聚吡咯、硫化镉纳米材料的制备与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料具有一系列新异的物理、化学特性,有广阔的应用前景。获得大量的、尺寸可控的、成本较低的纳米材料仍然是一个极具挑战性的课题,也是纳米材料得到广泛应用的前提。所以,纳米材料的制备研究具有十分重要的意义。
    聚吡咯具有稳定性好,电导率高,容易合成等优点,在应用方面有着广阔的前景。聚吡咯易形成不溶不熔的颗粒状,难以加工成型,限制了它的应用。定向生长的聚吡咯纳米线具有更高导电性和机械强度,在分子导线、材料增强和修饰电极等方面具有更加诱人的前景。使得聚吡咯纳米线的制备成为研究热点。
    研制成功定向生长法制备聚吡咯纳米线。不使用任何模板,在水溶液体系中,采用电化学方法,在石墨电极表面快速、低成本合成了聚吡咯纳米线。研究表明,聚吡咯纳米线的形成经历二维瞬时成核和一维生长过程。聚吡咯纳米线的形貌受聚合电位、电化学方法、单体浓度、支持电解质浓度及聚合时间等合成条件的影响。形成聚吡咯纳米线的聚合电位范围为0.75~0.95 V。通过对合成条件的控制,合成了直径分布由40 nm到150 nm不等的聚吡咯纳米线。利用红外光谱测量分析了聚吡咯纳米线的电导率,最高为186 S/cm。使用自行设计的聚吡咯膜表观电导率装置测量了聚吡咯纳米线结构膜的表观电导率,与红外光谱法得到的电导率相比,聚吡咯纳米线结构膜的表观电导率小一个数量级。
    首次研究了聚吡咯纳米线修饰电极在pH传感器方面的应用。结果表明,聚吡咯纳米线修饰电极对pH的具有良好的响应,且不受膜厚影响,容易制得具有稳定响应的pH传感器。对聚吡咯纳米线用作pH传感器的制备条件的优化进行了探索,提出聚吡咯对pH的响应机理,并建立数学关系式。
    研究了聚吡咯纳米线及分散有普通金属Fe、Ni、Cu的金属/聚吡咯纳米线复合电极对电解析氢反应的催化性能,同时用不同的方法制备了金属/聚吡咯复合电极。研究表明,与石墨电极相比,金属(Fe、Ni、Cu)/聚吡咯电极对电解析氢反应有较好的催化性能。
    研究了半导体CdS纳米粒子的制备及表征。半导体CdS纳米粒子具有优异的发光、光电转化等性能,近年来倍受关注。本文以巯基乙酸为稳定剂,在水溶液中制备了CdS纳米粒子,用UV-Vis吸收峰的蓝移和透射电镜对CdS纳米粒子的尺寸进行了评估。研究表明,CdS纳米粒子粒径及稳定性受诸如溶液温度、pH、稳定剂与S2-之间的比值等反应条件的影响;在常温下,HSCH2COOH与S2-的摩尔比为3.5,pH=9.0,得到了长期稳定、直径约为2.4 nm,粒度分布可达±5%的CdS纳米粒子。用电子衍射测得CdS纳米粒子为立方晶型。
Having a serial of unique physical and chemical properties, nanomaterials are prospecting to be applied in many fields. However, it is still a challenge to get a large amount of nanomaterials with controlled size cheaply. Therefore, study on the preparation of nanomaterials is one of the most pressing tasks at present.
    Polypyrrole is especially promising for commercial applications because of its good stability, facile synthesis and higher conductivity than many other conducting polymers. However, under usual conditions polypyrrole is insoluble and infusible, which restrict its processing and applications. The emergence of molecular conductive wire also makes it important to synthesize polypyrrole nanowires.
    Polyporrole nanowires were synthesized electrochemically on the graphite electrodes in aqueous solution within a few minutes even decades of seconds. The experimental results demonstrated that polypyrrole nanowires grow with two-dimensional instantaneous nucleation process and one-dimensional growth pattern. The appearance of the polypyrrole nanowires is affected by polymerization potential, electrochemical method, pyrrole and electrolyte concentration and polymerization time. Polypyrrole nanowires could be synthesized only when the polymerization potential is between 0.75 V and 0.95 V. Polypyrrole nanowires with diameters 40 nm~150 nm were synthesized by controlling the synthetic conditions. FTIR spectra of the polypyrrole nanowires shows that the intrinsic conductivity decreases with the increase of the polymerization potential and the highest intrinsic conductivity is 186 S/cm. The conductivity of the polypyrrole film with nanowire morphology was measured using the device designed by ourselves. This conductivity is three orders lower than polyporrole intrinsic conductivity.
    The application of the polypyrrole nanowire modified electrode in the pH sensor was studied. The results showed that the film thickness has no affect on the pH potentiolmetric response of the film, so it is easy to make pH sensors with the same response. The effect of synthetic conditions on the pH response was studied. In order to further understand the process and phenomena that determine the performance of the polypyrrole nanowire film as a pH sensor, the pH potentiolmetric response mechanism of the polypyrrole nanowire film was studied and a formulation that fits this mechanism has been established.
    The catalytic performances of polypyrrole nanowires during hygrogen evolution
    
    
    reaction were also studied, so as the metal (respective Fe, Ni, Cu) /polypyrrole nanowires composite electrodes. It was revealed that they all had better electrocatalysis than graphite electrode.
    Here, the preparation of CdS semicondutor nanoparticles was studied too. CdS semicondutor nanoparticles have been attracting much attention in the recent years for its outstanding luminescence and photoelectricity translating properties. In this work, CdS nanoparticles were prepared by using SHCH2COOH as the stabilizer. UV-Vis absorbance spectrum and transmission electron microscopy (TEM) were successfully employed to evaluate the size of the CdS nanoparticles. The size and stability of the particles are affected by the preparation conditions such as reaction temperature, concentration of SHCH2COOH and pH of the solution. CdS nanoparicles with diameter 2.4 nm were prepared at room temperature in a solution with pH=9.0 and the value HSCH2COOH/S2-=3.5. The size distribution of the CdS nanoparticles is ±5% with a long-time stability.
引文
Akhlar M, Chiang C K, Cohen m J, Klepplinger J, Heeger A J, Louis C J, Milliken J, Moran M J, Peebles D L, H. Shirakawa and MacDiarmid A G, Annals of the New York Academy of Sciences, Eds., Miller J S and Epstain A J, 313, pp726-736
    Salaneck W R, Lundstrom I, Huang W S, Macdiarmid A G, Two-dimensional-surface ‘state-diagram’ for polyaniline, Synth. Met., 1986, 13:291-297
    Feldblum A, Kaufman J H, Etemad S, Heeger A J, Chung T C, Macdlarmid A G, Opto-electrochemial spectroscopy of trans-(CH)x, Phys. Rev. B., 1982, 26:815-826
    Chiang C K, Gau S C, Fincher C R , Park Y W, Macdliarmid A G, Heeger A J, Polyacetylene, (CH)x: n-type and p-type doping and compensation, Appl. Phys. Lett., 1978, 33:18-20
    Chung T-C, Feldblum A, Heeger A J, Macdiarmid A G, Experimental studies of sodium-doped polyacetylene: optical and ESR results for metallic (CHNay)x, J. Chem. Phys., 1981, 74:5504-5507
    Winokur W, Moon Y B, Heeger A J, Barker J, Bott D C, Shirakawa H, X-ray scattering from sodium-doped polyacetylene: in commensurate and order-disorder transformations, Phys. Rev. Lett., 1987, 58:2329-2332
    Schon J H, Dodabalapur A, Bao Z , Kloc C, Schenker O, Batlogg B, Gate-induced superconductivity in a solution-processed organic polymer film, Nature, 2001, 410:189-192
    Naarmann H, Theophilou N, New process for the production of metal-like, stable polyacetylene, Synth. Met., 1987, 22:1-8
    钱人元,曹镛,有机晶体中的电子过程(马丁波普,钱人元著),上海科学技术出版社,上海,1987:255-258
    Lee K, Heeger A J, Yao C, Reflectance of polyaniline protonated with camphor sulfonic acid: disordered metal on the metal-insulator boundary, Phys. Rev. B., 1993, 48:14884-14891
    Lee K, Menon R, Yoon C O, Reflectance of conducting polypyrrole : observeation of the metal-insulator transition driven by disorder, Phys. Rev. B., 1995, 52:4779-4787
    Su W P, Schieffer J R, Heeger A J, Solitons in polyacetylene, Phys. Rev. Lett., 1979, 42:1698-1701
    
    Su W P, Schieffer J R, Heeger A J, Soliton excitations in polyacetylene, Phys. Rev. B, 1980, 22:2099-2111
    Heeger A J, Kivelson S, Schieffer J R, Su W P, Solitons in conducting polymers, Rev. Mod. Phys., 1988, 60:781-846
    Fesser K, Bishop A R, Campbell D, Optical absorption from polarons in a model of polyacetylene, J. Phys. Rev. B, 1983, 27:4804-4825
    Frommer J E, Chance R R, Encyclop of Polym. Sci & Eng., 1986, (5):462-507
    Roth S, Bleier H, Pukacki W, Charge transport in conducting polymers, Faraday Discuss. Chem. Soc., 1989, 88:223-233
    Mott N F, Davis E A, Electronic processes in non-crystalline materials, Clarendon Press, Oxford, 2nd edition, 1979
    Noufi R, Frank A J, Nozik A J, Stabilization of n-type silicon photoelectrodes to surface oxidation in aqueous electrolyte solution and mediation of oxidation reaction by surface attached organic conducting polymers, J. Am. Chem. Soc., 1981, 103:1849-1850
    Noufi R, Tench D, Warren L F, Protection of n-GaAs photoanodes with photoelectrochemically generated polypyrrole films, J. Electrochem. Soc., 1980, 127:2310-2311
    Bull R A, Fan F R, Bard A J, Polymer films on electrodes, J. Electrochem. Soc., 1983, 130:1636-1638
    Otero T F, Cantero I, Statistical design to optimize specific charges in polypyrrole by electrosynthesis, J. Electrochem. Soc., 1999, 146(11):4118-4123
    Pud A A, Shapoval G S, Vinogradnyi P G, Electropolymerization of pyrrole in polymer matrices, Russ. J. Electrochem., 2000, 36(4):447-451
    Zhiyong Tang, Shaoqin Liu, Zhenxin Wang, Shaojun Dong, ErkangWang, Electrochemical synthesis of polyaniline nanoparticles, Electrochemistry Communications, 2000, 2:32-34
    Segawa H, Shimidzu T, Honda K, A novel photo-sensitized polymerization of pyrrole, J Chem Soc Chem Comumun, 1989, 132-133
    Fang Q, Chetwynd D G, Gardner J W, Conducting polymer films by UV-photo processing, Sensors and Actuators A, 2002, 99:74-77
    Martin C R, Parthasarathy R, Menon V, Template synthesis of electronically conductive polymers-a new route for achieving high electronic conductivities, Synth Mat., 1993, 55:1165-1170
    
    Cai Z, Martin C R, Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities, J. Am. Chem. Soc., 1989, 111:4138-4139
    Liang W, Martin C R, Template-synthesized polyacetylene fibrils show enhanced supermolecular order, J. Am. Chem. Soc., 1989, l12:9666-9668
    Huang Jie, Wan Meixiang, Temperature and pressure dependence of conductivity of polyaniline synthesized by in situ doping polymerization in the presence of organic function acid as dopants, Solid State Commun., 1998, 108:255-259
    Huang Jie, Wan Meixiang, In situ doping polymerization of polyaniline microtubules in the presence of b-naphthalenesulfonic acid, J. Polym. Sci., Polym. Chem., 1999, 37:151-157
    Iroh J O, Williams C, Formation of thermally stable polypyrrole- naphthalene/benzene sulfonate-carbon fiber composites by an electrochemical process , Synth. Met., 1999, 99:1-8
    Foulds N C, Lowe C R, Enzyme entrapment in electronically conductive polymers, JCS, Faraday Trans. I, 1986, 82:1259-1264
    Jiang Y, Wang T, Wu Z, Li D, Chen X D, Xie D, Study on the NH3-gas sensitive properties and sensitive mechanism of polypyrrole, Sensors and actuators B, 2001, 66:280-282
    Kim B C, Spinks G, Too C O, Wallace G G, Bae Y H, Preparation and characterization of processable conducting polymer-hydrogel composites, React. Funct. Polym., 2000, 44:31-40
    Talaie A, Lee J Y, Lee Y K, Jang J, Romagnoli J A, Taguchi T, Maeder E, Dynamic sensing using intelligent composite: an investigation to development of new pH sensors and electrochromic devices, Thin Solid Films, 2000, 363:163-166
    Somani P, Mandale A B, Radhakrishnan S, Study and development of conducting polymer-based electrochromic display devices, Acta Mater., 2000, 48:2859-2871
    Fritz B, Paul R, Rechargeable batteries with aqueous electrolytes, Electrochim. Acta, 2000, 45:2467-2482
    Su W, Iroh J O, Morphology and structure of the passive interphase formed during aqueous electrodeposition of polypyrrole coatings on steel, Electrochim. Acta, 1999, 44: 4655-4665
    Omastova M, Simon F, Surface characterizations of conductive poly(methyl methacrylate)/polypyrrole composites, J. Mater. Sci., 2000, 35:1743-1749
    
    Penner R M, Martin C R, Controlling the morphology of electronically conductive polymers, J.Electrochem. Soc., 1986, 133:2206-2207
    Almawiawi D, Coombs N, Moskovits M, Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size, J. Appl.Phys., 1991, 70:4421-4425
    Menon V, Lei J, Martin C R, Investigation of Molecular and Supermolecular Structure in Template-Synthesized Polypyrrole Tubules and Fibrils, Chem.Mater., 1996, 8:2382-2390
    Cepak V M, Martin C R, Preparation of polymeric micro- and nanostructures using a template-based deposition method, Chem.Mater., 1999, 11:1363-1367
    Demoustier-Champagne S, Duchet J, Legras R, Chemical and electrochemical synthesis of polypyrrole nanotubules, Synthetic Metals, 1999, 101:20-21
    Burford R P, Tongtam T, Conducting polymers with controlled fibrillar morphology, J. Mater. Sci., 1991, 26:3264-3270
    Van Dyke L S, Martin C R, Electrochemical investigations of electronically conductive polymers. 4. Controlling the supermolecular structure allows charge transport rates to be enhanced, Langmuir, 1990, 6:1118-1123
    Demoustier-Champagne S, Duchet J, Legras R, Chemical and electrochemical synthesis of polypyrrole nanotubules, Syth. Met., 1999, 101:20-21
    Parthasarathy R V, Martin C R, Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization, Nature, 1994, 369:298-301
    Martin C R, Dyke L S V, Cai Z, Liang W B, Template synthesis of organic microtubules, J. Am. Chem. Soc., 1990, 112:8976-8977
    Jér?me C, Jér?me R, Electrochemical synthesis of polypyrrole, Angew. Chem. Int. Ed., 1998, 37 (18):2488-2490
    Maia D J, Zarbin A J G, Alves O L, Depaoli M A, Glass-encapsulated molecular wires-a polypyrrole porous-glass composite, Adv. Mater, 1995, 7(9):792-794
    Noll J D, Nicholson M A, Van Patten P G, Chung C W, Myrick M L, Template electropolymerization of polypyrrole nanostructures on highly ordered pyrolytic graphite step and pit defects, J. Electrochem. Soc., 1998, 145:3320-3327
    Lee J Y; Park S M, Eletrochemistry of conductive polymers, XXIV polypurrole films grown at electrodes modified with β-cyclodextrin, J. Electrochem. Soc., 2000, 147(11):4189-4195
    Nyffenegger R M, Penner R M, Nanometer-scale electropolymerization of aniline
    
    
    using the scanning tunneling microscope, J. Phys. Chem., 1996,100:17041-17049
    Yang R, Evans D F, Hendricksons W A, Writing and reading at nanoscale with a scanning tunneling microscope, Langmuir, 1995,11:211-213
    Cai X W, Gao J S, Xie Z X, Xie Y, Tian Z Q, Mao BW, Nanomodification of polypyrrole and polyaniline on highly oriented pyrolytic graphite electrodes by atomic force microscopy, Langmuir, 1998, 14:2508-2514
    Shen Y, Wan M, Tubular polypyrrole synthesized by in situ doping polymerization in the presence of organic function acids as dopants, J. Polym. Sci. Part A, 1999, 37:1443-1449
    Ge D T, Wang J X, Wang Z, Wang S C, Electrochemical synthesis of polypyrrole nanowires, J. Mater. Sci. Lett., 2003, 22(11):839-840
    Umana M, Waller J, Protein-modified electrodes. The gluscose oxidase/plopyrrole system, Anal. Chem., 1986, 58:2979-2983
    Tamiya E, Karube I, Hottori S, Suzuki M, Yokoyama K, Micro glucose sensors using electron mediators immobilized on a polypyrrole-modified electrode, Sensors and Actuators, 1989, 18:297-307
    蔡称心,鞠 先,陈洪渊,纳米级微带金电极上葡茵糖氧化酶的固定、性质及应用,化学学报,1995,53:281-283
    Foulds N C, Lowe C R, Immobilization of glucose oxidase in ferrocene-modified pyrrole polymers, Anal. Chem., 1988, 60:2473-2478
    Cho J H, Shin M C, Kim H S, Electrochemical adsorption of glucose oxidase onto polypyrrole film for the construction of a glucose biosensor, Sensors and Actuators B, 1996, 30:137-141
    Cooper J M, Foreman P L, Glidle A, Ling T W, Pritchard D J, Glutamate oxidase enzyme electrodes: microsensors for neurotransmitter determination using electrochemically polymerized permselective films, J. Electroanal. Chem., 1995, 388:143-149
    Yamano I, Ohwa M, Wernet W, A polypyrrole/three-enzyme electrode for creatinine detection, Anal. Chem., 1995, 67:2776-2780
    Tatsuma T, Gondaira M, Watanabe T, Peroxidease-incorporated polypyrrole membrane electrodes, Anal. Chem., 1994, 64:1183-1187
    Khan G F, Kobatake E, Shinohara H, Ikariyama Y, Aizawa M, Molecular interface for an activity controlled enzyme electrode and its application for the determination of fructose, Anal. Chem., 1994, 64:1254
    
    Sata T, Possibility for potentiometric humidity sensor of composite membranes prepared from anion-exchange membranes and conducting polymer, Sensors and Actuators B, 1995, 23:63-69
    Penza M, Milella E, Musio F, AC and DC measurements on Langmuir-Blodgett polypyrrole films for selective NH3 gas detection, Materials Science and Engineering C, 1998, 5:255-258
    Syrtski V, Reut J, Opik A, Idla K, Enviornmental QCM sensors coated with polypyrrole, Synth. Met., 1999, 102:1326-1327
    Suri K, Annapoorni S; Sarkar A K, Tandon R P, Gas and humidity sensors based on iron oxide–polypyrrole nanocomposites, Sensor and Actuators B, 2002, 81(2-3):277-182
    Dong S, Sun Z, Lu Z, Chloride chemical sensor based on an organic conducting polypyrrole polymer, Analyst, 1988, 113:1525-1528
    董绍俊,孙志胜,吕紫玲,新型导电聚合物-聚吡咯溴离子化学传感器,化学学报,1990,48:337-342
    Dong S, Sun Z, Lu Z, A new kind of chemical sensor based on a conducting polymer films, J. Chem. Soc. Chem. Commun., 1988, (15):993-995
    Gadogan A, Lewenstam A, Ivaska A, Anionic responses of electrochemically synthesized polypyrrole films, Talanta, 1992, 39(6):617-620
    Sun C, Zhao J, Xu H, Sun Y, Zhang X, Shen J, Fabrication of multiplayer film electrode containing porphyrin and application as a potentiometric sensor of iodide ion, Talanta, 1998, 46:15-21
    Hulanicki A, Michalska A, Lewenstam A, Bifunctionality of chemical sensors based on the conducting polymer polypyrrole, Talanta, 1994, 41(2):323-325
    Alizadeh N, Khodaei-Tazekendi H, Linear alkylbenzenesulfonate (LAS) ion-selective electrode based on electrochemically prepared polypyrrole and PVC, Sensors and Actuators B, 2001, 75:5-10
    Okada T, Hayashi H, Hiratani K, Sugihara H, Koshizaki N, Polymer-based cation-selective electrodes modified with Naphthalenesulphonates, Analyst, 1991, 116(9):923-927
    Lindfors T, Bobacka J, Lewnstam A, Sugihara H, Koshizaki N, Study on soluble polypyrrole as a component in all-solid-state ion-sensors, Electrochim. Acta, 1998, 43(23):3503-3509
    Gao Z, Bobacka J, Lewenstam A, Ivaska A, Electrochemical behavior of
    
    
    polypyrrole film polymerized in indigo carmine solution, Electrochim. Acta, 1994, 39:755-762
    Komaba S, Arakawa J, Seyama M, Osaka T, Satoh I, Nakamura S, Flow injection analysis of potassium using an all-solid-state potassium-selective electrode as a detector, Talanta, 1998, 46:1293-1297
    Cadogan A, Gao Z, Lewenstan A, Ivaska A, Diamond D, All-solid-state Sodium-selective electrode based on a calixarene ionophore in a poly(vinyl chloride) membrane with a polypyrrole solid contact, Anal. Chem., 1992, 64:2496-2501
    Heineman W R, Wieck H J, Yacynych A M, Polymer film chemically modified electrodes as a potentiometric sensor, Anal. Chem., 1980, 52:345-346
    Tsamouras A, Dalas E, Sakkopouras S, Vitoratos E, Novel pH-sensitive films constructed from polypyrrole composites, Physica scripta, 1993, 48:521-524
    Mickalska A, Hulanicki A, Lewenstam A, All solid-state hydrogen ion-selective electrode based on a conducting poly(pyrrole) solid contact, Analyst, 1994, 119:2417-2420
    Shiu K K, Song F Y, Lau K W, Effects of polymer thickness on the potentiometric pH responses of polypyrrole modified glassy carbon electrodes, J. Electroanal. Chem., 1999, 476:109-117
    Mandic Z, Duic L, Polyaniline as an electrocatalytic material, J. Electroanal. Chem.,1996 403:133-138
    Malinauskas A, Holze R, An in situ spectroelectrochemical study of redox reactions at polyaniline-modified ITO electrodes, Electrochim. Acta, 1998, 43:2563-2566
    Levi M D, Pisarevskaya E Y, Cyclic and steady-state voltammetric studies of the mechanism and kinetics of some solute inorganic redox-species reactions at a gold electrode covered with poly-o-phenylenediamine, Electrochim. Acta, 1992, 37:635-641
    Morita M, Takase H, Ishikawa M, Matsuda Y, Electrocatalytic behavior of poly(2,5-dihydroxyaniline) synthesized by electropolymerization in aqueous solutions, Bull. Chem. Soc. Jpn., 1995, 68:2207-2213
    Wei C, German S, Basak S, Rajeshwar K, Reduction of hexavalent chromium in aqueous solutions by polypyrrole, J. Electrochem. Soc., 1993, 140:L60-L62
    Malinauskas A, Holze R, In situ UV-Vis spectroelectrochemical investigation of the dichromate reduction at a polyaniline-modified electrode, Phys. Chem., 1998, 102:982-984
    
    Alatoree M A, Gutierrez S, U Paramo, Reduction of hexavalent chromium by polypyrrole deposited on different carbon substrates, J. Appl. Electrochem., 1998, 28:551-557
    Amemiya T, Hashimoto K, Fujishima A, Dynamics of faradaic processes in polypyrrole/polystyrenesulfonate composite films in the presence and absence of a redox species in aqueous solutions, J. Phys. Chem., 1993, 97:4196-4205
    Deslouis C, Musiani M M, El Rhazi M, Tribollet B, Effect of pH on the mediated oxidation of [Fe(CN)6]4- at polyaniline film electrodes. An impedance study, Synthetic Metals, 1993, 60:269-278
    Jun Y N, Shimoyama A, Ogura K, Poly(o-phenylenediamine)-film-coated electrode having a permselective response to halogenide ions, Journal of the Electrochemical Society, 1992, 139:L52-L53
    Wan B Q, Wu W Q, Electrocatalytic oxidation of methanol on platinum dispersed in poly(2.5-cimethoxyaniline) conducting polymers, Chem. J. Chin. Univ., 1995 16:625-629
    Yang H, Lu T H, Xue K H, Sun S G, Lu G Q, Chen S P, Electrocatalytic oxidation of methanol on polypyrrole film modified with platinum microparticles, J. Electrochem. Soc., 1997, 144:2302-2308
    Barth M, Lapkowski M, Turek W, Muszynski J, Lefrant S, Catalytic properties of ruthenium dioxide in polyaniline matrix, Synth. Met., 1997, 84:111-112
    Kelaidopoulou A, Abelidou E, Papoutsis A, Polychroniadis EK, Kokkinidis G, Electrooxidation of ethylene glycol on Pt-based catalysts dispersed in polyaniline, J. Appl. Electrochem. 1998, 28:1101-1106
    Ficicioglu F, Kadirgan F, Electrooxidation of ethylene glycol on a platinum doped polyaniline electrode, J. Electroanal. Chem., 1998, 451:95-99
    Del Valle M A, Diaz F R, Bodini M E, Polythiophene, polyaniline and polypyrrole electrodes modified by electrodeposition of Pt and Pt + Pb for formic acid electrooxidation, J. Appl. Electrochem., 1998, 28:943-946
    Becerik I, Kadirgan F, Electrocatalytic properties of platinum particles incorporated with polypyrrole films in D-glucose oxidation in phosphate media, Journal of Electroanalytical Chemistry, 1989, 436:189-193
    Becerik I, Suzer S, Kadirgan F, Platinum–palladium loaded polypyrrole film electrodes for the electrooxidation of D-glucose in neutral media, Journal of Electroanalytical Chemistry, 1999, 476:171-176
    
    Becerik I, Kadirgan F, Glucose sensitivity of platinum-based alloys incorporated in polypyrrole films at neutral media, Synthetic metals, 2001, 124:379-384
    Bouzek K, Mangold K M, Jüttner K, Platinum distribution and electrocatalytic properties of modified polypyrrole films, Electrochimica Acta, 2000, 46: 661-670
    Napporn W T, Leger J M, Lamy C, Electrocatalytic oxidation of carbon monoxide at lower potentials on platinum-based alloys incorporated in polyaniline, J. Electroanal. Chem., 1996, 408:141-147
    Lai E K W, Beattie P D, Holdcroft S, Electrocatalytic reduction of oxygen by platinum microparticles deposited on polyaniline films, Synth. Met., 1997, 84:87-88
    Huang S W, Neoh K G, Shih C W, Lim D S, Kang E T, Han H S, Tan K L, Synthesis, characterization and catalytic properties of palladium-containing electroactive polymers, Synth. Met., 1998, 96:117-122
    Sobczak J W, Kosinski A, Bilinski A, Palczewska W, Surface chemical sensitivity of polyaniline doped with palladium or platinum compounds, Adv. Mater. Opt. Electron., 1998, 8:295
    Casella I G, Cataldi T R I, Guerrieri A, Desimoni E, Copper dispersed into polyaniline films as an amperometric sensor in alkaline solutions of amino acids and polyhydric compounds, Anal. Chim. Acta, 1996, 335:217-225
    Abrantes L M, Correia J P, Poly(3-methylthiophene) incorporating electrolessly deposited Ni-P particles, Surf. Coat. Technol., 1998, 107:142-148
    Brewer L, Bonding and structures of transition metal, Science, 1968,161-163
    Giz M J, Machado S AS, Avaca L A, Gonzalez E R,High area Ni-Zn and Ni-Co-Zn codeposits as hydrogen electrodes in alkaline solution, J. Appl. Electrochem., 1992, 22:973-977
    Giz M J, Bento S C, Gonzalez E R, NiFeZn codeposit as a cathode material for the production of hydrogen by water electrolysis, International Journal of Hydrogen Energy, 2000, 25:621-626
    林文修,郑巧云,薛文华等,锜言之,镍钨合金电沉积及其析氢电催化性能的研究,福建师范大学学报(自然版),1995,11(1):60-65
    张雪泳,林文修,电镀镍钴合金及其电催化性能的研究,中国电子学会电镀专业委员会,2001全国电子年会论文集,苏州,2001,pp78-81
    Spasojevie M, Kratajic N, Despotov P, Atanasoski R, Popov K, The evolution of hydrogen on cobalt-molybdenum coating: polarization characteristics, J. Appl. Electrochem., 1984, 14(5):265-266
    
    Brown D, Mahmood M N, Preparation and characterization of low overvoltage transition metal alloy elctrocatalysts for hydrogen evolution in alkaline solutions, Electrichimica Acta, 1984, 29(11):1551-155
    Adriana N C, Sergio A S M, Luis A A, Studies of the hydrogen evolution reaction on smooth Co and electrodeposited Ni–Co ultramicroelectrodes, Electrochemistry Communications, 1999, 1:600–604
    Stevanovi? J, Gojkovi? S, Despi? A, Obradovic M, Nakic V, Hydrogen evolution at Zn-Ni alloys, Electrochimica Acta, 1998, 43:705-711
    Jak?i? J M, Vojnovi? M V, Krstaji? N V, Kinetic analysis of hydrogen evolution at Ni–Mo alloy electrodes, Electrochimica Acta, 2000, 45:4151-4158
    Paseka I, Evolution of hydrogen and its sorption on remarkable active amorphous smooth Ni-P(x) electrodes, Electrochimica Acta, 1995, 40(11):1633-1640
    Burchardt T, The hydrogen evolution reaction on NiPx alloys, International Journal of Hydrogen Energy, 2000, 25:627-634
    Valanda T, Burchardt T, GrHntoft T, Structure and catalytic behaviour of NiSx films with respect to the hydrogen evolution, International Journal of Hydrogen Energy, 2002, 27:39-44
    杜敏,高荣杰,魏绪钧,电沉积Ni-S合金阴极析氢反应,电源技术,2001,25(3):223-224
    Paseka I, Hydrogen evolution reaction on amorphous Ni–P and Ni–S electrodes and the internal stress in a layer of these electrodes, Electrochimica Acta, 2001, 47:921-931
    Schulz R, Dignard-Bailey L, Trudeau M L, Dignardbailey L, Yan Z H, Jin S, Lamarre A, Ghali E, Vanneste A, Nanocrystalline Ni-Mo alloys prepared by mechnical alloying for applications in catalysis, J. Mater. Res., 1994, 9(11):2998-3008
    黄令,许书楷,周绍民,纳米晶镍-钼合金电沉积的结构与性能,应用化学,1999,16(2):38-41
    马洁,江林才,蒋雄,纳米晶Ni-Mo合金复合镀层中钼含量对析氢反应的影响,中国化学会电化学专业委员会第八届全国电化学会议论文摘要集,厦门,1995,pp351-352
    黄令,杨防祖,许书楷,纳米晶镍-钼-钴合金镀层的结构及析氢行为研究,中国电子学会电镀专业委员会,2001年全国电子电镀年会论文集,苏州,2001,pp252-254
    
    Burchardt T, Hansen V, V?land T, Microstructure and catalytic activity towards the hydrogen evolution reaction of electrodeposited NiPx alloys, Electrochimica Acta 2001, 46:2761-2766
    Saleh M M, Electrochemical hydrogen evolution on polypyrrole from alkaline solutions, J. Appl. Electrochem., 2000, 30:939-944
    Noftle R E, Pletcher D, Mechanism of electrodeposition of composition of composite polymers including polypyrrole, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 227:229-235
    Myrick M L, Noll J D, Nicholson M A, Modeling of growth morphology of underpotential electropolymerization of pyrrole on graphite, J. Electrochem. Soc., 1998, 145:179-185
    Miller L L, Zinger B, Zhou Q X, Eletrically controlled release of Fe(CN)64- from polypyrrole, J. Am. Chem. Soc., 1987, 109:2267-2272
    Li F, Alebery W J, A novel mechanism of electrochemical deposition of conducting polymers: two-dimensional layer-by-layer nucleation and growth observed for poly(thiophene-3-acetic acid), Electrochimca Acta, 1992, 37:393-401
    Demoustier-Champagne S, Ferain E,Jerome C, Jerome R, Legras R ,Electrochemically synthesized polypyrrole nanotubules effecs of different experimental condition, Eur. Polym. J., 1998, 34(12):1767-1774
    Liang W, Lei J, Martin C R, Effect of synthesis temperature on the structure, doping level and charge-transport properties of polypyrrole, Sythetic Metals, 1992, 52:227-239
    Granstrom M, Inganas O, Electricaly conductive polymer fibrils with mesoscopic diameters: 1. studies of structure and electrical properties, Polymer, 1995, 36(15):2867-2872
    Vinod P. Menon, Junting Lei, and Charles R. Marrin, Investigation of molecular and Supermolecular structurein Template-Synthesized polypyrrole tubules and Fibrils, Chem. Mater., 1996, 8:2382-2390
    Diaz A F, Castillo J I, A polymer electrode with variable conductivity: polypyrrole, J. Chem. Soc., Chem. Commun., 1980, 397-398
    J. Tamm, A. Alumaa, A. Hallik, T. Silk, V. Sammelselg, Nature of ion sensitivity of polypyrrole electrodes, J. Electroanal. Chem., 1996, 414:149-158
    Wu J-C, Pawliszyn J, Preparation and applications of polypyrrole films in
    
    
    solid-phase microextraction, J. Chromat. A, 2001, 909 (1): 37-43
    Saleh M M, Electrochemical hydrogen evolution on polypyrrole from alkaline solutions, J. Appl. Electrochem., 2000, 30:939-944
    Moutet J-C, Ouennoughi Y, Ourari A, Hamar-Thibault S, Electrocatalytic hydrogenation on noble-metal particles dispersed in polymer-films-enhanced catalytic activity-induced by the incorporation of bimetallic catalysis, Electrochim. Acta, 1995, 40 (12):1827-1835
    Kost K M, Bartak D E, B Kazee, Kuwana T, Electrodeposition of palladium, iridium, ruthenium and platinum in poly(4-vinylpyridine) films for electrocatalysis, Anal. Chem., 1990, 62:151-157
    Itaya K, Takahashi H, Uchida I, Electrodeposition of Pt ultramicroparticles in nafion films on glass carbon electrodes, J. Electroanal. Chem., 1986 208:373-382
    Tourillon G, Garnier F, Inclusion of metallic conducting polymers. A new catalytic system, [poly(3-methylthiophene)-Ag-Pt], for proton electrochemical reduction, J. Phys. Chem., 1984, 88:5281-5288
    Takano N, Kawakami Y, Electrocatalytic Hydrogenation of Acetylenes on Palladium Incorporating Poly[N-(5-Hydroxypentyl) Pyrrole] Film-Coated Electrode, N. Takeno, Chem. Lett., 1996, 589
    Laborde H, Leger J-M, Lamy C, Electrocatalytic oxidation of methanol and C1 molecules on highly dispersed electrodes part I: platinum in polyaniline, J. Appl. Electrochem., 1994, 24:219-226
    Laborde H, Leger J-M, Lamy C, Electrocatalytic oxidation of methanol and Cl molecules on highly dispersed electrodes. Part II: Platinum-ruthenium in polyaniline, J. Appl. Electrochem., 1994, 24:1019-1027
    Makhloufi L, Hammache H, Saidani B, Electrocatalytic reduction of proton on polypyrrole coatings onto aluminium modified by the electrochemical cementation process, Electrochemistry Communications 2000, (2): 552–556
    李狄,电化学原理,北京:北京航空航天大学出版社,1999
    Kang S C, Lee K-S, Kim J-D, Kim K-J, Polypyrrole modified electrode as a nitrate sensor, Bull. Korean Chem. Soc., 1990, 11:124-126
    葛东涛,王纪孝,王世昌,聚吡咯纳米线(管)的合成,2003,5
    Blaz T, Migdalski J, Lewenstan A, Polypyrrole-calcion film as a membrane and solid-contact in an indicator electrode for potentiometric titrations, Talanta, 2000, 52:319-328
    
    Vossmayer T, Katsikas L, Giersig M, Popovic I G, Diesner K, Chemseddine A, Eychmulier A, Weller H, CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift. J. Phys. Chem., 1994, 98:7665-7673
    Wang Y, Herron N, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects and photophysical properties, J. Phys. Chem., 1991, 95:525-532
    Brus L E, Electron-electron and Electron-hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State. J. Chem. Phys., 1984, 80(9):4403-4409
    张立德,跨世纪的新领域:纳米材料科学,科学,1993,45(1):13-17
    张立德, 牟季美,开拓原子和物质的中间领域-纳米微粒和纳米固体,物理,1992,21(3):167-173
    Shi J L, Gao J H, Lin Z X, Formation of monosized spherical aluminum hydroxide particles by urea method, Solid State Ionics, 1989, 32/33:537-543
    苏品书,超微粒材料,复汉出版社,1989
    Boutonnet M, Kizling J, Stenius P, The preparation of monodisperse colloidal metal particles from microemulsions, Colloids Surf., 1982, 5:209
    Chang A C, Pfeiffer W F, Guillaume B, Baral S, Fendler J H, preparation and characterization of selenide semiconductor particles in surfactant vesicles, J. Phys. Chem., 1990, 94:4284-4289
    Xie Y, Wang W Z, Qian Y T, Liu X M, Solvothermal route to nanocrystalline CdSe, Journal of Solid State Chemstry, 1999, 147:82-84
    Lenggoro I W, Okuyama K, Fernandez J, Tohge N, Preparation of ZnS nanoparticles by electrospray pyrolysis, J. Aerosol Sci., 2000, 31(1):121-136
    Yassine B, Didier R, Victor W J, Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions, J. Photochemistry and Photobiology A: Chemistry, 2003, 157(1): 47-53
    Petit C, Pileni M P, Synthesis of Cadmium sulfide in situ in reverse micelles and in hydrocarbon gels, J. Phys. Chem., 1988, 92:2282-2286
    Agostiano A, Catalano M, Curri M L, Della Monica M, Manna L, Vasanelli L, Synthesis and structural characterization of CdS nanoparticles prepared in a four-components “water-in-oil” micromusion, Micron, 2000, 31:253-258
    Kyung M C, Shea K J, New materials for synthesis of quantum-sized
    
    
    semiconductors and transition-metal particles. Microporous polysilsesquioxanes as a confinement matrix for particle growth, Chem. Mater., 1993, 5:1067-1069
    彭小雷,桑文斌,王林军,CdS纳米微晶在PAN膜中的形成与特性,稀有金属,1999,23(5):321-325
    Gao M Y, Yang Y, Synthesis of PbS nanoparticles in polymer matrices, J. Chem. Soc., Chem. Commun., 1994, 7:2779-2780
    Huang J M, Yang Y, Yang B, Liu S Y, Shen J C, Assemble and applications of the inorganic nanocrystals in polymer networks, Thin Solid Films, 1998, 327-329:536-540
    Herron N, Wang Y, Eckert H, Synthesis and characterization of surface-capped, size-quantized CdS clusters. Chemical control of cluster size, J. Am. Chem. Soc., 1990, 112:1322-1326
    Wang G Z, Chen W, Liang C H, Wang Y W, Meng G W, Zhang L D, Preparation and characterization of CdS nanoparticles by ultrasonic irradation, Inorganic Chemistry Communication, 2001, 4:208-210
    Mo X, Wang C, You M, Zhu Y, Chen Z Y, Hu Y, A novel ultraviolet-irradiation route to CdS nanocrystallites with different morphologies, Mater. Res. Bull., 2001, 36:2277-2282
    Peng X, Manna L, Yang W, Scher E, Kadavanich A, Alivisatos A P. Shape Control of CdSe Nanocystals. Nature, 2000, 404:59-61
    Li Y, Ding Y, Zhang Y, Qian Y T, Photophysical Properties of ZnS Quantum Dots. Journal of Physics and Chemistry of Solid, 1999, 60:13-15
    Chang A, Pfeiffer W F, Guillaume B, Baral S, Fendler J H, Preparation and Characterization of Selenide Semiconductor Particles in Surfactant. J. Phys. Chem., 1990, 94:4284-4289
    Zhang Y, Fu D, Wang X, Liu J Z, Lu Z H, Optical and Nonlinear Optical Properties of Surface-modified CdS Nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 181:145-149
    平贵臣,曹立新,王丽颖,崔海宁,席时权,CdS半导体纳米微粒的复合与组装,化学通报, 2000, 63(2):32-36
    Matsumoto H, Sakata T, Mori H, Yoneyama H, Preparation of Monodisperse CdS Nanocrystals by Size Selective Photocorrosion. J. Phys. Chem., 1996, 100:13781-13785
    Liu S M, Liu F Q, Guo H Q, Zhang Z H, Wang Z G, Surface states induced
    
    
    photoluminescence from Mn2+ doped CdS nanoparticles, Solid State Communications, 2000, 115:615-618
    Alivisatos A P, Harris A L, Levinos N J, Steigerwald M L, Brus L E, Electroic States of semiconductor Cluster: Homogeneous and nhomogeneous Broadening of Optical Spectrum, J. Chem. Phys., 1988, 89(7):4000-4011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700