胞瘤细胞中的表达。中华医学杂志,2006,86(25),1780-1782
    [75] 张如旭,唐北沙,资晓宏,等。轴突型腓骨肌萎缩症2L型致病基因HSPB8突变导致细胞内聚集物形成的机理研究。中华医学遗传学杂志,2006,23(6),601-604
    [76] 黄培堂等译,分子克隆实验指南第3版。北京:科学出版社,2002
    [77] Naray-Fejes-Toth A, Fejes-Toth G. Subcellular localization of the type 2 11beta-hydroxysteroid dehydrogenase. A green fluorescent protein study. J Biol Chem, 1996, 271(26): 15436-15442.
    [78] Rahman Y, Lappalainen K, Pirila L, et al. Progress of liposome. Exp Biol Med, 1979, 146(4): 1173.
    [79] Mannino RJ, Gould FS, Liposome mediated gene transfer. Biotechniques, 1988,6(7): 682-690.
    [80] Andreason GL. Introduction and expression of DNA molecules by electroporation. Biotechniques, 1988, 6: 650-660.
    [81] Jordan M, Wurm F. Transfection of adherent and suspended cells by calcium phosphate. Methods, 2004, 33(2): 136-143.
    [82] Augusteyn RC. Alpha-crystallin: a review of its structure and function. Clin Exp Optom, 2004, 87(6): 356-366.
    [83] Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science, 2002, 295(5561): 1852-1858.
    [84] Bross P, Corydon TJ, Andresen BS, et al. Protein misfolding and degradation in genetic diseases. Hum Mutat, 1999, 14(3): 186-198.
    [85] Cuervo AM, Dice JF. Lysosomes. a meeting point of proteins, chaperones, and proteases. J Mol Med, 1998, 76(1): 6-12.
    [86] Muchowski PJ, Wacker JL. Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci, 2005, 6(1): 11-22.
    [87] Bellyei S, Szigeti A, Pozsgai E, et al. Preventing apoptotic cell death by a novel small heat shock protein.Eur J Cell Biol, 2007, 86(3):161-171.
    [88]Basha E, Friedrich KL, Vierling E. The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. J Biol Chem, 2006,281(52): 39943-39952.
    [89] Ghosh JG, Estrada MR, Houck SA, et al. The function of the beta3 interactive domain in the small heat shock protein and molecular chaperone, human alphaB crystallin. Cell Stress Chaperones, 2006,11(2): 187-197.
    [90]Han MJ, Lee JW, Lee SY. Enhanced proteome profiling by inhibiting proteolysis with small heat shock proteins. J Proteome Res, 2005,4(6):2429-2434.
    [91]Haslbeck M, Franzmann T, Weinfurtner D, et al. Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol, 2005, 12(10): 842-846.
    [92]Sun Y, MacRae TH. Small heat shock proteins: molecular structure and chaperone function. Cell Mol Life Sci, 2005, 62(21): 2460-2476.
    [93]Jiao W, Li P, Zhang J, et al. Small heat-shock proteins function in the insoluble protein complex.Biochem Biophys Res Commun, 2005, 335(1): 227-231.
    [94]Perng MD, Muchowski PJ, van Den IJssel P, et al. The cardiomyopathy and lens cataract mutation in alpha B-crystallin alters its protein structure, chaperone activity, and interaction with intermediate filaments in vitro. J Biol Chem, 1999, 274(47): 33235-33243.
    [95] Jean-Marc Fontaine, Xiankui Sun, Rainer Benndorf, et al. Interactions of HSPB8 (HSPB8) with HSP20, αBcrystallin, and HSPB3. Biochem Biophys Res Commun, 2005, 337(3): 1006-1011.
    [96]Lin H, Schlaepfer WW. Role of neurofilament aggregation in motor neuron disease.Ann Neurol, 2006,60(4): 399-406.
    [97]Mounier N, Arrigo AP. Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones, 2002,7(2): 167-176.
    [98]Der Perng M, Quinlan RA. Neuronal diseases: small heat shock proteins calm your nerves. Curr Biol, 2004,14(15): 625-626.
    [99]Dierick I, Irobi J, De Jonghe P, et al. Small heat shock proteins in inherited peripheral neuropathies. Annals of Medicine, 2005, 37(6): 413-422.
    [100] Gusev NB, Bogatcheva NV, Marston SB. Structure and properties of small heat shock proteins (sHsp) and their interaction with cytoskeleton proteins. Biochemistry (Mosc), 2002, 67(5): 511-519.
    [101] Kappe G, Franck E, Verschuure P, et al. The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones, 2003, 8(1): 53-61.
    [102] Xu Z, Cork LC, Griffin JW, et al. Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell, 1993, 73(1): 23-33.
    [103] Lee MK, Marszalek JR, Cleveland DW. A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron, 1994,13(4): 975-988.
    
    [104]李惟。生物超分子体系。 北京:化学工业出版社,2003:224-226
    
    [105] Fontaine JM, Sun X, Hoppe AD, et al. Abnormal small heat shock protein interactions involving neuropathy-associated HSPB8 (HSPB8) mutants. FASEB, 2006, 20(12): 2168-2170.
    [106] Ritossa F.A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia, 1962, 18: 571-573.
    [107] Lindquist S. The heat-shock response. Annu Rev Biochem, 1986, 55: 1151-1191.
    [108] Tissieres A, Mitchell HK, Tracy UM. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol, 1974, 84(3): 389-398.
    [109] Chowdary TK, Raman B, Ramakrishna T, et al. Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity. Biochem J, 2004, 381(pt 2): 379-387.
    [110] Kim MV, Seit-Nebi AS, Marston SB, et al. Some properties of human smallheat shock protein Hsp22 (H11 or HspB8). Biochem Biophys Res Commun, 2004, 315(4): 796-801.
    [1] Dyck PJ, Lambert EH. Lower motor and primary sensory neuron diseases with peroneal muscular atrophy. Ⅱ. Neurologic, genetic, and electrophysiologic findings in various neuronal degenerations. Arch Neurol, 1968, 18:619-625.
    [2] Valentijn LJ, Baas F, Wolterman RA, et al. Identical point mutations of the peripheral myelin protein22 in Trembler J mouse and Charcot-Marie-Tooth disease. Nat Genet, 1992, 2(4): 288-291.
    [3] Matsunami N, Smith B, Ballard L, et al. Peripheral myelin protein-22 gene maps in the duplication in chromosome 17p11.2 associated with Charcot-Marie-Tooth 1A. Nat Genet, 1992, 1(3): 176-179.
    [4] Street VA, Bennett CL, Goldy JD, et al. Mutation of a putative protein degradation gene LITAF/SIMPLE in Charcot-Marie-Tooth disease 1C. Neurology,2003, 60(1): 22-26.
    [5] Chapon F, Latour P, Diraison P, et al. Axonal phenotype of Charcot-Marie-Tooth disease associated with a mutation in the myelin protein zero gene. J Neurol Neurosurg Psychiatry, 1999, 66(6): 779-782.
    [6] Bellone E, Di Maria E, Soriani S, et al. A novel mutation (D305V) in the early growth response 2 gene is associated with severe Charcot-Marie-Tooth type 1 disease. Hum Mutat, 1999, 14(4): 353-354.
    [7] Hayasaka K, Takada G; Ionasescu VV. Mutation of the myelin PO gene in Charcot-Marie-Tooth neuropathy type 1B. Hum Mol Genet, 1993, 2(9):1369-1372.
    [8] Rogers T, Chandler D, Angelicheva D, et al. A novel locus for autosomal recessive peripheral neuropathy in the EGR2 region on 10q23. Am J Hum Genet, 2000, 67(3): 664-671.
    [9] Kwon JM, Elliot JL, Yee W, et al. Assignment of a second locus for Charcot-Marie-Tooth type Ⅱ locus to chromosome 3q. Am J HumGenet. 1995, 57(4): 853-858.
    [10] Zhao C, Takita J, Tanaka Y, et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1B. Cell, 2001,105(5):587-597.
    [11]Sambuughin N , Sivakumar K, Selenge B , et al. Autosomal dominant distal spinal muscular atrophy type V (dSMA2V) and Charcot-Marie-Tooth disease type 2D (CMT2D) segregate within a single large kindred and map to a refined region on chromosome 7pl5. J Neurol Sci, 1998,161(1): 23-28.
    [12]Takashima H, Nakagawa M, Suehara M, et al. Gene for hereditary motor and sensory neuropathy (proximal dominant form) mapped to 3q13. 1. Neuromuscul Disord, 1999,9(6-7): 368-371.
    
    [13]Ionasescu V, Searby C, Sheffield VC, et al. Autosomal dominant Charcot-Marie- Tooth axonal neuropathy mapped on chromosome 7p (CMT2D). Hum Mol Genet, 1996, 5(9):1373 - 1375.
    [14]De Jonghe P, Mersivanova I, Nelis E, et al. Further evidence that neurofilament light chain gene mutations can cause Charcot-Marie-Tooth disease type 2E. Ann Neurol, 2001,49(2): 245-249.
    [15]Berger P, Young P, Suter U. Molecular cell biology of Charcot-Marie-Tooth disease. Neurogenetics, 2002,4(1): 1-15.
    [16]Kalaydjieva L, Gresham D, Gooding R, et al. N-myc downstream regulated gene 1 is mutated in hereditary motor and sensory neuropathy Lorn. Am J Hum Genet, 2000,67(1): 47-58.
    [17]Jordanova A, De Jonghe P, Boerkoel CF, et al. Mutations in the neurofilament light chain gene (NEFL) cause early onset severe Charcot-Marie-Tooth disease. Brain, 2003,126(3): 590-597.
    [18] Jordanova A, Irobi J, Thomas FP, et al. Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nature Genet, 2006,38: 197-202.
    [19] Nelis E, Berciano J, Verpoorten N, et al. Autosomal dominant axonal Charcot-Marie-Tooth disease type 2 (CMT2G) maps to chromosome 12q12-q13. 3. J Med Genet, 2004,41(3): 193-197.
    [20]Hahn AF , Brown WF , Koopman WJ , et al. X-linked dominant hereditary motor and sensory neuropathy. Brain, 1990,113(5):1511-1525.
    [21]Nelis E, Erdem S, Van Den Bergh PY, et al. Mutations in GDAP1: autosomal recessive CMT with demyelination and axonopathy. Neurology, 2002, 59(12): 1865-1872.
    [22] Baxter RV, Othmane BK, Rochelle JM, et al. Ganglioside induced differentiation associated proteinl is mutant in Charcot-Marie-Tooth disease type 4A/8q21. Nat Genet, 2002, 30(1): 21-22.
    [23]Guilbot A, Williams A, Ravise N, et al. A mutation in periaxin is responsible for CMT4F, an autosomal recessive form of Charcot-Marie-Tooth disease. Hum Mol Genet, 2001,10(4): 415-421.
    [24]Georgiou DM, Zidar J, Korosec M, et al. A novel NF-L mutation Pro22Seris associated with CMT2 in a large Slovenian family. Neurogenetics, 2002, 4(2): 93-96.
    [25]Bolino A, Brancolini V, Bono F, et al. Localization of a gene responsible for autosomal recessive demyelinating neuropathy with focally folded myelin sheaths to chromosome 11q23 by homozygosity mapping and haplotype sharing. Hum Mol Genet, 1996, 5(7): 1051-1054.
    [26]Kalaydjieva L, Nikolova A, Turnev I, et al. Hereditary motor and sensory neuropathy LOM, a novel demyelinating neuropathy associated with deafness in gypsies. Clinical, electrophysiological and nerve biopsy findings. Brain, 1998, 121(pt 3): 399-408.
    [27]Bolino A, Muglia M, Conforti F et al. Charcot-Marie- Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nature Genet, 2000,25(1): 17-19.
    [28]Zuchner S, Noureddine M, Kennerson M, et al. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie- Tooth disease. Nature Genet, 2005, 37(3): 289-294.
    [29]Boerkoel CF, Takashima H, Stankiewicz P et al. Periaxin mutations cause recessive Dejerine-Sottas neuropathy. Hum Genet, 2001, 68(2): 325-333.
    [30]Antonellis A, Ellsworth, RE, Sambuughin N et al. Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Hum Genet, 2003, 72(5): 1293-1295.
    [31] Stock AD, Spallone PA, Dennis TR et al. Heat shock protein 27 gene chromosomal and molecular location and relationship to Williams syndrome. Med Genet, 2003,120(3): 320-325.
    [32]De Sandre - Giovannoli A, Chaouch M, Kozlov S, et al. Homozygous defects in LMNA, encoding lamin A/ C nuclear - envelope proteins, cause autosomal recessive axonal neuropathy in human ( Charcot-Marie-Tooth disorder type 2) and mouse. Hum Genet, 2002,70(3): 726-736.
    [33]Zuchner S, Mersiyanova IV, Muglia M et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot - Marie - Tooth neuropathy type 2A. Nature Genet, 2004, 36(5): 449-451.
    [34]Lupski JR, Montes de Oca-Luna R, Slaugenhaupt S, et al. DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell, 1991, 66(2): 219-232.
    [35] Taylor V, Welcher AA, Program AE, et al. Epithelial membrane protein21, peripheral myelin protein 22, and lens membrane protein 20 define a novel gene family. J Biol Chem, 1995,270: 28824-28833.
    [36]Baechner D, Liehr T, Hameister H, et al. Widespread expression of the peripheral myelin protein22 gene ( PMP22) in neural and nonneural tissues during murine development. J Neurosci Res, 1995,42: 733-741.
    [37]Parmantier E , Cabon F , Braun C , et al. Peripheral myelin protein22 is expressed in rat and mouse brain and spinal cord motoneurons, Eur J Neurosci, 1995, 7: 1080-1088.
    [38]Hayasaka K, Himoro M, Sawaishi Y, et al. De novo mutation of the myelin P(0) gene in Dejerine-Sottas disease (hereditary motor and sensory neuropathy type III). Nat Genet, 1993,5:266-268.
    [39]Auer-Grumbach M, Strasser-Fuchs S, Robl T, et al. Late onset Charcot-Marie-Tooth 2 syndrome caused by two novel mutations in the MPZ gene. Neurology, 2003,63(1): 1435-1437.
    [40]Seeman P, Mazanec R, Huehne K, et al. Hearing loss as the first feature of late-onset axonal CMT disease due to a novel PO mutation. Neurology, 2004, 63(4): 733-735.
    [41]Myokai F, Takashiba S, Lebo R, et al. A novel lipopolysaceharide-induced transcription factor regulating tumor necrosis factor alpha gene expression: molecular cloning, sequencing, characterization, and chromosomal assignment. Proc Nat Acad Sci USA, 1999, 96(8): 4518-4523.
    [42]Agarajan R , Svaren J , Le N , et al. EGR2 mutations in inherited neuropathies dominant negatively inhibit myelin gene expression. Neuron, 2001, 30(2): 355-368.
    [43] Warner LE, Mancias P, Butler IJ, et al. Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies. Nat Genet, 1998, 18(4): 382-384.
    [44]Mersiyanova IV, Perepelov AV, Polyakov AV, et al. A new variant of Charcot-Marie-Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene. Am. J. Hum. Genet, 2000, 67(1): 37-46.
    [45]Raul Perez-Olle, Conrad L. Leung and Ronald K. H, Liem. Effects of Charcot-Marie-Tooth-linked mutations of the neurofilament light subunit on intermediate filament formation. J Cell Sci, 2002, 115(24): 4937-4946.
    [46]Cuesta A, Pedrola L, Sevilla T, et al. The gene encoding ganglioside-induced differentiation-associated protein 1 is mutated in axonal Charcot-Marie-Tooth type 4A disease. Nat Genet, 2002, 30(1): 22-25.
    [47]Boerkoel CF, Takashima H , Nakagawa M. CMT4A : identification of a hispanic GDAP1 founder mutation. Ann Neurol, 2003, 53(3): 400-405.
    [48]Previtali SC, Zerega B, Sherman DL, et al. Myotubularin - related protein phosphatase and neurofilament light chain protein, both mutated in CMT neuropathies, interact in peripheral nerve. Hum Molec Genet, 2003, 12(14): 1713-1723.
    [49]Bolino A, Bolis A, Previtali SC, et al. Disruption of Mtmr2 produces CMT4B1 - like neuropathy with myelin outfolding and impaired spermatogenesis. Cell Biol, 2004, 167(4): 711-721.
    [50] Senderek J, Bergmann C, Weber S, et al. Mutation of the SBF2 gene, encoding a novel member of the myotubularin family, in Charcot-Marie-Tooth neuropathy type 4B2/11p15. Hum Molec Genet, 2003, 12(3): 349-356.
    [51] Azzedine H, Bolino A, Taieb T. et al. Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbfl, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma. Am J Hum Genet, 2003, 72(5): 1141-1153.
    [52] Senderek J, Bergmann C, Stendel C, et al. Mutations in a gene encoding a novel SH3/TPR domain protein cause autosomal recessive Charcot-Marie-Tooth type 4C neuropathy. Am J Hum Genet, 2003, 73(5): 1106-1119.
    [53] Hunter M, Bernard R, Freitas E, et al. Mutation screening of the N-myc downstream-regulated gene 1 (NDRG1) in patients with Charcot-Marie-Tooth disease. Hum Murat. 2003, 22(2): 129-135.
    [54] Boerkoel CF, Takashima H, Stankiewicz P, et al. Periaxin mutations cause recessive Dejerine-Sottas neuropathy. Am J Hum Genet, 2001, 68(2): 325-333.
    [55] Sherman DL, Fabrizi C, Gillespie CS, et al. Specific disruption of a schwann cell dystrophin-related protein complex in a demyelinating neuropathy. Neuron, 2001, 30(3): 677-687.
    [56] Gillespie CS, Sherman DL, Fleetwood-Walker SM, et al. Peripheral demyelination and neuropathic pain behavior in periaxin-deficient mice. Neuron, 2000, 26(2): 523-531.
    [57] Delague V, Bareil C, Tuffery S, et al. Mapping of a new locus for autosomal recessive demyelinating Charcot-Marie-Tooth disease to 19q13.1-13.3 in a large consanguineous Lebanese family: exclusion of MAG as a candidate gene. Am J Hum Genet, 2000, 67(1): 236-243.
    [58] Hiroshi Takashima, Cornelius F, Boerkoel, et al. Pefiaxin mutations cause a broad spectrum of demyelinating neuropathies. Ann Neurol, 2002, 51 (6): 709-715.
    [59] Kijima K, Numakura C, Shirahata E, Sawaishi Y, Shimohata M, Igarashi S, Tanaka T, Hayasaka K. Periaxin mutation causes early-onset but slow-progressive Charcot-Marie-Tooth disease. J Hum Genet, 2004, 49(7): 376-379.
    [60]Bach D, Pich S, Soriano FX, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism: a novel regulatory mechanism altered in obesity. J Biol Chem, 2003,278(19): 17190-17197.
    [61] Gong TWL, Burmeister M, Lomax MI, et al. The novel gene D4 Millemaps to mouse chromosome 4 and human chromosome 1p36. Mammalian Genome, 1996, 7(10): 790-791.
    [62]Kashuba VI, Gizatullin RZ, Protopopov Al, et al. NotI linking/jumping clones of human chromosome 3: mapping of the TFPC, RAB7 and HAUSP genes to regions rearranged in leukemia and deleted in solid tumors. FEBS Lett, 1997, 419(2-3): 181-185.
    [63]Verhoeven K. De Jonghe P, Coen K, et al. Mutations in the small GTP-ase late endosomal protein, RAB7 cause Charcot-Marie-Tooth type 2B neuropathy. Am J Hum Genet, 2003, 72(3): 722-727.
    [64]Edinger AL, Cinalli RM, Thompson CB, et al. RAB7 prevents growthfactor - independent survival by inhibiting cell-autonomous nutrient transpoter expression. Dev Cell, 2003, 5(4): 571-582.
    [65]Nichols RC, Pai SI, Ge Q, et al. Localition of two human autoantigen genes by PCR screeing and in situ hybridization-Glycyl-tRNA synthetase locates to 7p15 and alanyl - tRNA synthetase locates to 16q22. Genomics, 1995, 30(1): 131-132.
    [66]Benndorf R, Welsh MJ. Shocking degeneration. Nat Genet, 2004, 36(6):547-548.
    [67] Wagstaff MJ, Collaco Moraes Y, Smith J, et al. Protection of neuronal cells from apoptosis by HSP27 delivered with a herpes simplex virus-based vector. J Biol Chem, 1999, 274(8): 5061-5069.
    [68]Kalwy SA, Akbar MT, Coffin RS, et al. Heat shock protein 27 delivered via a herpes simplex virus vector can protect neurons of the hippocampus against kainicacid-induced cell loss. Brain Res Mol Brain Res, 2003,111(1-2): 91-103.
    [69] Akbar MT, Lundberg AM, Liu K, et al. The neuroprotective effects of heat shock protein 27 overexpression in transgenic animals against kainite-induced seizures and hippocampal cell death. J Biol Chem, 2003,278(22): 19956-19965.
    [70]Evgrafov OV, Mersiyanova I, Irobi J, et al. Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat Genet, 2004, 36(6): 602-606.
    [71] Charpentier AH, Bednarek AK, Daniel RL et al. Effects of estrogenon global gene expression: identification of novel targets of estrogen action. Cancer Res, 2000,60(21): 5977-5983.
    [72] Clark JI, Muchowski PJ. Small heat-shock protein and their potential role in human diseases. Curr Opin Struct Biol, 2000, 10(1): 52-59.
    [73] Xiankui Sun, Jean-Marc Fontaine, Joshua S, et al Interaction of Human HSPB22 (HSPB8) with Other Small Heat Shock Proteins. J Biol Chem, 2004 279(4):2394-2402.
    [74] Jean-Marc Fontaine, Xiankui Sun, Rainer Benndorf, et al. Interactions of HSPB8 (HSPB8) with HSP20, αB-crystallin, and HSPB3, Biochem Biophys Res Commun. 2005, 337(3): 1006-1011.
    [75] Tang B, Luo W, Xia K, et al. A new locus for autosomal dominant Charcot-Marie-Tooth Disease type 2 (CMT2L) maps to chromosome 12q24. Hum Genet, 2004, 114(6): 527-533.
    [76] Tang BS, Zhao GH, Luo W, et al. Small heat-shock protein 22 mutated in autosomal dominant Charcot-Marie-Tooth disease type 2L. Hum Genet, 2005, 116(3): 222-224.
    [77] Wydner KL, McNeil JA, Lin F et al. Chromosomal assignment of human nuclear envelope protein genes LMNA, LMNB1, and LBR by fluorescence in situ hybridization. Genomics, 1996, 32(3): 474-478.
    [78] Bergoffen J, Scherer SS, Wang S, et al. Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science, 1993,262(5142): 2039-2042.
    [79] Abrams CK, Bennett MVL, Verselis VK, et al. Voltage opens unopposed gap junction hemichannels formed by a connexin 32 mutant associated with X-linked Charcot-Marie-Tooth disease. Proc Nat Acad Sci, 2002, 99(6): 3980-3984.
    [80] Klocke R, Augustin A, Ronsiek M et al. Dynamin genes Dnm1 and Dnm2 are located on proximal mouse chromosomes 2 and 9, respectively Genomics, 1997,41(2): 290-293.
    [1] Clark JI, Muchowski PJ. Small heat shock proteins and their potential role in human disease. Curr Opin Struct Biol, 2000, 10(1): 52-59.
    [2] Kappe C, Franek E, Versehuure P, et al. The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones, 2003, 8(1), 53-61.
    [3] Dyck PJ, Lambert EH. Lower motor and primary sensory neuron diseases with peroneal muscular atrophy Ⅱ. Neurologic, genetic, and electrophysiologic findings in various neuronal degenerations. Arch Neurol, 1968, 18:619-625.
    [4] Tang B, Luo W, Xia K, et al. A new locus for autosomal dominant Charcot-Marie-Tooth Disease type 2 (CMT2L) maps to chromosome 12q24. Hum Genet, 2004, 114(6): 527-533.
    [5] Tang BS, Zhao GH, Luo W, et al. Small heat-shock protein 22 mutated in autosomal dominant Charcot-Marie-Tooth disease type 2L. Hum Genet. 2005,116(3): 222-224.
    [6] Jean-Marc Fontaine, Xiankui Sun, Rainer Benndorf, et al. Interactions of HSP22(HSPB8) with HSP20, αB-crystallin, and HSPB3, Biochem Biophys Res Commun, 2005, 337(3): 1006-1011.
    [7] Xiankui Sun, Jean-Marc Fontaine, Joshua S, et al Interaction of Human HSPB22 (HSPB8) with Other Small Heat Shock Proteins. J Biol Chem. 2004 279(4):2394-2402.
    [8] Irobi J, Impe KV, Seeman P, et al. Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nat Genet, 2004, 36(6): 597-601.
    [9] Fontaine JM, Sun X, Hoppe AD, et al. Abnormal small heat shock protein interactions involving neuropathy-associated HSPB22 (HSPB8) mutants. FASEBJ, 2006, 20(12): 2168-2170.
    [10] Ismailov SM, Fedotov VP, Dadali EL, et al. A new locus for autosomal dominant Charcot-Marie-Tooth disease type 2 (CMT2F) maps to chromosome 7q11-q21. JHum Genet, 2001, 9(8): 646-650.
    [11]Evgrafov OV, Mersiyanova I, Irobi J, et al. Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat Genet, 2004, 36(6): 602-606.
    [12]Dierick I, Irobi J, De Jonghe P, et al. Small heat shock proteins in inherited peripheral neuropathies. Ann Med, 2005, 37(6): 413-422.
    [13] Citron M. Strategies for disease modification in Alzheimer's disease. Nat Rev Neurosci, 2004, 5(9): 67-685.
    
    [14] Fink AL. Chaperone-mediated protein folding. Physiol Rev. 1999, 79(2):425-429.
    [15]Dabir DV, Trojanowski JQ, Richter-Landsberg C, et al. Expression of the small heat-shock protein aB-crystallin in tauopathies with glial pathology. Am J Path, 2004,164(1): 155-166.
    [16]Shimura H, Miura-Shimura Y, Kosik KS. Binding of tau to heat shock protein 27 leads to decreased concentration of hyperphosphorylated tau and enhanced cell survival. J Biol Chem, 2004, 279(17): 17957-17962.
    [17]Goldbaum O, Richter-Landsberg C. Stress proteins in oligodendrocytes: differential effects of heat shock and oxidative stress. J Neurochem, 2001, 8(6): 1233-1242.
    [18] Liang JJ-N. Interaction between β-amyloid and lens aB-crystallin. FEBS Lett, 2000, 484(2): 98-101.
    
    [19]Mao JJ, Katayama S, Watanabe C, et al. The relationship between alphaB-crystallin and neurofibrillary tangles in Alzheimer's disease. Neuropathol Appl Neurobiol. 2001,27(3):180-188.
    
    [20]Benndorf R, Welsh MJ. Shocking degeneration. Nat Genet, 2004, 36(6):547-548.
    [21]Fonte V, Kapulkin V, Taflt A, et al. Interaction of intracellular beta amyloid peptide with chaperone proteins. Proc Natl Acad Sci U S A. 2002, 99(14): 9439-9444.
    [22]Yoo BC, Kim SH, Cairns N, et al. Deranged expression of molecular chaperones in brains of patients with Alzheimer's disease. Biochem Biophys Res Commun, 2001, 280(1): 249-258.
    
    [23]Renkawek K, Voorter CEM, Bosman GJCGM, et al. Expression of aB-crystallin in Alzheimer's disease. Acta Neuropathol (Berl), 1994,87(2): 155-160.
    [24] Shinohara H, Inaguma Y, Goto S, et al. αB crystallin and HSP28 are enhanced in the cerebral cortex of patients with Alzheimer's disease. J Neurol Sci, 1993, 119: 203-208.
    [25]Iwaki T, Wisniewski T, Iwaki A, et al. Accumulation of αB-crystallin in central nervous system glia and neurons in pathologic conditions. Am J Path, 1992, 140(2): 345-356.
    [26] Lowe J, McDermott H, Pike I, et al. aB crystallin expression in nonlenticular tissues and selective presence in ubiquitinated inclusion bodies in human disease. J Pathol, 1992,166: 61-68.
    [27]Stege GJJ, Renkawek K, Overkamp PSG, et al. The molecular chaperone αB-crystallin enhances amyloid p neurotoxicity. Biochem Biophys Res Commun, 1999,262:152-156.
    [28]Kudva YC, Hiddinga HJ, Butler. PC, et al. Small heat shock proteins inhibit in vitro Abeta(1-42) amyloidogenesis. FEBS Lett, 1997,416(1): 117-121.
    [29]Dobson CM, Protein folding and misfolding. Nature, 2003,426(6968): 884-890.
    [30]Muchowski PJ, Wacker JL. Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci, 2005, 6(1): 11-22.
    [31] Wacker JL, Zareie MH, Fong H, et al. Hsp70 and Hsp40 attenuate formation of spherical and annular polyglutamine oligomers by partioning monomer. Nat Struct Mol Biol, 2004,11(12): 1215-1222.
    [32]Arrasate M, Mitra S, Schweitzer ES, et al. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature, 2004, 431(7010): 805-810.
    [33]Selkoe DJ. Cell biology of protein misfolding: the examples of Alzheimer's and Parkinson's diseases. Nat Cell Biol, 2004,6(11): 1054-1061.
    [34]Forman MS, Trojanowski JQ, Lee VM-Y. Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat Med, 2004, 10(10): 1055-1063.
    [35] Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease. Nat Med,2004,10: S10-S17.
    [36]Tanaka M, Kim YM, Lee G, et al. Aggresomes formed by α-synuclein and synphilin-1 are cytoprotective. J Biol Chem, 2004, 279(6): 4625-4631.
    [37]Winklhofer KF, Henn IH, Kay-Jackson PC, et al. Inactivation of parkin by oxidative stress and C-terminal truncations: a protective role of molecular chaperones. J Biol Chem, 2003, 278(47): 47199-47208.
    [38]Landles C, Bates GP. Huntingtin and the molecular pathogenesis of Huntington's disease. EMBO Report, 2004, 5: 958-963.
    [39]Shinder GA, Lacourse M-C, Minotti S, et al. Mutant Cu / Zn-superoxide dismutase proteins have altered solubility and interact with heat shock / stress proteins in models of amyotrophic lateral sclerosis. J Biol Chem, 2004, 276(16): 12791-2796.
    [40]Strey CW, Spellman D, Stieber A, et al. Dysregulation of stathmin, a microtubule-destabilizing protein, and up-regulation of Hsp25, Hsp27, and the antioxidant peroxiredoxin 6 in a mouse model of familial amyotrophic lateral sclerosis. Am J Pathol, 2004, 165(5): 1701-1718.
    [41]Okado-Matsumoto A, Fridovich I. Amyotropic lateral sclerosis: a proposed mechanism. Proc Natl Acad Sci USA, 2002, 99: 9010-9014.
    [42]Renkawek K, Stege GJJ, Bosman CJCGM. Dementia, gliosis and expression of the small heatshock proteins Hsp27 and [alpha]B-crystallin in Parkinson's disease. Neuroreport, 1999,10: 2273-2276.
    [43]Schaffar G, Breuer P, Boteva R, et al. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol Cell, 2004,15:95-105.
    [44] Wang J, Martin E, Gonzales V, et al. Differential regulation of small heat shock proteins in transgenic mouse models of neurodegenerative diseases. Neurobiol Aging, 2007,19[Epub ahead of print]
    [45]Ariza A, Coll J, Fernandez Figueras MT, et al. Desmin myopathy: amultisystem disorder involving skeletal, cardiac, and smooth muscle. Hum Pathol, 1995, 26 : 1032-1037.
    [46] Vicart P, Caron A, Guicheney P, et al. A missense mutation in the alpha B crystallin chaperone gene causes a desmin-related myopathy. Nat Genet, 1998, 20:92-95.
    [47] Bova MP, Yaron O, Huang Q, et al. Mutation R120G in alphaB crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone like function. Proc Natl Acad Sci USA, 1999, 96:6137-6142.
    [48] Chavez L, Riethman HC, Lansdorp PM, et al. Telomere length and the expression of natural telomeric genes in human fibroblasts, Hum Mol Genet, 2003 12(11):1329-1336.
    [49] Starckx S, Van den Steen PE, Verbeek R, et al. A novel rationale for inhibition of gelatinase B in multiple sclerosis: MMP-9 destroys αB-crystallin and generates a promiscuous T cell epitope. J Neuroimmunol, 2003, 141(9): 47-57.
    [50] Van Noort JM, Van Sechel AC, Bajramovic JJ, et al. The small heat-shock protein αB-crystallin as candidate autoantigen in multiple sclerosis. Nature, 1995, 375:798-801.
    [51] Chabas D, Baranzini SE, Mitchell D, et al. The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science, 2001(5547), 294: 1731-1735.
    [52] Van Veen T, Van Winsen L, Crusius JBA, et al. αB-Crystallin genotype has impact on the multiple sclerosis phenotype. Neurology, 2003, 61: 1245-1249.
    [53] Vojdani A, Vojdani E, Cooper E. Antibodies to myelin basic protein, myelin oligodendrocytes peptides, αB-crystallin, lymphocyte activation and cytokine production in patients with multiple sclerosis. J Int Med, 2003, 254: 363-374.
    [54] Matsuno H, Kozawa O, Niwa M, et al. A heat shock-related protein, p20, plays an inhibitory role in platelet activation. FEBS Lett, 1998, 429(3): 327-329.
    [55] Kozawa O, Matsuno H, Niwa M, et al. HSP20, low-molecular as a regulator of p latelet functions: a nover defense mechanism. Life Sci, 2002, 72(2): 113-124.
    [56] Niwa M, Kozawa O, Matsuno H. et al. Small molecular weight heat shock-related protein, HSP20, exhibits an anti-platelet activity by inhibiting receptor-mediated calcium influx. Life Sci, 2000, 66(1): 7-12.
    [57]Brophy CM, Woodrumc DA, Polockd J. et al. cGMP-Dependent protein kinase exp ressio restore contractile function in cultured vascular smooth muscle cells. J Vasc Res, 2002, 39: 95-103.
    [58]Fan GC, Chu GX, Mitton B. Small heat-shock protein HSP20 phosphorylation inhibits β agonist-induced cardiac apoptosis. Circ Res, 2004, 94(11): 1474-1482
    [59] Fan GC, Ren XP, Qian J. Novel cardiop rotective role of a small heat shock protein, HSP20, against ischemia/reperfusion injury. Circulation, 2005, 111: 1792-1799.
    [60]Kamada M, So A, Muramaki M, et al. HSPB1 knockdown using nucleotide-based therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells.Mol Cancer Ther. 2007, 6(1): 299-308.
    [61]Chelouche-Lev D, Kluger HM, Berger AJ, et al. alphaB-crystallin as a marker of lymph node involvement in breast carcinoma.Cancer. 2004,100(12): 2543-2548.
    [62]Mitsiades N, Mitsiades CS, Poulaki V, et al. Molecular sequelae of proteasome inhibition in human multiplemyeloma cells. Proc Natl Acad Sci USA, 2002, 99(22): 14374-14379.
    [63]Mehlen P, Kretz-Remy C, Preville-X, et al. Human HSPB1, Drosophila HSPB1 and human alphaB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNF alpha-induced cell death. EMBO J, 1996, 15 (11): 2695-2706.
    [64]Andley UP, Patel HC, Xi J-H. The R116C mutation in aA-crystallin diminishes its protective ability against stress-induced lens epithelial cell apoptosis. J Biol Chem, 2002, 277: 10178-10186.
    [65] Shroff NP, Cherian-Shaw M, Bera S, et al. Mutation of R116C results in highly oligomerized aA-crystallin with modified structure and defective chaperone-like function. Biochemistry, 2000, 39: 1420-1426.
    [66]Cobb BA, Petrash JM, Structural and functional changes in the aA-crystallin R116C mutant in hereditary cataracts. Biochemistry, 2000, 39, 15791-15798.
    [67]Mackay DS, Andley UP, Shiels A. Cell death triggered by a novel mutation in the alphaA-crystallin gene underlies autosomal dominant cataract linked to chromosome 21q.Eur J Hum Genet,2003,11,784-793.
    [68] Bai F,Xi JH,Wawrousek EF,et al.HYPerproliferation and p53 status 0f 1ens epithelial cells derived from alphaB—crystallin knockout mice.J Biol Chem.2003,19,278(38):36876-36886.
    [69] MF Boelens WC,JooSten LA,Abdollahi-Roodsaz S,et al.Identification of small heat shock protein B8 (HSPB8)as a novel TLR4 ligand and potential involVement in the pathogenesis of rheumatoid arthritis.RoelofS J Immunol,2006,176(11):7021-7027.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700