类钙钛矿结构中温固体氧化物燃料电池阴极材料的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)是一种具有高效、环境友好等优点的发电装置。作为SOFC重要组成部分的阴极材料一直是人们研究的重点。传统的SOFC阴极材料多为钙钛矿结构ABO_3型氧化物,如La_(1-x)Sr_xMnO_3 (LSM)等,这类材料在1000 oC时极化电阻仅为几欧姆,但随着工作温度的降低,其极化电阻猛增到几千欧姆。为此,寻求新的能在中温条件下使用的阴极材料成为中温燃料电池研发的重要任务。
     类钙钛矿结构A_2BO_4型氧化物是一类同时具有电子导电和离子导电的混合导体,这类材料在氧透过性、热化学性能、电化学性能以及氧的扩散和表面交换能力等方面显示了明显的优势。与传统的ABO_3型SOFC阴极材料相比较,A_2BO_4型氧化物的热膨胀系数数值较小,并且与传统的固体电解质钇稳氧化锆(YSZ)和Ce_(0.9)Gd_(0.1)O_(1.9)(CGO)有很好的热匹配性。此外,这类材料在中温区间具有较高的电导率,这对阴极材料来讲是极为有利的。以上这些都充分说明了A_2BO_4型复合氧化物是一种潜在的中温固体氧化物阴极材料。有关未掺杂或B位掺杂的A_2BO_4型复合氧化物电化学性能已经有了一些报道,但对于A位掺杂的A_2BO_4型复合氧化物电化学性能研究鲜有报导。
     本论文采用甘氨酸-硝酸盐法制备了A位Sr掺杂的A_2BO_4型中温固体氧化物燃料电池阴极材料Ln_(2-x)Sr_xMO_4 (Ln=La, Nd, Sm; M=Ni, Cu)。考察了电极材料与电解质材料在高温时的化学相容性;研究了烧结温度对电极的微观形貌及电化学性能的影响,结果表明,烧结温度过高或过低都会导致电极极化面电阻的增加,当电极的烧结温度适中时,电极表面粒子有一定的烧结连接,并且有一定的多孔结构,电极的极化面电阻达到最小值。为了考察电极反应动力学,研究了电极的极化面电阻随测试温度和氧分压的变化情况,来确定电极上的速率反应步骤。结果发现,电极反应的速率控制步骤主要有电荷的迁移过程、氧的解离和吸附过程以及氧离子从三相界面向电解质的转移过程,在不同的温度与氧分压下电极可能有着不同的速率控制步骤。其中,Sr掺杂的La_2CuO_4电极具有很好的化学稳定性以及较高的电催化活性,与电解质CGO在1000 oC烧结144小时后,经XRD检测发现二者没有发生任何化学反应,与电解质有很好的化学相容性。La_(1.7)Sr_(0.3)CuO_4电极在700 oC时的极化面电阻为0.16Ω.cm~2,这一数值与传统的钙钛矿型ABO_3氧化物阴极材料La1-xSrxCoyFe1-yO_3 (LSCF)十分接近。
     另外,我们还通过制备La_(1.6)Sr_(0.4)NiO_4-CGO及La_(1.6)Sr_(0.4)NiO_4-Ag复合阴极,来优化电极的制备工艺,系统研究了考察CGO及Ag的掺杂量对电极电化学性能的影响,选择最优掺杂量来制备出高性能的SOFC复合阴极。结果表明,氧离子导体CGO的加入,使得电极的极化面电阻显著降低,当CGO掺杂量为40 wt.%时,复合阴极的测试极化面电阻值最小,当测试温度为700 oC时,其极化面电阻为0.76Ω.cm~2,这一数值为纯La_(1.6)Sr_(0.4)NiO_4阴极极化面电阻的四分之一;La_(1.6)Sr_(0.4)NiO_4-Ag复合阴极同样表现出良好的电化学性能,当Ag掺杂量为7 wt.%时,复合阴极显示出最佳的电催化活性,700 oC时,其极化面电阻为0.26Ω.cm~2,这一数值约为纯La_(1.6)Sr_(0.4)NiO_4阴极极化面电阻的十分之一。另外,Ag的加入也改善了电极的阴极极化现象,在相同的电流密度下,电极的极化电位显著下降,,在700 oC测试温度下,当阴极过电位为32 mV时,电流密度达144 mA.cm~(-2)。
     总之,本文以寻找一种新型的固体氧化物燃料电池阴极材料为出发点,进行了材料的合成和相关的测试研究,并最终用于中温SOFC的制备中,取得了很好的效果。
Solid oxide fuel cells (SOFCs) are a kind of electricity generator with high efficiency and low pollution. The cathode material as SOFC important component is always the priority subject of studies. Strontium doped lanthanum manganate (La_(1-x)Sr_xMnO_3, LSM) is commonly used as ABO_3 type cathode in traditional high temperature solid oxide fuel cells. However, LSM is not suitable to operate in intermediate temperature range, due to the low conductivity and electrochemical activity. For the further improvement of cell performance, the development of high performance cathode material at intermediate temperature is critical. Studies showed that perovskite-like A_2BO_4 type oxide materials exhibited mixed ionic and electronic conducting properties, substantial oxygen permeability, high electrochemical properties, and a relatively high xygen diffusion and surface exchange coefficients.
     With the ABO_3 type oxides cathode materials for SOFC, A_2BO_4 type oxides generally are lower thermal expansion coefficient (TEC). The TEC of these oxides match reasonably well with the yttrium stabilized zirconia (YSZ) or Ce_(0.9)Gd_(0.1)O_(1.9) (CGO) electrolyte materials. Furthermore, A_2BO_4 type oxides show higher electrical conductivity at intermediate temperature, which is extremely advantageouso to the cathode material. All these results imply that A_2BO_4 type oxides are likely to be new cathode materials for (intermediate temperature solid oxide fuel cell) IT-SOFCs. Some preliminary studies on A_2BO_4 type oxides materials in therms of electrochemical properties have been reported. But there are seldom deep researches on electrochemical properties of doping in the A site of the A_2BO_4 type oxide.
     Cathode materials Ln_(2-x)Sr_xMO_4 (Ln=La, Nd, Sm; M=Ni, Cu) for IT-SOFC were prepared by glycine-nitrate process (GNP). The chemistry compatibility of the electrode and electrolyte at high temperature and effects of the sintering temperature on the microstructure and electrochemical properties were investigated, respectively. The results showed the sintering temperature has effect on the polarization resistance of the electrode. At moderate temperature, a fine microstructure with moderate porosity and well-necked particles has been formed, and the electrode gave the lowest polarization resistance. Oxygen partial pressure effect experiments have been performed to study the mechanism of the reaction occurred on the electrode. We have studied variations of the electrode polarization resistance with temperatures and oxygen partial pressures, respectively. The results showed that the possible rate limiting step for cathode reaction depends on the oxygen ion transfer process, oxygen adsorption-desorption process and oxygen ion transfer from the TPB to the CGO electrolyte process. The rate limiting step is differect at different temperature and oxygen partial pressure. Sr doped La2CuO4 electrode exhibits fine chemical stability and higher electrochemical catalytic properties. In order to study the chemical stability of electrode with electrolyte materials at high temperature, the sample was prepared by mixing thoroughly La_(1.7)Sr_(0.3)CuO_4 with CGO powders, and after heat-treating at 1000 oC for 144 h in air. XRD measyrement, this result indicates that La_(1.7)Sr_(0.3)CuO_4 has a good chemical compatibility with the CGO electrolyte. It was found that La_(1.7)Sr_(0.3)CuO_4 electrode showed the lowest polarization resistance. That is 0.16Ω.cm~2 at 700 oC. The polarization resistance of La_(1.7)Sr_(0.3)CuO_4 is comparable to that of La1-xSrxCoyFe1-yO_3 (LSCF) Material.
     La_(1.6)Sr_(0.4)NiO_4-CGO and La_(1.6)Sr_(0.4)NiO_4-Ag composite electrode were prepared in order to, optimize the electrode preparation technology. Has systematically studied the effect of the CGO or Ag doping amount to electrochemical performance of the composite cathode, and high-performance SOFC composite was prepared cathode by select optimum doping amount. The results showed the addition of oxygen ion conductor CGO notably decreased polarization resistance of the electrode. The addition of 40 wt.% CGO in LSN resulted in the lowest polarization resistance of 0.76Ω.cm~2 at 700 oC in air, about four times smaller than that of pure LSN cathode. The La_(1.6)Sr_(0.4)NiO_4-Ag composite cathode also showed fine electrochemical performance. The addition of 7 wt.% Ag in LSN resulted in the lowest polarization resistance of 0.26Ω.cm~2 at 700 oC in air, about ten times than that of LSN cathode. Furthermore, LSN-7Ag composite cathode exhibited the lowest overpotential of about 32 mV at a current density of 144 mA.cm~(-2) at 700 oC in air.
     In conclusion, we have explore a new kind of cathode material and we got some nice results when user in on IT-SOFC.
引文
1 W. R. Grove. On a New Voltaic Combination. Philos. Mag., 1839, (14): 127~130
    2 W. Nernst. Uber die elektrolytische Leitung fester Korper bei sehr hohen Tempera-. turen. Elektrochem., 1899, (6): 41~43
    3 E. Baur, H. Preis. Fuel Cells with Solid Conductors. Elektrochem., 1937, (43): 727~732
    4 衣宝廉. 燃料电池. 化学工业出版社, 2000: 18~19
    5 J. Molenda, J. Marzec. 固体氧化物燃料电池—材料与前瞻. 电化学,2005, (11): 355~359
    6 C. Y. Wang. Fundamental Models for Fuel Cell Engineering. Chem. Rev., 2004, (104): 4727~4766
    7 B.C. H. Steele, A. Heinzel. Materials for fuel-cell technologies. Nature, 2001, (414): 345~352
    8 J. R. Rostrup-Nielsen. Conversion of hydrocarbons and alcohols for fuel cells. Phys. Chem. Chem. Phys., 2001, (3): 283~288
    9 Whitake. J. Investment in volume building: the ‘virtuous cycle’ in PAFC. J. Power Sources, 1998, (71): 71~74
    10 B. D. McNicol, D. A. J. Rand, K. R. Williams. Direct methanol-air fuel cells for road transport. J. Power Sources, 1999, (83): 15~31
    11 K. Kordesch, V. Hacker, J. Gsellmann, M. Cifrain, G. Faleschini, P. Enzinger, R. Fankhauser, M. Ortner, M. Muhr, R. R. Aronson. . Alkaline fuel cells applications. J. Power Sources, 2000, (86): 162~165
    12 S. W. Tao, J. T. S. Irvine. A redox-stable efficient anode for solid-oxide fuel cells. Nature Mater., 2003, (2): 320~323
    13 K. M. McGrath, G. K. S. Prakash, G. A. Olah. Direct methanol fuel cells. J. Ind.Eng. Chem., 2004, (10): 1063~1080
    14 R. F. Service. Bringing fuel cells down to earth. Science, 1999, (285): 682~685
    15 R. M. Ormerod. K. Tsuneyshi, A. Sawata. Solid oxide fuel cells. Chem. Soc. Rev., 2003, (32): 17~28
    16 H. Feuer, J. Margalit. SOFCs – Too hot to handle, Am. Ceram. Soc. Bull.,2004, 83(7): 12~15.
    17 T. Suzuki, P. Jasinski, V. Petrovsky, H. U. Anderson, F. Dogan. Anode supported single chamber solid oxide fuel cell in CH4-air mixture. J. Electrochem. Soc., 2004, (151): 1473~1476
    18 A. Hashimoto, T. Inoue, J. Tokuno, S. Yoshida, M. Sano. A low operating temperature solid oxide fuel cell in hydrocarbon-air mixtures. Science, 2000, (288): 2031~2033
    19 N. Q. Minh. Ceramic Fuel Cells. J. Am. Ceram. Soc., 1993, 76(3): 563~588
    20 S. J. Skinner. Recent advances in Perovskite -Type materials for solid oxide fuel cell cathodes. International Journal of Inorganic Materials, 2001, 3(2): 113~121
    21 H. Zhao, S. H. Feng. Hydrothermal synthesis and oxygen ionic conductivity of codoped nanocrystalline Ce1-xMxBi0.4O2.6-x, M= Ca, Sr, and Ba. Chem.Mater., 1999, (11): 958~964
    22 M. Feng, J.B. Goodenough. A superior oxide-ion electrolyte. Eur. J. Solid State Inorg. Chem., 1994, (31): 663~671
    23 D. Kek, P. Panjana, E. Wanzenbergb, J. Jamnikc. Electrical and microstructural investigations of cermet anode/YSZ thin film systems. Journal of the European Ceramic Society, 2001, (21): 1861~1865
    24 T. Iwata. Characterization of Ni-YSZ Anode Degradation for Substrate-Type Solid Oxide Fuel Cells, J. Electrochem. Soc., 1996, (143): 1521~1524
    25 H. Itoh, T. Yamamoto, M. Mori, T. Horita, N. Sakai, H. Yokokawa, M. Dokiya, Configurational and Electrical Behavior of Ni-YSZ Cermet with Novel Microstructure for Solid Oxide Fuel Cell Anodes, J. Electrochem. Soc., 1997, (144): 641~646
    26 张中太,黄传勇. 固体氧化物燃料电池的研究进展. 材料导报, 1999, 13(4): 19~25
    27 S. P. Simner, M. D. Anderson, J. E. Coleman, J. W. Stevenson. Performance of a novel La(Sr)Fe(Co)O3–Ag SOFC cathode. Journal of Power Sources, 2006, (161): 115~122
    28 S. J. Skinner, J. A. Kilner. A Comparison of The Transport Properties of La2-xSrxNil-yFeyO4 where 0 < x < 0.2 and 0 < y < 0.2. Ionics, 1999, (5): 171~174
    29 S.P. Jiang. Issues on development of (La,Sr)MnO3 cathode for solid oxide fuelcells Journal of Power Sources, 2003, (124): 390~402
    30 V. V. Srdi′c, R. P. Omorjan, J. Seydel. Electrochemical performances of (La,Sr)CoO3 cathode for zirconia-based solid oxide fuel cells. Materials Science and Engineering B, 2005, (116): 119~124
    31 丁锡锋, 高凌, 陈涵, 郭露村. LaCrO3基陶瓷材料在SOFC中的研究进展. 材料导报, 2006, (20): 29~33
    32 江义. 固体氧化物燃料电池最新发展动态. 电化学, 1998, 4(4): 353~354
    33 J. W. Weidner, M. Doyle. Report on the electrolytic industries for the year 1999. J. Electrochem. Soc., 2000, (147): 3953~3974
    34 K. Hassmann, R. Rippel. A new approach to fuel cell investment strategy. Journal of Power Sources, 1998, (71): 75~79
    35 A. R. George, N. F. Bessette. Reducing the manufacturing cost of tubular solid oxide fuel cell technology. Journal of Power Sources, 1998, (71): 131~137
    36 Y. Jiang, S. Z. Wang, Y. H. Zhang, J, W. Yan, W. Z. Li. Kinetic study of the formation of oxygen vacancy on lanthanum managanite electrodes. J. Electrochem. Soc., 1998, 145: 373~378
    37 K. Yamaji, N. Sakai, Y. Xiong. T. Kato, H. Yokokawa, T. K. Source. Imaging of oxygen transport at SOFC cathode/electrolyte interface by a novel technique. J. Power Sources, 2002, (106): 224~230
    38 J. Mizusaki, H. Tagawa, K. Tsuneyoshi, A. Sawata. Reaction Kinetics and Microstructure of the SOFC Air Electrode La0.6Ca0.4MnO3/YSZ. J. Electrochem. Soc., 1991, (138): 1867~1874
    39 T. Kenjo, M. Nishiya. LaMnO3 air cathode containing ZrO2 electrolyte or high temperature solid oxide fuel cells. Solid State Ionics, 1992, (57): 295~302
    40 江金国, 陈文, 徐庆,黄端平, 郑锦霞. 中温固体氧化物燃料电池材料的研究进展. 现代陶瓷技术, 2003 (23): 198~200
    41 J. Akikusa, K. Adachi, K. Hoshino, T. Ishihara, Y. Takita. Development of a Low Temperature Operation Solid Oxide Fuel Cell. J. Electrochem. Soc., 2001, (148): 1275~1278
    42 D. Rajic, V. L Richards, J. D. Carter, X. P. Wang , M. Krumpelt. Development of solid oxide fuel cells that operate at 500 oC. J. Electrochem. Soc., 1999, (147): 1273~1278
    43 康振晋,孙尚梅,郭振平. 钙钛矿结构类型的功能材料的结构单元和结构演变. 化学通报,2000, (4): 23~26
    44 C. Brian, H. Steele. Survey of materials selection for ceramic fuel cells (Ⅱ) Cathodes and anodes. Solid State Ionics, 1996, (86): 1223~12341
    45 S. B. Adler, J. A. Lane, B. C. H. Steele. Electrode kinetics of porous Mixed conducting oxygen electrodes. J. Electrochem. Soc., 1996, (143): 3554~35641
    46 Y. Takeda, S. Nakai, T. Kojima, R. Kanno, N. Imanishi, G. Shen, O. Yamamoto, M. Mori, C. Asakawa, T. Abe. Phase relation in the system (La1-xAx)1-yMnO3+z(A = Sr and Ca). Materials research bulletin, 1991, (26): 153~162
    47 Y. Sakaki, Y. Takeda, A. Kato, N. Imanishi, O. Yamamoto, M. Hattori, M. Iio, Y. Esaki. Ln1-xSrxMnO3 (Ln=Pr, Nd, Sm and Gd) as the Cathode Material for Solid Oxide Fuel Cells. Solid State Ionics, 1999, (118): 187~194
    48 A. N. Petrov, O. F. Kononchuk, A. V. Andreev, V. A. Cherepanov, P. Kofstad. Crystal structure, electrical and magnetic properties of La1-xSrxCoO3- y. Solid State Ionics, 1995, (80): 189~199
    49 M. Cherry, M. S. Islam, C. R. A. Catlow. Oxygen Ion Migration in Perovskite Type Oxides. J. Solid State Chem., 1995, (118): 125~132
    50 黄文华, 杨建华, 聂怀文, 吕之奕, 屠恒勇, 温廷琏. 中温固体氧化物燃料电池阴极材料La0.6Sr0.4Fe1-yCoyO3的合成和性能表征. 无机材料学报, 2002, (17): 679~684
    51 Y. Teraoka, H. M. Zhang, K. Okamoto, N. Yamazoe. Perovskite materials for Solid oxide fuel cells. Mat. Res. Bull, 1988, (23): 51~58
    52 E. Maguire, B. Gharbage, F. M. B. Marque, J. A. Labrincha. Cathode Materials for Intermediate Temperature SOFCs. Solid State Ionics, 2000, (127): 329~335
    53 V. Dusastre, J. A. Kilner. Optimization of composite cathode for intermediate temperature SOFC applications. Solid State Ionics, 1999, (126): 163~174
    54 C. R. Xia, W. Rauch, F. L. Chen, M. L. Liu. Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics, 2002, (149): 11~19
    55 王世忠, 刘旋. 高性能Sm0.5Sr0.5CoO3阴极的制备与表征. 物理化学学报, 2004, (20): 391~395
    56 Z. P. Shao, M. H. Sossina. A high performance cathode for the next generation of solid oxide fuel cells. Nature, 2004, (431): 170~173
    57 H. Lou, Y. P. Ge, P. Chen, M. H. Mei, F. T. Ma, G. L. Lu. Preparation, crystal structure, and reducibility of K2NiF4 type oxides Sm2?xSrxNiO4. J. Mater. Chem., 1997, 7(10): 2097~2101
    58 X. M. Yang, L. T. Luo, H. Zhong. Structure of La2? xSrxCoO4±λ (x = 0.0–1.0) and their catalytic properties in the oxidation of CO and C3H8. Applied Catalysis A, 2004, (272): 299~303
    59 S. D. Mark, M. S. Islam, G. W. Watson, F. E. Hancock. Surface structures and defect properties of pure and doped La2NiO4. J. Mater. Chem., 2001, (11): 2597~2602
    60 M. Berkowsky. SrLaGaO4---SrLaAlO4 solid solutions: new promising substrate materials for HTSc. J. Alloys Compd., 1997, (251): 1~6
    61 邵光新, 罗来涛, 段战辉. LaSrCo0.9B0.1O4复合氧化物制备、氧化性能及表征. 物理化学学报,2005, (21): 328~332
    62 楼辉, 徐元植, 陈平, 葛玉平, 吕光烈, 马福泰. K2NiF4型希土复合氧化物Eu2-xSrxNiO4的合成、结构及还原性能. 无机化学学报, 1999, (15): 158~164
    63 高文远, 孙俊才. 类钙钛矿结构La2Ni0.5M0.5O4材料的合成与电性能. 电源技术, 2005, (29): 160~163
    64 V. V. Vashook, I. I. Yushkevich, L. V. Kokhanovsky, L. V. Makhnach , S. P. Tolochko, I. F. Kononyuk, H. Ullmann, H. Altenburg. Composition and conductivity of some nickelates. Solid State Ionics, 1999, (119): 23~30
    65 V. V. Vashook, E. Girdauskaite, J. Zosel, T. L. Wen, H. Ullmann, U. Guth. Oxygen non-stoichiometry and electrical conductivity of Pr2? xSrxNiO4±δ with x=0-0.5. Solid State Ionics, 2006, (177): 1163~1171
    66 H.W. Nie, T. L. Wen, S. R. Wang, Y. S. Wang, U. Guth, V. Vashook. Preparation, thermal expansion, chemical compatibility, electrical conductivity and polarization of A2? αA/αMO4 (A=Pr, Sm; A/=Sr; M=Mn, Ni; α=0.3, 0.6) as a new cathode for SOFC. Solid State Ionics, 2006, (177): 1929~1932
    67 A. J. Jennings, S. J. Skinner. Thermal stability and conduction properties of the LaxSr2-xFeO4+d system. Solid State Ionics, 2006, (152): 663~667
    68 C. N. Munnings, S. J. Skinner, G. Amow, P. S. Whitfield, I. J. Davidson. Structure, stability and electrical properties of the La(2? x)SrxMnO4±δ solid solution series. Solid State Ionics, 2007, in press
    69 M. A. Daroukha, V.V. Vashooka, H. Ullmanna, F. Tietzb, I. A. Raj. Oxides ofthe AMO3 and A2MO4-type: structural stability, electrical conductivity and thermal expansion. Solid State Ionics, 2003, (158): 141~150
    70 L. Minervini, R. Grimes, J. Kilner, K. Sickafus. Oxygen migration in La2NiO4+d. J. Mater. Chem., 2000, (10): 2349~2354
    71 S. J. Skinner , J. A. Kilner. Oxygen diffusion and surface exchange in La2-xSrxNiO4. Solid State Ionics, 2000, (135): 709~712
    72 E. Boehm, J. M. Bassat, M. C. Steil, P. Dordor, F. Mauvya, J. C. Grenier. Oxygen transport properties of La2Ni1? xCuxO4+δ mixed conducting oxides. Solid State Sciences, 2003, (5): 973~981
    73 J. A. Kilner, C. K. M. Shaw. Mass transport in La2Ni1-xCoxO4+d oxides with the K2NiF4 structure. Solid State Ionics, 2002, (154): 523~527
    74 E. Boehm, J. M. Bassat , P. Dordor, F. Mauvy, J. C. Grenier, Ph. Stevens. Oxygen diffusion and transport properties in non-stoichiometric Ln2-xNiO4+d oxides. Solid State Ionics, 2005, (176): 2717~2725
    75 F. Mauvy, J. M. Bassat, E. Boehm, J. P. Manaud, P. Dordor, J. C. Grenier. Oxygen electrode reaction on Nd2NiO4+y cathode materials: impedance spectroscopy study. Solid State Ionics, 2003, (158): 17~28
    76 V. V. Khartona, E. V. Tsipisa, A. A. Yaremchenkoa, J. R. Frade. Surface-limited oxygen transport and electrode properties of La2Ni0.8Cu0.2O4+d. Solid State Ionics, 2004, (166): 327~337
    77 F. Mauvya, C. Lalanne, J. M. Bassat, J. C. Grenier, H. Zhao, P. Dordor, Ph. Stevens. Oxygen reduction on porous Ln2NiO4 electrodes. Journal of the European Ceramic Society, 2005, (25): 2669~2672
    78 Y. S. Wang, H. W. Nie, S. R. Wang, T. L. Wen, U. Guth, V. Valshook. A2? x Ax/BO4-type oxides as cathode materials for IT-SOFCs (A=Pr, Sm; A/=Sr; B=Fe, Co). Mater. Lett., 2006, (60): 1174~1178
    79 M. Soorie, S. J. Skinner. Ce substituted Nd2CuO4 as a possible fuel cell cathode material. Solid State Ionics, 2006, (177): 2081~2086
    80 K. Sasaki, J. P. Wurth, R. Gschwend, M. Godickemeier, L. J. Gauckler. Microstructure Property Relations of Solid Oxide Fuel Cell Cathodes and Current Collectors. Cathodic Polarization and Ohmic Resistance. J. Electrochem. Soc., 1996, (143): 530~536
    81 T. Kenjo, M. Nishiya. LaMnO3 air cathodes containing ZrO2 electrolyte forhigh temperature solid oxide fuel cells. Solid State Ionics, 1992, (57): 295~302
    82 M. Nagata, H. Hotta, H. Iwahara. Synthesis and electrochemical properties of an oxide electrode layer prepared by a new electroless. J. Appl. Electrochem., 1994, (24): 411~419
    83 H. Fukunaga, M. Ihara, K. Sasaki, K. Yamada, The relationship between overpotential and the three phase boundary length, Solid State Ionics, 1996, (86): 1179~1185
    84 N. T. Hart, N. P. Brandon, M. J. Day, N. L. Rey, Functionally graded composite cathodes for solid oxide fuel cells. Journal of Power Sources, 2002, (106): 42~50
    85 卢自桂, 江义, 董永来, 张义煌,阎景旺. 锰酸镧和氧化钇稳定的氧化锆复合阴极的研究. 高等学校化学学报, 2001, 22(5): 791~795
    86 S. Z. Wang, Y. Jiang, Y. H. Zhang, J. W. Yan, W. Z. Li. The Role of 8 mol % Yttria Stabilized Zirconia in the Improvement of Electrochemical Performance of Lanthanum Manganite Composite Electrodes. J. Electrochem. Soc., 1998, (145): 1932~1939
    87 樊星, 夏长荣, 杨欣, 孟广耀. LSM-SDC复合阴极微结构及界面电阻. 无机材料学报, 2004, (19): 1038~1044
    88 赵辉, 霍丽华, 孙丽萍, 高山, 于丽君, 赵经贵. 中温固体氧化物燃料电池复合阴极材料LSM-CBO的制备及性能研究. 化学学报, 2004, (62): 1993~1997
    89 K. Yamahara, C. P. Jacobson, S. J. Visco, L. C. D. Jonghe. Thin film SOFCs with Cobalt infiltrated cathodes. Solid State Ionics, 2005, (176): 275~279
    90 C. S. Hsu, B. H. Hwang. Microstructure and Properties of the La0.6Sr0.4Co0.2Fe0.8O3 Cathodes Prepared by Electrostatic-Assisted Ultrasonic Spray Pyrolysis Method. J. Electrochem. Soc., 2006, (153): 1478~1483
    91 V. Dusastre, J. Kilner. Optimisation of composite cathode for intermediate temperature SOFC application. Solid State Ionics, 1999, (126): 163~174
    92 A. Esquirol, J. Kilner, N. Brandon. Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3 /Ce0.8Gd0.2O2-x composite cathode for IT-SOFCs. Solid State Ionics, 2004, (175): 63~67
    93 Y. J. Leng, S. H. Chan, S. P. Jiang. Low temperature SOFC With thin filmGDC electrolyte prepared in situ by solid state reaction. Solid State Ionics, 2004, (170): 9~15
    94 H. Uchida, S. Arisaka, M. Watanabe. High Performance Electrode for Medium Temperature Solid Oxide Fuel Cells: Control of Microstructure of La(Sr)CoO3. Solid State Ionics, 2000, (135): 347~351
    95 J. D. Zhang, Y. Ji, H. B. Gao, T. M. He, J. Liu. Composite cathode La0.6Sr0.4Co0.2Fe0.8O3-Sm0.1Ce0.9O1.95-Ag for intermediate-temperature solid oxide fuel cells. J. Alloys. Comp., 2005, (395): 322~325
    96 黄守国, 夏长荣, 孟广耀. 中低温固体氧化物燃料电池Ag-YSB复合阴极. 材料研究学报, 2005, (19): 54~58
    97 Y. Liu, C. Conpson, M. Liu. Nano structured and functionally grade Cathodes for intermediate temperature SOFCs. Fuel CellsBuletin, 2004, (10): 12-15
    98 P. Holtappels, C. Bagger. strontium-doped lanthanum manganites LSM because of the thermal and chemical compatibilities with YSZ. J. Eur. Ceram. Soc., 2002, (22): 41~48
    99 Z. H. Bi, M. J. Cheng, Y. L. Dong, H. J. Wu, Y. C. Sh, B. L. Yi. Electrochemical evaluation of La0.6Sr0.4CoO3–La0.45Ce0.55O2 composite cathodes for anode-supported La0.45Ce0.55O2–La0.9Sr0.1Ga0.8Mg0.2O2.85 bilayer electrolyte solid oxide fuel cells. Solid State Ionics, 2005, (176): 655~661
    100 J. Winkler, P. V. Hendriksen, N. Bonanos, M. Mogensen, J. Winkler. Geometric requirements of solid electrolyte cells with a reference electrode. J. Electrochem. Soc., 1998, (145): 1184~1192
    101 K. Tabata, S. Kohiki. Catalytic Properties and Surface States of La1-x(Th, Sr)xCoO3. J. Mater. Sci., 1987, (22): 3781~3783
    102 H. Zhao, L. H. Huo, L. P. Sun, L. J. Yu, S. Gao, J. G. Zhao. Preparation, chemical stability and electrochemical properties of LSCF–CBO composite cathodes. Materials Chemistry and Physics, 2004, (88): 160~166
    103 Y. Takeda, M. Nishijima, N. Imanishi, R. Kanno, O. Yamamoto. Crystal Chemistry and Transport Properties of Nd2-xAxNiO4 (A = Ca, Sr, or Ba, 0    104 H. Taguchi. Electrical property of K2NiF4-type Ca2(Mn1-xNbx)O4. Materials Research Bulletin, 2001, (36): 1361~1367
    105 G. C. Rout, B. N. Panda, S. N. Behra. MICROSCOPY THEORY OFVELOCITY OF SOUND IN L2-xMxCuO4 (L=Nd, La, Pr, Gd; M=Sr, Ce). Solid State Communications, 1998, (105): 47~52
    106 J. P. Tang, R. I. Dass, A. Manthiram. Comparison of the crystal chemistry and electrical properties of La2-xAxNiO4 (A =Ca, Sr, and Ba). Materials Research Bulletin, 2000, (35): 411~424
    107 Y. Takeda, R. Kanno, M. Sakano, O. Yamamoto, M. Takano, Y. Bando, H. Akinaga, K. Takita, J. B. Goodenough. Crystal chemistry and physical properties of La2?xSrxNiO4 (0 ≤ x ≤ 1.6). Materials Research Bulletin, 1990, (25): 293~306
    108 R. J. Cava, B. Batlogg, T. T. Palstra, J. J. Krajewski, W. F. P. Jr., A. P. Ramirez, L. W. R. Jr. Magnetic and electrical properties of La2-xSrxNiO4. Phys. Rev. B, 1991, (43): 1229~1232
    109 K. Sugiyama, H. Nozaki, T. Takeuchi, H. Ikuta. Transport properties and mangetoresistance of (RE,Sr)2NiO4 (RE=Pr, Nd, Sm and Eu). Journal of Physics and Chemistry of Solids, 2002, (63): 979~982
    110 V. V. Kharton, A. P. Viskup, A. V. Kovalesky, E. N. Naumovich, F. M. B. Marques. Ionic transport in oxygen hyperstoichiometric phases with K2NiF4 type structure. Solid State Ionics, 2001, (143): 337~353
    111 V. V. Kharton, A. P. Viskup, E. N. Naumovich, F. M. B. Marques. Oxygen Ion Transport in La2NiO4-Based Ceramics. J. Mater. Chem., 1999, (9): 2623~2629
    112 J. D. Jorgensen, B. Dabrowski, S. Pei, Shiyou. Structure of the interstitial Oxygen Defect in La2-xNiO4+δ. Phys. Rev. B., 1989, (40): 2187~2191
    113 K. Ishikawa, S. Kondo, H. Okanc. The electrical properties of La2-xSrxNiO4 (0≤x≤1). Bull. Chem. Soc. Jap., 1987, (60): 1295~1301
    114 S. N. Savvin1, G. N. Mazo1, A. K. Ivanov-Schitz. Oxygen diffusion in La2-xSrxCuO4-δ: molecular dynamics study. Defect and Diffusion Forum, 2005, (242-244): 27~42
    115 L. Minervini, R. W. Grimes, J. A. Kilnera, K. E. Sickafus. Oxygen migration in La2NiO4+d. J. Mater. Chem., 2000, (10): 2349~2354
    116 S. J. Skinner, J. A. Kilner. A comparison of the transport properties of La2-xSixNi1-yFeyO4+d when 0 < x < 0.2 and 0 < y < 0.2. Ionics, 1999, (5):
    171~174
    117 . Kanai, T. Hashimoto, H. Tagawa, J. Mizusaki. Diffusion coefficient of oxygen in La1.7Sr0.3O4. Solid State Ionics, 1997, (99): 193~199
    118 L. A. Chick, L. R. Pederson, G. D. Maupin, J. L. Bates, L. E. Thomas, G. J. Exarhos. Glycine-nitrate combustion synthesis of oxide ceramic powders. Materials Letters, 1190, (10): 6~12
    119 纪媛, 刘江, 贺天民, 丛立功, 苏文辉. 甘氨酸-硝酸盐法制备中温SOFC电解质及电极材料. 高等学校化学学报, 2002, (23): 1227~1230
    120 S. Zec, S. Bo?kovi?, M. Hrovat, M. Kosec. Modified Glycine Nitrate Procedure (MGNP) for the Synthesis of SOFC nanopowders. Ceramics International, 2007, ( 33): 89~93
    121 黄守国, 夏长荣, 张学斌 , 孟广耀. Gd0.8Sr0.2CoO3阴极的甘氨酸-硝酸盐法制备及性能研究. 稀有金属材料与工程, 2005, (10): 1650~1652
    122 楼辉, 郑洪元, 杨菊英, 姚志强, 俞逊, 杜少斌, 马福泰. La2-xSrxNiO4 上氧的TPD及其氧化活性. 高等学校化学学报, 1995, (16): 107~110
    123 赵震, 杨向光, 刘钰, 吴 越. LnSrNiO4-d系列复合氧化物的物化性质与对NO分解的催化性能. 中国稀土学报, 1998, (16): 325~331
    124 J. W J. Potts. Chemical Infrared Spectroscopy. NewYork: John Wiley, SonsInc., 1963, ( 1): 135~146
    125 N. Ogita, M. Udagawa, K. Kojima, K. Ohbayashi. Infrared and raman study of (La1-xSrx)2NiO4 and La2(Ni1-xCux)O4. J. Physical Society of Japan, 1988, 57(11): 3932~3938
    126 K. Sasaki, J. P. Wurth, R. Gschwend, M. G?dickemeier, L. J. Gauckler. Microstructure-Property Relations of Solid Oxide Fuel Cell Cathodes and Current Collectors. J. Electrochem. Soc., 1996, (143): 530~543
    127 H. Zhao, L. H. Huo, S. Gao. Electrochemical properties of LSM–CBO composite cathode. Journal of Power Sources, 2004, (125): 149~154
    128 G. Corbel, S. Mestiri, P. Lacorre. Physicochemical compatibility of CGO fluorite, LSM and LSCF perovskite electrode materials with La2Mo2O9 fast oxide-ion conductor. Solid State Sciences, 2005, (7) : 1216~1224
    129 K. Sasaki, J. P. Wurth, R. Gschwend, M. G?dickemeier, L. J. Gauckler. Microstructure-Property Relations of Solid Oxide Fuel Cell Cathodes and Current Collectors Cathodic Polarization and Ohmic Resistance. J. Electrochem. Soc., 1996, (143): 530~543
    130 S. B. Adler. Mechanism and kinetics of oxygen reduction on porous La1-xSrxCoO3 electrode. Solid State Ionics, 1998, (111): 125~134
    131 J. T. S. Irvine, D. C. Sinclair, A. R. West. Electroceramics:. characterisation by impedance spectroscopy. Adv. Mater., 1990, (2): 132~138
    132 Y. Takeda, R. Kanno, M. Noda, Y. Tomida, O. Yamamoto. Cathodic polarization phenomena of perovskite oxide electrodes with stabilized zirconia. J. Electrochem. Soc., 1987, (134): 2656~2661
    133 E. Siebert, A. Hammouche, M. Kleitz Electrochim. mpedance spectroscopy analysis of La1-xSrxMnO3 yttria stabilized zirconia electrode kinetics. Electrochim. Acta, 1995, (40) 1741~1753
    134 J. Mizusaki, K. Amano, S. Yamauchi, K. Fueki. Electrode reaction at Pt, O2(g)/stabilized zirconia interfaces. Part I: Theoretical consideration of reaction model. Solid State Ionics, 1987, (22): 313~322
    135 J. D. Kim, G. D. Kim, J. W. Moon, Y. Park, W. H. Lee, K. Kobayashi, M. Nagai, C. E. Kim. Characterization of LSM–YSZ composite electrode by ac impedance spectroscopy. Solid State Ionics, 2001, (143): 379~389
    136 J. W. Kim, A. V. Virkar, K. Z. Fung, K. Mehta, S. C. Singhal. Polarization effects. in intermediate temperature, anode-supported solid oxide. fuel cells. J. Electrochem. Soc., 1999, (146): 69~78
    137 F. Mauvy, C. Lalanne, J. M. Bassat, J. Claude Grenier, H. Zhao, L. H. Huo, P. Stevensc. Electrode properties of Ln2NiO4+d (Ln = La, Nd, Pr) AC Impedance and DC Polarization Studies. J. Electrochem. Soc., 2006, (153): 1547~1553
    138 H. Lou, Y. P. Ge, P. Chen, M. H. Mei, F. T. Ma, G. G. Lu. Preparation, crystal structure, and reducibility of K2NiF4 type oxides Sm2?xSrxNiO4+d. J. Mater. Chem., 1997, 7(10): 2097~2101
    139 L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, S. R. Sehlin. Structure and electrical properties of La1?xSrxCo1?yFeyO3. Part 1. The system La0.8Sr0.2Co1?yFeyO3. Solid State Ionics, 1995, (76): 259~271
    140 D. Y. Wang, A. S. Nowick. Cathode and Anodic Polarization phenomena at platinum Electrodes with Doped CeO2. J. Electrochem. Soc., 126 (1979) 1155~1165
    141 J. B. Goodenough, A. Manthiram. Crystal Chemistry and Superconductivityof the Copper Oxides. Journal of Solid State Chemistry, 1990, (88): 115~139
    142 G. N. Mazo, S. N. Savvin, V. V. Petrykin, I. A. Koudriashov. Oxygen mobility in layered cuprates La2-xSrxCuO4-d. Solid State Ionics, 2001, (141–142): 313~319
    143 H. Kanai, J. Mizusaki, H. Tagawa, S. Hoshiyama, K. Hirano, K. Fujita, M. Tezuka, T. Hashimoto. Defect Chemistry of La2?xSrxCuO4?δ: Oxygen Nonstoichiometry and Thermodynamic Stability. J. Solid State Chem., 1997, (131): 150~159
    144 R. Decca , E. Osquigull, F. Cruz, C. D'Ovidio, M. T. Malachevskl, D. Esparza. NON LINEAR TEMPERATURE DEPENDENCE OF THE RESISTIVITY OF La-Sr-Cu-O: EFFECTS OF Sr CONTENT. Solld State Communications, 1989, (69): 355~357
    145 E. Boehm, J. M. Bassat, M. C. Steil, P. Dordor, F. Mauvya, J. C. Grenier. Oxygen transport properties of La2Ni1?xCuxO4+δ mixed conducting oxides. Solid State Sci., 2003, (5) 973~981
    146 H. J. Hwang, J. W. Moonb, S. Lee, E. A. Lee. Electrochemical performance of LSCF-based composite cathodes for intermediate temperature SOFCs. Journal of Power Sources, 2005, (145): 243~248
    147 N. T. Hart, N. P. Brandon, M. J. Day, N. L. Rey. Functionally graded composite cathodes for solid oxide fuel cells. Journal of Power Sources, 2002, (106): 42~50
    148 E. P. Murray, S. A. Barnett. (La,Sr) MnO3 – (Ce,Gd)O1.09 composite cathodes for solid oxide fuel cells. Solid State Ionics, 2001, (143): 265~273
    149 K. Sasaki, J. P. Wurth, R. Gschwen, K. Godickemeier, L. J. Gauckler. Microstructure-property relations of solid oxide fuel cell cathodes and current collectors - Cathodic polarization and ohmic resistance. J. Electrochem. Soc., 1996, 143(2): 530~543
    150 S. P. Jiang, J. G. Love, J. P. Zhang, M. Hoang, Y. Ramprakash, A. E. Hughes, S. P. S. Badwal. The electrochemical performance of LSM/zirconia–yttria interface as a function of a-site non-stoichiometry and cathodic current treatment. Solid State Ionics, 1999, (121): 1~10
    151 Y. Jiang, S. Z. Wang, Y. H. Zhang, J. W. Yan, W. Z. Li. Electrical reductionof oxygen on a strontium doped lanthanum manganite electrode. Solid StateIonics, 1998, (110): 111~119
    152 C. C. Anne, S. J. Xia, V. I. Birss. A Kinetic Study of the Oxygen Reduction Reaction at LaSrMnO3-YSZ Composite Electrodes. J. Electrochem. Soc., 2005, 152(3): 570~576
    153 E. Perry Murray, M.J. Sever, S.A. Barnett. Electrochemical performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 composite cathodes. Solid State Ionics, 2002, (148): 27~34
    154 M. Watanabe, H. Uchida, M. Shibata, N. Mochizuki, K. Amikura, J. Electrochem. Soc. 1994 , (141): 342~346
    155 M. Sahibzada, S. J. Benson, R. A. Rudkin, J. A. Kilner. Pd-promoted La0.6Sr0.4 Co0.2Fe0.8O3 cathodes. Solid State Ionics, 1998(113): 285~290
    156 黄守国, 夏长荣, 孟广耀. 中温固体氧化物燃料电池Ag-BSB阴极材料的制备及性能研究. 功能材料, 2005, (36): 74~76
    157 V. Dusastre, J. A. Kilner. Optimisation of composite cathodes for intermediate temperature SOFC applications Solid State Ionics, 1999, (126 ): 163~174
    158 J. T. S. Irvine, D. C. Sinclair, A. R. West. Electroceramics: Characterisation by ac Impedance Spectroscopy . Adv. Mater., 1990, (2): 132~138
    159 M. Koyama, C. Wen, T. Masuyama, J. Otomo, H. Fukunaga, K. Yamada, K. Eguchi, H. Takahashi. The Mechanism of Porous Sm0.5Sr0.5CoO3 Cathodes Used in Solid Oxide Fuel Cells. J. Electrochem. Soc., 2001, 148(7): 795~801
    160 S. P. Simner, M. D. Anderson, J. E. Coleman, J. W. Stevenson. Performance of a novel La(Sr)Fe(Co)O3–CGO SOFC cathode. Journal of Power Sources 2006, (161): 115~122
    161 J. B. Liu, C. C. Anne, S. Paulson, V. I. Birs. Oxygen reduction at sol–gel derived La0.8Sr0.2Co0.8Fe0.2O3 cathodes . Solid State Ionics, 2006, (177): 377~387
    162 Y. C. Hsiao, J. R. Selman. The degradation of SOFC electrodes. Solid State Ionics, 1997, (98): 33~38
    163 E. I. Tiffee, A. Weber, D. Herbstritt. Materials and technologies for SOFC components. Journal of the European Ceramic Society, 2001, (21) 1805~1811
    164 O. A. Marina, N. L. Canfield, J. W. Stevenson. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics, 2002, (149): 21~ 28
    165 H. Hayashi, M. Watanabe, M. Ohuchida, H. Inaba, Y. Hiei, T. Yamamoto, M. Mori. Solid State Ionics, 2001, (144): 301~313
    166 X. Y. Xu, C. R. Xia, G. L. Xiao, D. K. Peng. Fabrication and performance of functionally graded cathodes for IT-SOFCs based on doped ceria electrolytes. Solid State Ionics, 2005, (176): 1513~1520
    167 K. T. Lee, A. Manthiram. Electrochemical performance of Nd0.6Sr0.4Co0.5Fe0.5O3? δ–Ag composite cathodes in intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2007, in press
    168 E. P. Murray, M. J. Sever, S. A. Barnett. Electrochemical performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 composite cathodes. Solid State Ionics, 2002, (148): 27~34
    169 S. B. Adler, J. A. Lane, B. C. H. Steele. Electrode kinetics of porous mixed conducting oxygen electrodes. J. Electrochem. Soc., 1996, (143): 3554~3564
    170 C. C. Chen, M. M. Nasrallah, H. U. Anderson, in: S. C. Singhal, H. Iwahara (Eds.), Proc. 3rd Int. Symp. Solid Oxide Fuel Cells, The Electrochemical Society Proceedings Series, 1999, p. 252, Pennington, NJ.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700