电子与空间效应对苄叉环戊酮染料双光子性质的影响及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在双光子聚合敏化染料的设计合成中,结构与性质的关系一直是研究的重点。本论文研究了电子与空间效应对染料双光子吸收和光敏引发性质的关系,通过研究不同取代位置,取代基团和支化效应来研究染料结构与性质的关系,为进一步设计开发高效的双光子聚合敏化引发染料提供理论依据。同时进行高效双光子聚合光敏引发体系的设计及优化,研究了染料在双光子聚合中的应用。
     1.研究了多支结构中电子与空间效应对染料双光子吸收的影响,证明电子耦合是多支化合物双光子吸收截面非线性增加的根本原因。合成了一个系列键接中心为非共轭基团的多支苄叉环戊酮染料(T1-T3),与相应的键接中心为三苯胺基团的多支染料1-3进行对比研究。表明T2和T3的功能团之间无电子耦合和振动耦合效应,通过支化增加化合物的功能团数只是简单增加功能团的数密度,而2和3与单支化合物相比,光物理性质则表现出明显的耦合增强效应,表明共轭键接中心和电子耦合效应对耦合增强是不可或缺的。此外,通过单光子聚合实验证明电子耦合效应同样有利于增加多支化合物的光敏引发效率。
     2.研究了电子效应对不同取代香豆素/苄叉环戊酮染料双光子敏化引发性质的影响,发现通过香豆素基团的3位与环戊酮桥接的染料具有更高的双光子吸收和敏化引发性能。合成了两种含香豆素功能团的苄叉环戊酮类染料T4和T5,其分别通过香豆素基团的4位和3位与环戊酮桥接。对它们的光物理和光化学性质进行了系统的研究。并通过量化计算的方法优化了染料的基态构型,计算了其垂直激发能。结果表明桥接位置不同,两种染料的构型、电荷分布和电荷密度存在较大差异,T5具有较好的平面性和共轭程度,较大的双光子吸收截面和更好的双光子光敏引发性能;T4的共轭程度和平面性均较差,但其与引发剂的电子转移自由能低,具有更好的单光子光敏性能。
     3.利用上述研究成果,设计合成了3位取代的双香豆素环戊酮染料T6,证明其具有很好的双光子吸收和光聚合引发能力,优于T5和常用高效光敏剂BDMA。结合量化计算,表明其双光子吸收截面增加的原因主要为:香豆素环的引入在保持分子刚性的情况下有效的延长了共轭链的长度。而香豆素和环戊酮基团的协同作用有助于提高染料的光敏引发效率。
     4.开发了一种无需其它引发剂,将苄叉环戊酮染料直接作为三线态引发剂的双光子聚合材料体系。将几种含香豆素功能团的苄叉环戊酮类染料应用于双光子聚合,表明其都可直接用作双光子引发剂,表现出很好的引发性能,可有效引发丙烯酸酯类单体聚合。此类双光子聚合材料体系具有低的引发组分含量和低的引发聚合阈值,且聚合分辨率高,聚合物中小分子残留低。利用此树脂通过双光子聚合成功制作了二维和三维纳米微结构,说明这几种染料及本研究中的树脂在双光子聚合方面都有着很高的应用前景。
Structure-property relationship was the focal point in the design and synthesis of high efficient two-photon polymerization (TPP) sensitizers. Electronic and vibronic contributions to two-photon absorption and photosensitizing efficiencies of novel benzylidene cyclopentanone dyes were studied in this thesis. Structure-property relationship was revealed by investigating the effects of the substituent position, substiturent group and branching structure of dyes on their properties. These results provide useful strategies for the design of novel two-photon initiators or sensitizers. Also, a high efficient sensitize-initiating system of TPP was designed and optimized. The application potentiality of these dyes in TPP was proved.
     1 Electronic and vibronic contributions to cooperative enhancement of two-photon absorption in multi-branched structures were studied, and electronic coupling was confirmed the crucial reason for the enhancement. A series of multi-branched benzylidene cyclopentanone dyes with a non-conjugated central moiety (T1-T3) were synthesized. Their properties were studied in comparison with corresponding triphenylamine derivatives (1-3). No electronic and vibronic coupling effects were observed in T2 and T3. It means that to increase the branch number only increases the number density of chromophores. On the contrary, cooperative enhancement of TPA was observed in 2 and 3 comparing to 1, which confirmed the electronic coupling was the crucial reason for the enhancement. Furthermore, the photosensitizing efficiencies of these compounds were investigated by one-photon polymerization (OPP) and the result indicated the electronic coupling effect was also beneficial to their photosensitizing efficiencies.
     2 Electronic contributions to two photon sensitizing or initiating efficiencies of coumarin/benzylidene cyclopentanone dyes were studied. Two novel benzylidene cyclopentanone dyes (T4 and T5) containing coumarin moiety were synthesized. Their bridging positions were the 4 and 3 positions of coumarin moiety, respectively. T5 was found to exhibit larger two-photon absorption cross-sections (TPACS) and higher two-photon sensitizing efficiencies. Also, their ground state configurations were optimized and excited states properties were calculated by quantum chemical calculations. It showed that their ground state configurations, charge distributions and charge densities were quite different. T5 shows better planar configuration and conjugated properties, exhibiting larger TPACS and higher two-photon sensitizing efficiencies. Contrarily, the configuration of T4 is twisted; it exhibits lower electron transfer free energy with initiator and higher sensitizing efficiencies in OPP.
     3 A novel bicoumarin/cyclopentanone dye (T6) was designed and synthesized based on the above-mentioned study. Its bridging point was 3 position of coumarin moiety. The novel dye showed higher photosensitizing efficiency and larger TPACS compared to T5 and common used photosensitizer BDMA (2,5-bis-[4-(dimethylamino)-benzylidene]-cyclopentanone). Combined with quantum chemical calculations, the main factor of its increased TPACS was confirmed to the introduction of coumarin moiety which increased the conjugated length while maintaining the rigid structure of T6. Furthermore, the cooperative effect between coumarin and cyclopentanone groups was found beneficial in the sensitizing efficiencies of dyes.
     4 A kind of TPP resin was designed by using benzylidene cyclopentanone dyes as one component initiator directly. All benzylidene cyclepentanone dyes containing coumarin moiety were proved that they could be used as photoinitiators directly in TPP and exhibited high initiating efficiencies to initiate acrylate monomers. Only small dosages of initiators were needed in these resins. Also, their threshold energies were very low. 2D and 3D nanopatterns with high resolution and low small molecule residues were successfully fabricated by TPP, which demonstrated extensive application prospects of these dyes and the corresponding resins in three-dimensional microfabrication and high-density optical data storage.
引文
1. M. G?eppert-Mayer,über elmentarakte mít zwei quantensprüngen. Ann. Phy., 1931, 9, 273-295.
    2. S. Maruo, O. Nakamura, S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett., 1997, 22, 132-134.
    3. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. M. Maughon, J. Qin, H. R?ckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature, 1999, 398, 51-54.
    4. I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, C. Andraud, Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser. Opt. Lett., 2002, 27, 1348-1350.
    5. H.-B. Sun, T. Kawakami, Y. Xu, J.-Y. Ye, S. Matuso, H. Misawa, M. Miwa, R. Kaneko, Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption. Opt. Lett., 2000, 25, 1110-1112.
    6. S. Kawata, H.-B. Sun, Two-photon photopolymerization as a tool for making micro-devices. Appli. Surface Sci., 2003, 208-209, 153-158.
    7. S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, Finer features for functional microdevices. Nature, 2001, 412, 697-698.
    8. D. A. Parthenopoulos, P. M. Rentzepis, Three-dimensional optical storage memory. Science, 1989, 245, 843-845.
    9. S. Kawata, Y. Kawata, Three-dimensional optical data storage using photochromic materials. Chem. Rev., 2000, 100, 1777-1788.
    10. J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. R?ckel, S. R. Marder and J. W. Perry, Two-photon absorption and broadband optical limiting with bis-donor stilbenes. Opt. Lett., 1997, 22, 1843-1845.
    11. G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, A. G. Dillard, Two-photon absorption and optical-limiting properties of novel organic compounds. Opt. Lett., 1995, 20, 435-437.
    12. A. Mukherjee, Two-photon-pumped upconverted lasing in dye-doped polymer waveguide. Appl. Phys. Lett., 1993, 62, 3423-3425.
    13. X-J. Tang, L.-Z. Wu, L.-P. Zhang, C. H. Tung, Two-photon-pumped frequency-upconverted yellow lasing in a novel dye solution. Chem. Phys. Lett., 2002, 356, 573-576.
    14. J. D. Bhawalkar, N. D. Kumar, C. F. Zhao and P. N. Prasad, Two-photon photodynamic therapy. J. Clin. Laser Med. Surg., 1997, 15, 201-204.
    15. W. Denk, J. H. Strickler, W. W. Webb, Two-photon laser scanning fluorescence microscopy. Science, 1990, 248, 73-76.
    16.吴世康,《高分子光化学导论-基础和应用》,科学出版社,2003.
    17. A. Diaspro, M. Robello, Two-photon excitation of fluorescence for three-dimensional optical imaging of biological structures. J. Photochem. Photobiol. B: Biol., 2000, 55, 1-8.
    18. C. Xu, W. Zipfel, J. B. Shear, Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy. Proc. Nat. Acad. Sci., USA, 1996, 93, 10763-10768.
    19.肖超渤,胡运华著,《高分子化学》,武汉大学出版社, 1999, 108-160.
    20. J. P. Fouassier, F. Morlet-Savary, K. Yamashita, S. Imahashi, The role of the dye/iron arene complex amine system as a photoinitiator for photopolymerization reactions. Polymer, 1997, 38, 1415-1421.
    21. L. D. Li, W. D. Yang, Y. Y. Yang, Visible photopolymerization initiated by coumarin/biimidazole system. J. Photopolym. Sci. Technol., 1996, 9, 137-144.
    22. B. M. Monroe, G. C. Weed, Photoinitiators for free-radical-initiated photoimaging systems. Chem. Rev., 1993, 93, 435-448.
    23. S. Chatterjee, P. Gottschalk, P. D. Davis, G. B. Schuster, Electron-transfer reactions in cyanine borate ion pairs: photopolymerization initiators sensitive to visible light. J. Am. Chem. Soc., 1988, 110, 2326-2328.
    24. S. Chatterjee, P. D. Davis, P. Gottschalk, M. E. Kurz, B. Sauerwein, X. Yang, and G. B. Schuster, Photochemistry of carbocyanine alkyltriphenylborate salts: intra-ion-pair electron transfer and the chemistry of boranyl radicals. J. Am. Chem. Soc., 1990, 112, 6329-6338.
    25. N. Kita, M. Koike, U. S. Patent 4 937 161, 1990.
    26. W. Rapp, B. Grouau, Laser emission from two xanthene dyes via double-photon excitation. Chem. Phys. Lett., 1971, 8, 529–531.
    27. M. R Topp, P. M. Rentzepis, Picosecond stimulated emission in a ?uorescent solution following two-photon absorption. Phys. Rev. A., 1971,3, 358–364.
    28. M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. R?ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-Li. Wu, C. Xu, Design oforganic molecules with large two-photon absorption cross-sections. Science, 1998, 281, 1653-1656.
    29. M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. M. Maughon, T. C. Parker, H. R?ckel, S. Thayumanavan, S. R. Marder, D. Beljonne, J.-L. Bredas, Structure-property relationships for two-photon absorbing chromophores bis-donor diphenylpolyene and bis-styrylbenzene derivatives. J. Am. Chem. Soc., 2000, 122, 9500-9512.
    30. S. J. K. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J.-L. Brédas, S. R. Marder, J. W. Perry, One- and two-photon spectroscopy of donor-acceptor-donor distyrylbenzene derivatives: effect of cyano substitution and distortion from planarity. J. Phys. Chem. A, 2002, 106, 11470-11480.
    31. M. Halik, W. Wenseleers, C. Grasso, F. Stellacci, E. Zojer, S. Barlow, J.-L. Bredas, J. W. Perry, S. R. Marder, Bis(dioxaborine) compounds with large two-photon cross sections, and their use in the photodeposition of silver. Chem. Commun., 2003, 1490-1491.
    32. S. J. K. Pond, O. Tsutsumi, M. Rumi, O. Kwon, E. Zojer, J.-L. Bredas, S. R. Marder, J. W. Perry, Metal-ion sensing fluorophores with large two-photon absorption cross sections: aza-crown ether substituted donor-acceptor-donor distyrylbenzenes. J. Am. Chem. Soc., 2004, 126, 9291-9306.
    33. S. J. Chung, M. Rumi, V. Alain, S. Barlow, J. W. Perry, S. R. Marder, Strong, low-energy two-photon absorption in extended amine-terminated cyano-substituted phenylenevinylene oligomers. J. Am. Chem. Soc., 2005, 127, 10844-10845.
    34. L. Beverina, J. Fu, A. Leclercq, E. Zojer, P. Pacher, S. Barlow, E. W. V. Stryland, D. J. Hagan, J. L. Bredas, S. R. Marder, Two-photon absorption at telecommunications wavelengths in a dipolar chromophore with a pyrrole auxiliary donor and thiazole auxiliary acceptor. J. Am. Chem. Soc., 2005, 127, 7282-7283.
    35. G. S. He, L.Yuan, Y. Cui, M. Li, P. N. Prasad, Studies of two-photon pumped frequency-upconverted lasing properties of a new dye material. J. Appl. Phys., 1997, 81, 2529-2537.
    36. G. S. He, L. Yuan, P. N. Prasad, A. Abbotto, A. Facchetti, G. A. Pagani, Two-photonpumped frequency-upconverted lasing of a new blue-green dye material. Opt. Commun., 1997, 140, 49-52.
    37. G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, R. McKellar, A. G. Dillard, Two-photon absorption and optical-limiting properties of novel organic compounds. Opt. Lett., 1995, 20, 435-437.
    38. X. M. Wang, D. Wang, G.Y. Zhou, W. T. Yu, Y. F. Zhou, Q. Fang, M. H. Jiang, Symmetric and asymmetric charge transfer process of two-photon absorbing chromophores: bis-donor substituted stilbenes, and substituted styrylquinolinium and styrylpyridinium derivatives. J. Mater. Chem., 2001, 11, 1600-1605.
    39. L.-Z. Wu, X.-J. Tang , M.-H. Jiang, C.-H. Tung, Two-photon induced fluorescence of novel dyes. Chem. Phys. Lett., 1999, 315, 379-382.
    40. X.-J. Tang, L.-Z. Wu, L.-P. Zhang, C.-H. Tung, Two-photon-pumped frequency-upconverted yellow lasing in a novel dye solution. Chem. Phys. Lett., 2002, 356, 573-576.
    41. L.-Z. Wu, X. J. Tang, M.-H. Jiang, C.-H. Tung, Synthesis and study of two-photon induced fluorescence of novel dyes. Chin. Chem. Lett., 1999, 10, 1019-1022.
    42. B. A. Reinhardt, L. L. Brott, S. J. Clarson, A. G. Dillard, J. C. Bhatt, R. Kannan, L.-X. Yuan, G. S. He, P. N. Prasad, Highly active two-photon dyes: design, synthesis, and characterization toward application. Chem. Mater., 1998, 10, 1863-1874.
    43. R. Kannan, G. S. He, L. Yuan, P. N. Prasad, B. A. Reinhardt, J. W. Baur, R. A. Varia, L. S. Tan, Diphenylaminofluorene-based two-photon-absorbing chromophores with variousπ-electron acceptors. Chem. Mater., 2001, 13, 1896-1904.
    44. O.-K. Kim, K.-S. Lee, H. Y. Woo, K.-S. Kim, G. S. He, J. Swiatkiewicz, P. N. Prasad, New class of two-photon-absorbing chromophores based on dithienothiophene. Chem. Mater., 2000, 12, 284-286.
    45. K. D. Belfield, K. J. Schafer, W. Mourad, B. A. Reinhardt, Synthesis of new two-photon absorbing fluorene detivatives via Cu-mediated Ulmann condensation. J. Org. Chem., 2000, 65, 4475-4480.
    46. K. D. Belfield, K. J. Schafer, M. D. Alexander Jr., Synthesis and characterization of a perylene-based luminescent organic glass. Chem. Mater., 2000, 12, 1184-1186.
    47. L. Ventelon, L. Moreaux, J. Mertz, M. Blanchard-Desce, New quadrupolar fluorophores with high two-photon excited fluorescence. Chem. Commun., 1999, 20, 2055-2056.
    48. L. Ventelon, L. Moreaux, J. Mertz and M. Blanchard-Desce, Optimization of quadrupolar chromophores for molecular two-photon absorption. Synth. Met., 2002, 127, 17-21.
    49. O. Mongin, L. Porrès, L. Moreaux, J. Mertz, M. Blanchard-Desce, Synthesis and properties of new conjugated fluorophores designed for two-photon-excited fluorescence. Org. Lett., 2002, 4, 719-722.
    50. M. G. Silly, L. Porrès, O. Mongin, P.-A. Chollet, M. Blanchard-Desce, Optical limiting in the red-NIR range with soluble two-photon absorbing molecules. Chem. Phys. Lett., 2003, 379, 74-80.
    51. K. Kamada, K. Ohta, Y. Iwase, K. Kondo, Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak. Chem. Phys. Lett., 2003, 372, 386-393.
    52. L. D. Boni, J. J. Rodrigues Jr., D. S. Dos Santos Jr., C. H. T. P. Silva, D. T. Balogh, O. N. Oliveira Jr., S. C. Zilio, L. Misoguti, C. R. Mendonca, Two-photon absorption in azoaromatic compounds. Chem. Phys. Lett., 2002, 361, 209-213.
    53. V. M. Churikov, J. T. Lin, H. H. Wu, J. H. Lin, T.-H. Huang, C.-C. Hsu, One- and two-photon induced molecular conformation change and reorientation and related third-order nonlinearities in phenylamine azo-dye polymer thin films. Opt. Commun., 2002, 209, 451-460.
    54. X. Huang, S. Zhong, X. Yan, X. Ke, N. Srisanit, M. R. Wang, The synthesis and nonlinear optical property of carbazole-azo binary compound. Synth. Met., 2004, 140, 79-86.
    55. G.-L. Pan, M. G. Fan, P. Fan, H. Z. Wang, Z. C. Wei, Enhancement of a two-photon absorption cross section (TPACS)-design and synthesis of a novel class of photochromic molecules with large TPACS. Chem. Commun., 2001, 1744-1745.
    56. R. Zalesny, W. Bartkowiak, J. Leszczynsik, Theoretical study of the two-photon absorption in photochromic fulgides. J. Lumin., 2003, 105, 111-116.
    57. K. D. Belfield, A. R. Morales, B. S. Kang, J. M. Hales, D. J. Hagan, E. W. V. Stryland, V. M. Chapela, J. Percino, Synthesis, characterization, and optical properties of new two-photon-absorbing fluorene derivatives. Chem. Mater., 2004, 16, 4634-4641.
    58. L. D. Boni, C. J. L. Constantino, L. Misoguti, R. F. Aroca, S. C. Zilio, C. R. Mendoca, Two-photon absorption in perylene derivatives. Chem. Phys. Lett., 2003, 371, 744-749.
    59. S.-J. Chung, K.-S. Kim, T.-C. Lin, G. S. He, J. Swiatkiewicz, P. N. Prasad, Cooperative enhancement of two-photon absorption in multi-branched structures. J. Phys. Chem. B., 1999, 103, 10741-10745.
    60. A. Adronov, J. M. J. Fréchet, G. S. He, K.-S. Kim, S.-J. Chung, J. Swiatkiewicz, P. N. Prasad, Novel two-photon absorbing dendritic structures. Chem. Mater., 2000, 12, 2838-2841.
    61. B. R. Cho, K. H. Son, S. H. Lee, Y.-S. Song, Y.-K. Lee, S.-J. Jeon, J. H. Choi, H. Lee, M. Cho, Two photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene derivatives. J. Am. Chem. Soc., 2001, 123, 10039-10045.
    62. W.-H. Lee, H. Lee, J.-A. Kim, J.-H. Choi, M. Cho, S.-J. Jeon, B. R. Cho, Two-photon absorption and nonlinear optical properties of octupolar molecules. J. Am. Chem. Soc., 2001, 123, 10658-10667.
    63. B. J. Zhang, S.-J. Jeon, Two-photon properties of Bis-1,4-(p-diarylaminostyryl)-2,5-dicyanobenzene derivatives: two-photon cross-section tendency in multi-branched structures. Chem. Phys. Lett., 2003, 377, 210-216.
    64. J. Yoo, S. K. Yang, M.-Y. Jeong, H. C. Ahn, S.-J. Jeon, B. R. Cho, Bis-1,4-(p-diarylaminostryl)-2,5-dicyanobenzene derivatives with large two-photon absorption cross-sections. Org. Lett., 2003, 5(5), 645-648.
    65. W. J. Yang, D. Y. Kim, C. H. Kim, M.-Y. Jeong, S. K. Lee, S.-J. Jeon, B. R. Cho, Triphenylamine derivatives with large two-photon cross-sections. Org. Lett., 2004, 6, 1389-1392.
    66. P. Macak, Y. Luo, P. Norman, H. ?gren, Electronic and vibronic contributions to two-photon absorption of molecules with multi-branched structures. J. Chem. Phys., 2000, 113, 7055-7061.
    67. G. Ramakrishna, and T. Goodson. III, Excited-state deactivation of branched two-photon absorbing chromophores: a femtosecond transient absorption investigation. J. Phys. Chem. A, 2007, 116, 993-1000.
    68. M. Drobizhev, A. Rebane, Z. Suo, C. W. Spangler, One-, two- and three-photon spectroscopy of p-conjugated dendrimers: cooperative enhancement and coherent domains. J. Lumin., 2005, 111, 291-305
    69. O. Mongin, J. Brunel, L. Porrès, M. Blanchard-Desce, Synthesis and two-photon absorption of triphenylbenzene-cored dendritic chromophores. Tetrahedron Lett., 2003, 44, 2813-2816.
    70. L. Porrès, O. Mongin, C. Katan, M. Charlot, T. Pons, J. Mertz, M. Blanchard-Desce, Enhanced two-photon absorption with novel octupolar propeller-shaped fluorophores derived from triphenylamine. Org. Lett., 2004, 6: 47-50.
    71. M. Parent, O. Mongin, K. Kamada, C. Katana, M. Blanchard-Desce, New chromophores from click chemistry for two-photon absorption and tuneable photoluminescence. Chem. Commun., 2005, 2029-2031.
    72. C. L. Droumaguet, O. Mongin, M. H. V. Werts, M. Blanchard-Desce, Towards‘‘smart’’multiphoton fluorophores: strongly solvatochromic probes for two-photon sensing of micropolarity. Chem. Commun., 2005, 2802-2804.
    73. R. Kannan, G. S. He, T.-C. Lin, P. N. Prasad, R. A. Vaia, L.-S. Tan, Toward highly active two-photon absorbing liquids. Synthesis and characterization of 1,3,5-triazine-based octupolar molecules. Chem. Mater., 2004, 16, 185-194.
    74. Y.-Z. Cui, Q. Fang, Z.-L. Huang, G. Xue, G.-B. Xu, W.-T. Yu, Frequency up-conversion of s-triazine derivatives via two photon absorption and second-harmonic generation. J. Mater. Chem., 2004, 14, 2443-2449.
    75. Y.-Z. Cui, Q. Fang, G. Xue, G.-B. Xu, L. Yin, W.-T. Yu, Cooperative enhancement of two-photon absorption of multibranched compounds with vinylenes attaching to the s-triazine core. Chem. Lett., 2005, 34, 644-645.
    76. B. Li, R. Tong, R. Zhu, F. Meng, H. Tian, S. Qian, The ultrafast dynamics and nonlinear optical properties of tribranched styryl derivatives based on 1,3,5-triazine. J. Phys. Chem. B., 2005, 109, 10705-10710.
    77. L. Wang, X.-T. Tao, J.-X. Yang, G.-B. Xu, Y. Ren, Y. Liu, Y.-X. Yan, Z. Liu, M.-H. Jiang, Synthesis and properties of a new two-photon absorbing chromophore, Synth. Met., 2006, 156, 141-145.
    78. S. Yao, K. D. Belfield, Synthesis of two-photon absorbing unsymmetrical branched chromophores through direct tris(bromomethylation) of fluorine. J. Org. Chem., 2005, 70, 5126-5132.
    79. A. M. McDonagh, M. G. Humphrey, M. Samoc, B. Luther-Davies, Organometallic complexes for nonlinear optics. 17 synthesis, third-order optical nonlinearities, and two-photon absorption cross section of an alkynylruthenium dendrimer, Organometallics, 1999, 18, 5195-5197.
    80. Q. Zheng, G. S. He, P. N. Prasad, Novel two-photon-absorbing, 1,10-phenanthroline-containing p-conjugated chromophores and their nickel(II) chelated complexes with quenched emissions. J. Mater. Chem., 2005, 15, 579-587.
    81. S. Das, A. Nag, D. Goswami, P. K. Bharadwaj, Zinc(II)- and Copper(I)-mediated large two-photon absorption cross-sections in a bis-cinnamaldiminato Schiff base. J. Am. Chem. Soc., 2006, 128, 402-403.
    82. R. Misra, R. Kumar, T. K. Chandrashekar, A. Nag, D. Goswami, Modified (22π) smaragdyrins with large two-photon absorption cross section: a structure function correlation. Org. Lett., 2006, 8, 629-631.
    83. K. Ogawa, T. Zhang, K. Yoshihara, Y. Kobuke, Large third-order optical nonlinearity of self-assembled porphyrin oligomers. J. Am. Chem. Soc., 2002, 124, 22-23.
    84. K. Ogawa, A. Ohashi, Y. Kobuke, K. Kamada, K. Ohta, Strong two-photon absorption of self-assembled butadiyne-linked bisporphyrin. J. Am. Chem. Soc., 2003, 125, 13356-13357.
    85. T. K. Ahn, K. S. Kim, D. Y. Kim, S. B. Noh, N. Aratani, C. Ikeda, A. Osuka, D. Kim, Relationship between two-photon absorption and theπ-conjugation pathway inporphyrin arrays through dihedral angle control. J. Am. Chem. Soc., 2006, 128, 1700-1704.
    86. M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, H. L. Anderson, Understanding strong two-photon absorption inπ-conjugated porphyrin dimers via double-resonance enhancement in a three-level model. J. Am. Chem. Soc., 2004, 126, 15352-15353.
    87. H. Rath, V. Prabhuraja, T. K. Chandrashekar, A. Nag, D. Goswami, B. S. Joshi, Aromatic core modified decaphyrins with the largest two-photon absorption cross-sections: syntheses and characterization. Org. Lett., 2006, 8, 2325-2328.
    88. H. Rath, J. Sankar, V. Prabhuraja, T. K. Chandrashekar, A. Nag, D. Goswami, Core-modified expanded porphyrins with large third-order nonlinear optical response. J. Am. Chem. Soc., 2005, 127, 11608-11609.
    89. O. S. Pyum, W. Y. Yang, M.-Y. Jeong, S. H. Lee, K M. Kang, S.-J. Jeon, B. R. Cho, Synthesis and two-photon absorption property of phenylacetylene macrocycles, Tetrahedron Lett., 2003, 44, 5179-5182.
    90. A. Bhaskar, R. Guda, M. M. Haley, T. Goodson III, Building symmetric two-dimensional two-photon materials. J. Am. Chem. Soc., 2006, 128, 13972-13973.
    91. G. P. Bartholomew, I. Ledoux, S. Mukamel,G. C. Bazan, J. Zyss. Three-dimensional nonlinear optical chromophores based on through-space delocalization. J. Am. Chem. Soc., 2002, 124, 13480-13485.
    92. G. P. Bartholomew, M. Rumi, S. J. K. Pond, J. W. Perry, S. Tretiak, G. C. Bazan. Two-photon absorption in three-dimensional chromophores based on 2.2]-paracyclophane. J. Am. Chem. Soc., 2004, 126, 11529-11542.
    93. H. Y. Woo, J. W. Hong, B. Liu, A. Mikhailovsky, D. Korystov, and G. C. Bazan, Water-soluble [2.2]paracyclophane chromophores with large two-photon action cross sections. J. Am. Chem. Soc., 2005, 127, 820-821.
    94. K. D. Belfield, A. R. Morales, J. M. Hales, D. J. Hagan, E. W. V. Stryland, V. M. Chapela, J. Percino, Linear and two-photon photophysical properties of a series of symmetrical diphenylaminofluorenes. Chem. Mater., 2004, 16, 2267-2273.
    95. K. D. Belfield, S. Yao, A. R. Morales, J. M. Hales, D. J. Hagan, E. W. V. Stryland , V. M. Chapela, J. Percino, Synthesis and characterization of novel rigid two-photon absorbing polymers. Polym. Adv. Technol., 2005, 16, 150-155.
    96. F. Meng, J. Mi, S. Qian, K. Chen, H. Tian, Linear and tri-branched copolymers for two-photon absorption and two-photon fluorescent materials. Polymer, 2003, 44, 6851-6855.
    97. C. Y. Chen, Y. Q. Tian, Y. J. Cheng, A. C. Young, J. W. Ka, and A. K.-Y. Jen, Two-photon absorbing block copolymer as a nanocarrier for porphyrin: energy transfer and singlet oxygen generation in micellar aqueous solution. J. Am. Chem. Soc., 2007, 129, 7220-7221.
    98. L. Y. Chiang, P. A. Padmawar, T. Canteenwala, L.-S. Tan, G. S. He, R. Kannan, R. Vaia, T.-C. Lin, Q. Zheng, P. N. Prasad, Synthesis of C60-diphenylaminofluorene dyad with large 2PA cross-sections and efficient intramolecular two-photon energy transfer. Chem. Commun., 2002, 1854-1855.
    99. P. A. Padmawar, J. E. Rogers, G. S. He, L. Y. Chiang, T. Canteenwala, L.-S. Tan, Q. Zheng, J. E. Slagle, D. G. McLean, P. A. Fleitz, P. N. Prasad, Large cross-Ssection enhancement and intramolecular energy transfer upon multiphoton absorption of hindered diphenylaminofluorene-C60 dyads and triads. Chem. Mater., 2006, 18, 4065-4074.
    100.S. Kershaw, In Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials; M. G. Kuzyk, C. W. Dirk, Eds.; Marcel Dekker, Inc.: New York, 1998; pp 515-654.
    101.K. Takada, H.-B. Sun, S. Kawata, The study on spatial resolution in two-photon induced polymerization. Proc. SPIE., 2006, 6110, 61100A.
    102.G. Witzgall, R. Vrijen, E. Yablonovitch, V. Doan, J. Schwartz, Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures. Opt. Lett., 1998, 23(22), 1745-1747.
    103.L. Nguyen, M. Straub, M. Gu, Acrylate-based photopolymer for two-photon microfabrication and photonic applications. Adv. Funct. Mater., 2005, 15, 209-216.
    104.M. Straub, L. H. Nguyen, A. Fazlic, M. Gu, Complex-shaped three-dimensionalmicrostructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography. Opt. Mater., 2004, 27, 359-364.
    105.S. Wu, M. Straub, M. Gu, Single-monomer acrylate-based resin for three-dimensional photonic crystal fabrication. Polymer, 2005, 46: 10246-10255.
    106.T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, J. T. Fourkas, Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization. J. Appl. Phys., 2004, 95: 6072-6076.
    107.K. J. Schafer, J. M. Hales, M. Balu. K. D. Belfield, E. W. V. Stryland, D. J. Hagan, Two-photon absorption cross-sections of common photoinitiators. J. Photochem. Photobiol. A: Chem., 2004, 162, 497-502.
    108.J. H. Strickler, W. W. Webb, Three-dimensional optical data storage in refractive media by two-photon point excitation. Opt. Lett., 1991, 16, 1780-1782.
    109.H.-B. Sun, S. Matsuo, H. Misawa, Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Appl. Phys. Lett., 1999, 74, 786-788.
    110.W.-H. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, S. R. Marder, An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication. Science, 2002, 296, 1106-1109.
    111.Y. Lu, F. Hasegawa, T. Goto, S. Ohkuma, S. Fukuhara, Y. Kawazu, K. Totani, T. Yamashita, T. Watanabea, Highly sensitive two-photon chromophores applied to three dimensional lithographic microfabrication: design, synthesis and characterization towards two-photon absorption cross section. J. Mater. Chem., 2004, 14, 75-80.
    112.F.-Q. Guo, R. Guo, Z. Jiang, Q. Zhang, W. Huang, B. Guo. Optical properties of a novel nonlinear chromophore doped polymer and application for two-photon microfabrication. Phys. Stat. Sol. (a)., 2005, 202 (13): 2515-2520.
    113.Y. Ren, X.-Q. Yu, D.-J. Zhang, D. Wang, M.-L. Zhang, G.-B. Xu, X. Zhao, Y.-P. Tian, Z.-S. Shao and M.-H. Jiang, Synthesis, structure and properties of a new two-photon photopolymerization initiator. J. Mater. Chem., 2004, 12, 3431-3437.
    114.Y.-X Yan, X.-T. Tao, Y.-H. Sun, G.-B. Xu, C.-K. Wang, J.-X. Yang, X. Zhao, Y.-Z.Wu, Y. Ren, M.-H. Jiang, A new multi-branched two-photon photopolymerization initiator: synthesis and non-linear optical properties of a 1,3,5-triazine-based octupolar molecule. Mater. Chem. Phys., 2005, 90, 139-143.
    115.J.-F. Xing, W.-Q. Chen, J. Gu, X.-Z. Dong, N. Takeyasu, T. Tanaka, X.-M, Duan, S. Kawata, Design of high efficiency for two-photon polymerization initiator:combination of radical stabilization and large two-photon cross-section achieved by N-benzyl 3,6-bis(phenylethynyl)carbazole derivatives. J. Mater. Chem., 2007, 17, 1433-1438.
    116.J. Gu, Y.-L. Wang, W.-Q Chen, X.-Z. Dong, X.-M Duan, S. Kawata, Carbazole-based 1D and 2D hemicyanines: synthesis, two-photon absorption properties and application for two-photon photopolymerization 3D lithography. New J. Chem., 2007, 31, 63-68.
    117.J.-F. Xing, X.-Z. Dong, W.-Q Chen, X.-M Duan, N. Takeyasu, T. Tanaka, and S. Kawata, Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency. Appl. Phys. Lett., 2007, 90, 131106.
    118.G. S. Kumar, D. C. Neckers, Laser-induced three-dimensional photopolymerization using visible initiators and UV cross-linking by photosensitive comonomers. Macromolecules, 1991, 24, 4322-4327.
    119.X. Allonas, J. P. Fouassier, M. Kaji, M. Miyasaka and T. Hidaka, Two and three component photoinitiating systems based on coumarin derivatives. Polymer, 2001, 42, 7627–7634.
    120.C. Grotzinger, D. Burget, P. Jacques, J. P. Fouassier, Visible light induced photopolymerization: speeding up the rate of polymerization by using co-initiators in dye/amine photoinitiating systems. Polymer, 2003, 44, 3671-3677.
    121.C. Li, L. Luo, S. Wang, W. Huang, Q. Gong, Y. Yang, S. Feng, Two-photon microstructure-polymerization initiated by a coumarin derivative/iodonium salt system. Chem. Phys. Lett., 2001, 340, 444-448.
    122.P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts, and S. L. Goodman, 3-Dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes, Macromolecules, 2000, 33,1511-1513.
    123.J. D. Pitts, P. J. Campagnola, G. A. Epling, S. L. Goodman, Submicron multiphoton free-form fabrication of Proteins and Polymers: studies of reaction efficiencies and application in sustained release. Macromolecules, 2000, 33, 1514-1523.
    124.K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, E. W. V. Stryland, Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging. J. Phys. Org. Chem., 2000, 13, 837-849.
    125.K. D. Belfield, X. Ren, E. W. V. Stryland, D. J. Hagan, V. Dubikovsky, E. J. Miesak, Near-IR two-photon photoinitiated polymerization using a fluorone/amine initiating system. J. Am. Chem. Soc., 2000, 122: 1217-1218.
    126.Y.-X. Zhao, X. Li, F.-P. Wu, X.-Y. Fang, Novel multi-branched two-photon polymerization initiators of ketocoumarin derivatives. J. Photochem. Photobiol. A. Chem., 2006, 177, 12-16.
    127.X. Li, Y.-X. Zhao, J. Wu, M.-Q. Shi, F.-P. Wu, Two-photon photopolymerization using novel asymmetric ketocoumarin derivatives. J. Photochem. Photobiol. A. Chem., 2007, 190, 22-28.
    128.H. C. Guo, H.-B. Jiang, L. Luo, C. Y. Wu, H.Yang, Q.-H. Gong, F.-P. Wu, T. Wang, M.-Q. Shi, Two-photon polymerization of gratings by interference of a femtosecond laser pulse. Chem. Phys. Lett., 2003, 374, 381-384.
    129.J. Wu, M.-Q. Shi, Y.-X. Zhao, F.-P. Wu, Two-photon absorption property and photopolymerization sensitizing efficiency of asymmetrical benzylidene cyclopentanone dyes, Dyes and Pigments, 2008, 76, 690-695.
    130.武杰博士论文,新型苄叉环戊酮类双光子聚合敏化染料的合成及性质研究,中国科学院理化技术研究所,北京,2007.
    131.J. Wu, Y.-X. Zhao, X. Li, M.-Q. Shi, F.-P. Wu, X.-Y. Fang, Multi-branched benzylidene cyclopentanone dyes with large two-photon absorption cross-sections. New J. Chem., 2006, 30 (7), 1098-1103.
    1 S.-J. Chung, K.-S. Kim, T.-C. Lin, G. S. He, J. Swiatkiewitz and P. N. Prasad, Cooperative enhancement of two-photon absorption in multi-branched structures. J. Phys. Chem. B., 1999, 103, 10741-10745.
    2 A. Adronov, J. M. J. Fréchet, G. S. He, K.-S. Kim, S.-J. Chung, J. Swiatkiewicz, P. N. Prasad, Novel two-photon absorbing dendritic structures. Chem. Mater., 2000, 12, 2838-2841.
    3 B. R. Cho, K. H. Son, S. H. Lee, Y.-S. Song, Y.-K. Lee, S.-J. Jeon, J. H. Choi, H. Lee, M. Cho, Two photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene derivatives. J. Am. Chem. Soc., 2001, 123, 10039-10045.
    4 J. Yoo, S. K. Yang, M.-Y. Jeong, H. C. Ahn, S.-J. Jeon, B. R. Cho, Bis-1,4-(p-diarylaminostryl)-2,5-dicyanobenzene derivatives with large two-photon absorption cross-sections. Org. Lett., 2003, 5, 645-648.
    5 M. Drobizhev, A. Karotki, Y. Dzenis, A. Rebane, Z.-Y Suo, C. W. Spangler, Strong cooperative enhancement of two-photon absorption in dendrimers. J. Phys. Chem. B, 2003, 107, 7540-7543.
    6 L. Porrès, O. Mongin, C. Katan, M. Charlot, T. Pons, J. Mertz, M. Blanchard-Desce, Enhanced two-photon absorption with novel octupolar propeller-shaped fluorophores derived from triphenylamine. Org. Lett., 2004, 6, 47-50.
    7 B. J. Zhang, S.-J. Jeon, Two-photon properties of bis-1,4-(p-diarylaminostyryl)-2,5-dicyanobenzene derivatives: two-photon cross-section tendency in multi-branched structures. Chem. Phys. Lett., 2003, 377, 210-216.
    8 O. Mongin, J. Brunel, L. Porrès, M. Blanchard-Desce, Synthesis and two-photon absorption of triphenylbenzene-cored dendritic chromophores. Tetrahedron Lett., 2003, 44, 2813-2816.
    9 Q.-D. Zheng, G. S. He, and P. N. Prasad,π-Conjugated dendritic nanosized chromophore with enhanced two-photon absorption. Chem. Mater., 2005, 17, 6004-6011.
    10 F. Terenziani, C. L. Droumaguet, C, Katan, O. Mongin and M. Blanchard-Desce, Effect of branching on two-photon absorption in triphenylbenzene derivatives. ChemPhysChem., 2007, 8, 723-734.
    11 G. P. Bartholomew, M. Rumi, S. J. K. Pond, J. W. Perry, S. Tretiak, G. C. Bazan, Two-photon absorption in three-dimensional chromophores based on [2.2]-paracyclophane. J. Am. Chem. Soc., 2004, 126, 11529-11542.
    12 P. Macak, Y. Luo, P. Norman, H. ?gren, Electronic and vibronic contributions to two-photon absorption of molecules with multi-branched structures. J. Chem. Phys., 2000, 113, 7055-7061.
    13 J. Wu, Y.-X. Zhao, X. Li, M.-Q. Shi, F.-P. Wu and X.-Y. Fang, Multi-branched benzylidene cyclopentanone dyes with large two-photon absorption cross-sections. New J. Chem., 2006, 30, 1098-1103.
    14 Y.-X. Zhao, X. Li, F.-P. Wu, X.-Y. Fang, Novel multi-branched two-photon polymerization initiators of ketocoumarin derivatives. J. Photochem. Photobio. A: Chem., 2006, 177, 12-16.
    15 V. L. Bilot, A. Kawski, Zur theorie des einflusses von l?sungsmitteln auf die elektronenspektren der moleküle. Z. Naturforsch., 1962, 17A, 621-627.
    16 A. Kawski, in Progress In Photochemistry and Photophysics, ed. J. F. Rabek, vol. 5, CRC Press, Boca Raton, 1992, pp. 1–47.
    17 A. Kawski, On the estimation of excited-state dipole moments from solvatochromic shifts of absorption and fluorescence spectra. Z. Naturforsch., 2002, 57A, 255-262.
    18 J. N. Demas, G. A. Crosby, The measurement of photoluminescence quantum yields. J. Phy. Chem., 1971, 75: 991-1024.
    19 J. W. Stansburya, S. H. Dickens, Determination of double bond conversion indental resins by near infrared spectroscopy. Dent. Mater., 2001, 17: 71-79.
    20 D. A. Oulianov, I. V. Tomov, A. S. Dvornikov, P. M. Rentzepis, Observations on the measurement of two-photon absorption cross-section. Opt. Commun., 2001, 191: 235-243.
    21 C. Xu, W. W. Webb, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050nm. J. Opt. Soc. Am. B., 1996, 13, 481-491.
    22 T. Wang, F.-P. Wu and M.-Q. Shi, The synthesis of novel asymmetric cyclopentanone dyes and the measurement of two-photon absorption cross-section. Chem. Res. Chin. Univ., 2003, 19, 470-473.
    23 F. E. E. Germann, O. S. Knight, The preparation of pure triethanolamine (β,β',β″-trihydroxytriethylamine). J. Am. Chem. Soc., 1933, 55 (10), 4150.
    24 J. P. Mason, D. J. Gasch,β,β',β"-Trichlorotriethylamine. J. Am. Chem. Soc., 1938, 60 (11), 2816-2817.
    25 A. Nelson, J. M. Belitsky, S. Vidal, C. S. Joiner, L. G. Baum and J. F. Stoddart, A self-assembled multivalent pseudopolyrotaxane for binding galectin-1. J. Am. Chem. Soc., 2004, 126 (38), 11914-11922.
    26 E. Wilson and M. Tishler, Nitrogen mustards. J. Am. Chem. Soc., 1951, 73 (8), 3635-3641.
    27 M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. R?ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-Li. Wu, C. Xu, Design of organic molecules with large two-photon absorption cross-sections. Science, 1998, 281, 1653-1656.
    1. D. P. Specht, P. A. Martic, S. Farid, Ketocoumarins: a new class of triplet sensitizers. Tetrahedron, 1982, 38, 1203-1211.
    2. Q. Q. Zhu, W. Schnabel, Cationic photopolymerization under visible laser light: polymerization of oxiranes with coumarin/onium salt initiator systems. Polymer, 1996, 37, 4129-4133.
    3. J. P. Fouassier, S. K. Wu, Visible laser lights in photoinduced polymerization. I. thioxanthones and ketocoumarins as photoinitators. J. Appl. Polym. Sci., 1992, 44, 1779-1786.
    4. A. Fischer, C. Cremer, E. H. Stelzer, Fluorescence of coumarins and xanthenes after two-photon absorption with a pulsed titanium-sapphire laser. Appl. Opt., 1995, 34: 1989-2003.
    5. T. Wang, Y.-X. Zhao, F.-P. Wu, and M.-Q. Shi, The synthesis of novel coumarin derivatives and their photoreaction properties. Dyes and Pigments, 2007, 75, 104-110.
    6. M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. R?ckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-Li Wu, C. Xu, Design of organic molecules with large two-Photon absorption cross sections. Science, 1998, 281(11), 1653-1656.
    7. O.-K. Kim, K.-S. Lee, H. Y. Woo, K.-S. Kim, G. S. He, J. Swiatkiewicz, P. N. Prasad, New class of two-photon-absorbing chromophores based on dithienothiophene. Chem. Mater., 2000, 12: 284-286.
    8. T. Wang, F.-P. Wu and M.-Q. Shi, The synthesis of novel asymmetric cyclopentanone dyes and the measurement of two-photon absorption cross-section. Chem. Res. Chin. Univ., 2003, 19, 470-473.
    9. Pastalka Karel (Czech), 1986, 231025, patent.
    10. W. Y. Lin, L. L. Long, J. B. Feng, B. Wang, C. C. Guo, Synthesis ofmeso-coumarin-conjugated porphyrins and investigation of their luminescence properties. Eur. J. Org. Chem., 2007, 26, 4301-4304.
    11. Q.-Y. Wu, E. V. Anslyn, Heavy metal analysis using a Heck-catalyzed cyclization to create coumarin. J. Mater. Chem., 2005, 15, 2815-2819.
    12. H. Takechi, Y. Oda, N. Nishizono, K. Oda, and M. Machida, Screening search for organic fluorophores: syntheses and fluorescence properties of 3-azolyl-7-diethylaminocoumarin derivatives. Chem. Pham. Bull., 2000, 48, 1702-1710.
    13.常志英,李妙贞,沈青,王尔鍳,双-(p-N,N-二甲氨基苄叉)酮/二苯基碘鎓盐复合体系的电子转移光显色.感光科学与光化学,1994,12,229-234.
    14. L. R. Faulkner, H. Tachikawa, A. J. Bard, Electrogenerated chemiluminescence. VII. Influence of an external magnetic field on luminescence intensity. J. Am. Chem. Soc., 1972, 94: 691-699.
    15. A. Liu, A. D. Trifunac, V. V. Krongauz, Photodissociation of hexaarylbiimidazole. 2. Direct and sensitized dissociation. J. Phys. Chem., 1992, 96, 207-211.
    16. J.-F. Xing, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency. Appl. Phys. Lett., 2007, 90, 131106.
    17. K. Takada, H.-B. Sun, S. Kawata, The study on spatial resolution in two-photon induced polymerization. Proc. SPIE., 2006, 6110, 61100A.
    1. M. V. Kulkarni, G. M. Kulkarni, C. H. Lin, C. M. Sun, Recent Advances in coumarins and 1-azacoumarins as versatile biodynamic agents. Curr. Med. Chem., 2006, 13, 2795e2818.
    2. N. R. Ayyangar, K. V. Srinivasan and T. Daniel, Polycyclic compounds part VII. synthesis laser characteristics and dyeing behaviour of 7-diethylamino-2H-l-benzopyran-2-ones. Dyes and Pigments, 199l, 16, 197-204.
    3. K. H. Drexhage, In Dye Lasers; F. P. Schafer, Ed.; Springer-Verlag: Berlin, 1990; pp 155-200.
    4. P. K. McCarthy and G. J. Blanchard, AM1 study of the electronic structure of coumarins. J. Phys. Chem., 1993, 97, 12205-12209.
    5. C. R. Moylan, Molecular hyperpolarizabilities of coumarin dyes. J. Phys. Chem., 1994, 98, 13513-13516.
    6. R. J. Cave, K. Burke, E. W. Castner Jr., Theoretical investigation of the ground and excited states of coumarin 151 and coumarin 120. J. Phys. Chem. A., 2002, 106, 9294-9305.
    7. R. J. Cave, E. W. Castner Jr., Time-dependent density functional theory investigation of the ground and excited states of coumarins 102, 152, 153, and 343. J. Phys. Chem. A., 2002, 106, 12117-12123.
    8. W. W. Zhao, W. S. Bian, Investigation of the structures and electronic spectra for coumarin 6 through TD-DFT calculations including PCM solvation. J. Mol. Struct: THEOCHEM., 2007, 818, 43-49.
    9. W. W. Zhao, W. S. Bian, Investigation of the structures and electronic spectra of two coumarins with heterocyclic substituents through TD-DFT calculations. J. Mol. Struct: THEOCHEM., 2008, 859, 73-78.
    10. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98, 5648-5652.
    11. C. Adamo, V. Barone, Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW andmPW1PW models. J. Chem. Phys., 1998, 108, 664-675.
    12. C. Adamo, V. Barone, A TDDFT study of the electronic spectrum of s-tetrazine in the gas-phase and in aqueous solution. Chem. Phys. Lett., 2000, 330, 152-160.
    13. S. Miert , E. Scrocco, J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects, Chem. Phys., 1981, 55, 117-129.
    14. S. Miert , J. Tomasi, Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem. Phys., 1982, 65, 239-245.
    15. M. Cossi, V. Barone; R. Cammi, J. Tomasi, Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem. Phys. Lett., 1996, 255, 327-335.
    16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, (GAUSSIAN 03), Revision B.02, GaussianInc., Pittsburgh PA, 2003.
    17. A. Barik, S. Nath, H. Pal, Effect of solvent polarity on the photophysical properties of coumarin-1 dye. J. Chem. Phys., 2003, 119, 10202-10208.
    18. C. Adamo, V. Barone, A TDDFT study of the electronic spectrum of s-tetrazine in the gas-phase and in aqueous solution. Chem. Phys. Lett., 2000, 330, 152-160.
    19. C.Adamo, G. E. Scuseria, V. Barone, Accurate excitation energies from time-dependent density functional theory: Assessing the PBE0 model. J. Chem. Phys., 1999, 111, 2889-2899.
    1. B. M. Monroe, W. K. Smothers, D. E. Keys, R. R. Krebs, D. J. Mickish, A. F. Harrington, S. R. Schicken, M. K. Armstrong, D. M. T. Chan, C. I. Weathers, Improved photopolymers for holographic recording. I. Imaging properties. J. Imag. Sci., 1991, 35, 19–25.
    2. E.-J. Wang, J. Li, Y.-Y. Yang, A new electron transfer sensitized initiation system for visible light induced photopolymerization: p-N,N-dimethylaminobenzal ketone/diphenyliodonium salt system. J. Photopolym. Sci. Technol., 1991, 4, 157–164.
    3. J. Wu, Y.-X. Zhao, X. Li, M.-Q. Shi, F.-P. Wu, X.-Y. Fang, Multi-branched benzylidene cyclopentanone dyes with large two-photon absorption cross-sections. New J. Chem., 2006, 30, 1098–1103.
    4. N. Mataga, Y. Kaifu, M. Koizumi, The solvent effect on fluorescence spectrum, change of solute-solvent interaction during the lifetime of excited solute molecule. Bull. Chem. Soc. Jpn., 1955, 28, 690-691.
    5. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98, 5648-5652.
    6. C. Adamo, V. Barone, Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J. Chem. Phys., 1998, 108, 664-675.
    7. C. Adamo, V. Barone, A TDDFT study of the electronic spectrum of s-tetrazine in the gas-phase and in aqueous solution. Chem. Phys. Lett., 2000, 330, 152-160.
    8. S. Miert , E. Scrocco, J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys., 1981, 55, 117-129.
    9. S. Miert , J. Tomasi, Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem. Phys., 1982, 65, 239-245.
    10. M. Cossi, V. Barone; R. Cammi, J. Tomasi, Ab initio study of solvated molecules:a new implementation of the polarizable continuum model. Chem. Phys. Lett., 1996, 255, 327-335.
    11. J. N. Demas, G. A. Crosby, The measurement of photoluminescence quantum yields. J. Phy. Chem., 1971, 75, 991-1024.
    12. J.-F. Xing, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency. Appl. Phys. Lett., 2007, 90, 131106.
    13. H.-B. Sun and S. Kawata, Two-photon photopolymerization and 3D lithographic microfabrication. Adv. Polym. Sci., 2004, 170 169-273.
    14. K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8. Appl. Phys. Lett., 2006, 89, 024106.
    15. A. Barik, S. Nath, H. Pal, Effect of solvent polarity on the photophysical properties of coumarin-1 dye. J. Chem. Phys., 2003, 119, 10202-10208.
    16. J. Kawamata, K. Inoue, T. Inabe, Prominent second-order nonlinear optical properties of novel ketone derivatives. Mol. Cryst. Liq. Cryst., 1996, 278, 117-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700