角质形成细胞在纳米仿生功能支架上的快速贴壁及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:构建“纳米银/壳聚糖膜”及“纳米金/壳聚糖膜”两种纳米仿生功能支架;研究仿生功能支架对治疗SD大鼠深II度切割伤的作用及其生物安全性;研究角质形成细胞在仿生功能支架上的贴壁率及生长情况。
     方法:用自组装技术将纳米银、纳米金组装到壳聚糖膜上,得到“纳米银(金)/壳聚糖膜”仿生功能支架。众所周知,纳米银具有天然的抗菌性能,为此选用“纳米银/壳聚糖膜”仿生功能支架为主成分构造纳米银仿生敷料。用无菌、热原、皮肤刺激及全身急性毒性等试验,评价纳米银仿生敷料的生物安全性,再将其用于治疗SD大鼠深II度切割伤,通过肉眼观察、计算愈合率、组织病理切片等手段评价其治疗疗效,用火焰原子吸收分光光度法对经该敷料治疗的SD大鼠全血及肝、脑、肾等组织中的银含量进行测定,并与对照组(磺胺嘧啶银组,SD-Ag组)进行比较。
     将构建的“纳米金/壳聚糖膜”仿生功能支架用于培养角质形成细胞,计算培养6h,12h,24h后的贴壁率,用免疫组织化学和透射电子显微镜等手段对培养的角质形成细胞进行表征、鉴定。
     结果:基于“纳米银/壳聚糖膜”仿生功能支架的无菌、无热原、无刺激及无毒性等性能,将其用于治疗SD大鼠深II度切割伤,术后10d、13d愈合率分别为88.50±4.03%和98.98±6.09%,而对照I组(SD-Ag组)分别为67.78±3.86%和81.67±6.30%,对照II组(壳聚糖膜组)分别为73.70±3.25%和88.60±5.21%,且经纳米银仿生敷料治疗的SD大鼠感染少,且感染程度轻;对经纳米银仿生敷料及SD-Ag治疗后的SD大鼠全血及组织中的银进行测定,发现纳米银仿生敷料组各个时点全血银的含量明显比SD-Ag组低:纳米银仿生敷料组全血银含量最高是正常水平的7倍,而SD-Ag组高达26倍。第13d纳米银仿生敷料组SD大鼠全血银含量为0.11±0.06μg/g,基本恢复正常水平(与正常组银含量0.07±0.03μg/g相比,P>0.05),而此时SD-Ag组银含量是正常全血银的5倍(P<0.01)。深II度切割伤大鼠使用纳米银仿生敷料和SD-Ag后,各组织银含量都有不同程度的升高,SD-Ag组各组织银含量都比纳米银仿生敷料组高(P<0.05),其中肝银含量两组分别为11.48±0.32μg/g和1.64±0.12μg/g。在“纳米金/壳聚糖膜”仿生功能支架上培养新生SD大鼠的角质形成细胞,与壳聚糖膜组、空白培养板组相比,“纳米金/壳聚糖膜”仿生功能支架显著提高了角质形成细胞的贴壁率。24h时,角质形成细胞在“纳米金/壳聚糖膜”仿生功能支架上的贴壁率为58.72±3.40%,在空白培养板上仅为28.61±2.23%。12h、24h时,角质形成细胞在“纳米金/壳聚糖膜”仿生功能支架上的贴壁率是最高的。而6h时,壳聚糖膜上角质形成细胞的贴壁率(33.41±1.42%)最高;6h、12h、24h角质形成细胞在该支架上的贴壁率( 25.52±3.08% , 40.34±1.12% ,58.72±3.40%)变化比较明显,而在壳聚糖膜上(33.41±1.42%,35.52±2.69%,39.45±1.32%)、空白培养板上(18.02±6.22%,26.11±2.56%,28.61±2.23%)基本上没变化。
     结论:纳米银仿生敷料无菌、无热原、无刺激、无毒性,具有促进创面愈合、缩短创面愈合周期及抗感染功能,且机体对纳米银的吸收比经典创面抗感染药SD-Ag少,减少了银中毒的可能性,提高了纳米材料的生物安全性,可用于治疗深II度创伤,在临床上具有良好的应用前景。
     “纳米金/壳聚糖膜”仿生功能支架能显著提高角质形成细胞的贴壁率,并能促进其生长,且角质形成细胞保持原有的生物活性,为组织工程化皮肤的应用研究打下了基础。
Objective: To construct two nano-sized bionic-function scaffolds, i.e.“nano-silver/chitosan film”,“nano-gold/chitosan film”bionic function scaffold; and to investigate the efficacy, bio-safety , attached ration and growth of keratinocytes on bionic-function scaffold.
     Method:“Nano-silver(gold)/chitosan film”bionic-function scaffold were fabricated by self-assembly technology.“Nano-silver /chitosan film”bionic-function scaffold was used as nano-silver bionic wound dressing due to distinct antimicrobial properties of nano-silver. The sterility, pyrogen, skin irritation, subcutaneous, systemic acute toxicity tests were performed to evaluate the bio-safety of this nano-silver wound dressing. The efficacy of this wound dressing was tested in vivo experiments on deep partial-thickness wound created on Sprague Dawley rats (SD rats). Therapeutic effect was evaluated through macroscopic observation, calculating healing ration and pathological section. In addition, the concentration of silver in SD rats’blood and other tissues (liver, brain, kidney) was determined by flame atomic absorption spectrophotometry (FAAS). And the results were compared with that of silver sulfadiazine (SD-Ag) group. Keratinocytes were cultured on“nano-gold / chitosan film”bionic-function scaffold. 6h, 12h, 24h after inoculation, the cell attached rations were calculated respectively. The cultured cells were characterized and identified by immunohistochemistry and transmissive electron microscope (TEM).
     Results: We found that this nano-silver wound dressing was sterility, no pyretogen. It had no irritation and systemic acute toxicity. 10 and 13 post scald day, the wound healing rates were 88.50±4.03% and 98.98±6.09% respectively in nano-silver dressing group. While the healing rates were 67.78±3.86% and 81.67±6.30% in silver sulfadiazine (SD-Ag) group (control group) and were 73.70±3.25%and 88.60±5.21% in chitosan film group (control group). In addition, there were few infected SD rats in nano-silver dressing group. The blood silver level in nano-silver dressing group was lower than that in SD-Ag group (p<0.01). The concentration of blood silver in nano-silver dressing group was 6 times higher than normal level, while in SD-Ag group was 25 times higher than normal level. On day 13 post-operation, the silver level in blood was 0.11±0.06μg/g, which returned normal level nearly (p>0.05, normal silver level was 0.07±0.03μg/g), in nano-silver dressing group and the silver level in SD-Ag group was 4 times higher than normal level. The concentration of tissue silver was higher than normal level in nano-silver dressing and SD-Ag group. But the silver level in tissues was higher than that in nano-silver dressing group (p<0.01). The concentration of liver silver was 11.48±0.32μg/g and 1.64±0.12μg/g in SD-Ag group and nano-silver dressing group, respectively.
     In comparison to control groups,“nano-gold/chitosan film”bionic-function scaffold could significantly (P<0.01) increase the attached ration of keratinocytes and promote their growth. 24h after inoculation, the attached rations were 58.72±3.40% and 28.61±2.23% on the scaffold and cell culture plastic, respectively. After inoculation 12h, 24h, the attached rations on the scaffold were the highest. However, the attached ration (25.52±3.08%) after inoculation 6h on the scaffold was lower than that of on chitosan film (33.41±1.42%) (P<0.05). In addition, the attached rations (25.52±3.08%, 40.34±1.12%,58.72±3.40%) after inoculation 6h, 12h, 24h of keratinocytes cultured on the scaffold changed obviously. There were nearly no change on chitosan film (33.41±1.42%, 35.52±2.69%, 39.45±1.32%) and cell culture plastic (18.02±6.22%, 26.11±2.56%, 28.61±2.23%).
     Conclusion: Nano-silver bionic wound dressing was of sterility, no- pyretogen, no irritation and systemic acute toxicity and can accelerate wound healing, and it can decrease the risk of silver poisoning. It could be used on deep partial-thickness wound with a prospect of wide-rage clinical application.
     “Nano-gold/chitosan film”bionic-function scaffold could significantly (P<0.01) increase the attached ration of keratinocytes and promote their growth. The rapidly proliferating keratinocytes, which were cultured on this scaffold, maintained their bioactivity. It was a good candidate for wound dressing in skin tissue engineering.
引文
[1]白春礼. 2002科技发展报告.中国科学院, 2002.
    [2]朱道本,王佛松.有机固体.上海科学技术出版社, 1999.
    [3]Shipway A N, Katz E, Willner I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem Phys Chem, 1(1): 2000, 18-52.
    [4]Perry Klokkevold DDS. On the horizon: Advances and new technology Biotechnology, nanotechnology, and nanomedicine. Journal of Evidence Based Dental Practice, 2(2): 2002, 175-177.
    [5]Demling R H, Leslie-DeSanti M D. The rate of re-epithelialization across meshed skin grafts is increased with exposure to silver. Burns,28(3): 2002, 264-266.
    [6]Ulkur E, Oncul O, Karagoz H, Yeniz E, et al. Comparison of silver-coated dressing(ActicoatTM), chlorhexidine acetate 0.5% (Bactigrass), and fusidic acid 2%(Fucidin) for topical antibacterialeffect in methicillin-resistant staphylococci-contaminated, full-skin thickness rat burn wounds. Burns, 31(7): 2005, 874-877.
    [7]Rustogi R, Mill J, Fraser J F, Kimble R M. The use of ActicoatTM in neonatal burns. Burns, 31(7): 2005, 878-882.
    [8]胡骁骅,张普柱,孙永华,等.纳米银抗菌医用敷料银离子吸收和临床应用.中华医学杂志, 83(24): 2003, 2178-2179.
    [9]姜会庆,汪军,胡心宝,等.纳米银敷料在烧伤创面的应用.医学研究生学报, 5: 2001, 439.
    [10]陈炯,韩春茂,余朝恒.纳米银用于烧伤患者创面后银代谢的变化.中华烧伤杂志, 20(3): 2004, 161-163.
    [11]邓敏瑞,陈燕辉.阿希米治疗宫颈糜烂60例疗效观察.中国实用妇科与产科杂志, 21(2): 2005,115-116.
    [12]Michael AA, George JV, Anthony EB, et al. Corrigendum to“Antimicrobial properties of silver-containing wound dressing: a microcalorimetric study”. International Journal of Pharmaceutics, 270(1-2): 2003, 61-68.
    [13]Katrin K, Yang W, Harald K, et al. Single molecule detection using surface enhanced Raman scattering. Phys Rev Lett, 78(9): 1997,1667-1670.
    [14]中华人民共和国卫生部药典委员会.中华人民共和国药典(二部)北京:化学工业出版社, 2005:附录XI H, 89-93.
    [15]中国标准出版社第一编辑室. GB/T16886.12-2000医疗器械生物学评价.北京:中国标准出版社, 2003:第12部:样品制备与参照样品, 191-192.
    [16]中国标准出版社第一编辑室. GB/T16175-1996医用有机硅材料生物学评价试验方法.北京:中国标准出版社, 2003:热原试验, 16-17.
    [17]中国标准出版社第一编辑室. GB/T16175-1996医用有机硅材料生物学评价试验方法.北京:中国标准出版社, 2003:原发性皮肤刺激试验, 10-11.
    [18]中国标准出版社第一编辑室. GB/T16175-1996医用有机硅材料生物学评价试验方法.北京:中国标准出版社,2003:皮内刺激试验,9-10.
    [19]中国标准出版社第一编辑室. GB/T16175-1996医用有机硅材料生物学评价试验方法.北京:中国标准出版社, 2003:急性全身毒性, 15-16.
    [20]Wright JB, Lam K, Hanson D, et al. Efficacy of topical silver against fungal burn wound pathogens. Am J Inf Cont, 27: 1999, 344-350.
    [21]Klein DG, Fritsch DE, Amin SG. Wound infection following trauma and burn injuries. Crit Care Nursing Clin NA, 7: 1995, 627-642.
    [22]Ken Dunn. The role of ActicoatTM with nanocrystalline silver in the management of burns. Burns, 30(Suppl 1): 2004, s1-s9.
    [23]Bragg PD, Rainnie DJ. The effect of silver ions on the respiratorychain of E coli. Can J Microbiol, 20: 1974, 883-889.
    [24]Cervantes C, Silver S. Metal resistance in Pseudomonas: genes and mechanisms. In: Nakazawa T, Furukawa K, HaasD, Silver S, EDITORS. Molecular Biology of Pseudomonas. Washington, DC: American Society for Microbiology, 1996, 398.
    [25]Modak SM, Fox CL. Binding of silver sulfadiazine to the cellular components of Pseudomonas aeruginosa. Biochem Pharmacol, 22: 1973, 2391-2404.
    [26]Rosenkranz HS, Rosenkranz S, Silver sulfadiazine:interaction with isolated deoxyribonucleic acid. Antimicrob Agents Chemother, 2: 1972, 373-383.
    [27]秦益民.功能性医用敷料.中国纺织出版社.2006. 220.
    [1]周宏礽,谭谦.皮肤组织工程学研究进展.中华烧伤杂志, 17(1): 2001, 56-59.
    [2]Wang TW, Huang YC, Sun JS, et al. Organotypic keratinocyte-fibroblast cocultures on a bilayer gelatin scaffold as a model of skin equivalent. Biomed Sci Instrum, 39: 2003, 523-528.
    [3]Howling GI, Dettmar PW, Goddard PA, et al. The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials, 22(22): 2001, 2959-2966.
    [4]Noh HK, Lee SW, Kim JM, et al. Electrospinning of chitin nanofibers: Degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials, 27(21): 2006, 3934-3944.
    [5]吴国选,伍津津,朱堂友,等.猪复方壳多糖组织工程皮肤替代物的构建.中国临床康复, 10(13): 2006, 67-69.
    [6]Gilbert V, Rouabhia M, Wang H, et al. Characterization and evaluation of whey protein-based biofilms as substrates for in vitro cell cultures.Biomaterials, 26(35): 2005, 7471-7480.
    [7]Min BM, Lee G, Kim SH, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials, 25(7-8): 2004, 1289-1297.
    [8]Krasna M, Planinsek F, Knezevic M, et al. Evaluation of a fibrin-based skin substitute prepared in a defined keratinocyte medium. Int J Pharm, 291(1-2): 2005, 31-37.
    [9]Amirpour ML, Ghosh P, Lackowski WM, et al. Mammalian Cell Cultures on Micropatterned Surfaces of Weak-Acid, Polyelectrolyte Hyperbranched Thin Films on Gold. Anal Chem, 73(7): 2001,1560-1566.
    [10]Gu HY, Chen Z, Sa RX, et al. The immobilization of hepatocytes on 24 nm-sized gold colloid for enhanced hepatocytes proliferation. Biomaterials, 25(17): 2004, 3445-3451.
    [11]Lin HR, Chen KS, Chen SC, Lee CH, Chiou SH, Chang TL, Wu TH. Attachment of stem cells on porous chitosan scaffold crosslinked by Na5P3O10. Mater Sci Eng C, 27: 2007, 280-284.
    [12]Rho KS, Jeong L, Lee G, et al. Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials, 27(8): 2006, 1452-1461.
    [13]Park KE, Jang SY, Lee SJ, et al. Biomimetic nanofibrous scaffolds: Preparation and characterization of chitin/silk fibroin blend nanofibers. Int J Biol Macromol, 38(3-5): 2006, 165-173.
    [14]Sun T, Jackson S, Haycock JW, et al. Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. J Biotechnol, 122(3): 2006, 372-381.
    [15]Zhang WJ, Li GX. Third-generation biosensors based on the direct electron transfer of proteins, Analytical sciences, 20: 2004, 603.
    [16]Liu YJ, Nie LH, Tao WY, et al. Amperometric study of Au-colloid function on xanthine biosensor based on xanthine oxidaseimmobilized in polypyrrole layer. Electroanalysis, 15: 2004, 1271.
    [17]Gu HY, Lu SY, Jiang QY, et al. A novel nitric oxide cellular biosensor based on red blood cells immobilized on gold nanoparticals. Analytical Letters, 39(15): 2006, 2849-2859.
    [18]Gu HY, Sa RX, Yuan SS, et al. The self-assembly, characterization of hepatocytes on nano-sized gold colloid and construction of cellular biosensor. Chemistry Letters, 32(10): 2003, 934-935.
    [19]Gu HY, Yu AM, Yuan SS, et al. Amperometric nitric oxide biosensor based on the immobilization of hemoglobin on a nanometer-sized gold colloid modified Au electrode. Analytical Letters, 35(4): 2002, 647-661.
    [20]Gu HY, Yu AM, Chen HY. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode. Journal of Electroanalytical Chemistry, 516: 2001, 119-126.
    [21]王小红,马建标,何炳林.甲壳素、壳聚糖及其衍生物的应用.功能高分子学报, 12:1999,112-197.
    [22]Muzzarelli RA, Guerrieri M, Goteri G, et al.The biocompatibility of dibutyryl chitin in the context of wound dressings. Biomaterials, 26(29): 2005, 5844-5854.
    [23]Balakrishnan B, Mohanty M, Umashankar PR, et al.Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials, 26(32): 2005, 6335-6342.
    [24]Doron A, Katz E, Willner I. Organization of Au colloids as monolayer films onto ITO glass surfaces: application of the metal colloid films as base interfaces to construct redox-active monolayers. Langmuir, 11:1995, 1313-1317.
    [1]Watt FM. Proliferation and terminal differentiation of human epidermal keratinocytes in culture. Biochem Soc Trans, 16(5): 1988, 666-668.
    [2]Kumagai N, Oshima H, Tanabe M, et al. Favorable donor site for epidermal cultivation for the treatment of burn scars with autologous cultured epithelium. Ann Plast Surg, 38(5): 1997, 506-513.
    [3]Lenoir-Viale MC, Galup C, Darmon M, et al. Epidermis reconstructed from the outer root sheath of human hair follicle. Effect of retinoic acid. Arch Dermatol Res, 285(4): 1993, 197-204.
    [4]Suzuki T, Ui K, Shioya N, et al. Mixed cultures comprising syngeneic and allogeneic mouse keratinocytes as a graftable skin substitute. Transplantation, 59(9): 1995, 1236-1241.
    [5]Tenchini ML, Ranzati C, Malcovati M. Culture techniques for human keratinocytes. Burns, 18(suppl 1): 1992, s11-s16.
    [6]苏波,赵雪莲,张仕敏,等.表皮细胞培养与移植研究-表皮细胞分离技术.中华整形烧伤外科杂志, 12(2): 1996,159-160.
    [7]苏波,俞为荣,朱世辉,等.混合培养自体与异体表皮细胞的移植方法.第二军医大学学报, 18(1): 1997, 30-31.
    [8]苏波,张素贞.大量培养表皮细胞方法的研究.中华整形烧伤外科杂志, 11(6): 1995, 433-435.
    [9]崔正军,陈壁,等. DispaseII和胰酶消化分离大鼠皮肤角朊细胞的对比研究.第四军医大学学报, 19(3): 1998, 349-350.
    [10]Walzer C, Benathan M, Frenk E. Thermolysin treatment: a new method for dermo-epidermal separation. J Invest Dermatol, 92(1): 1989, 78-81.
    [11]刘杰,王德文,崔雪梅,等.表皮细胞培养最佳条件德探索.军事医学科学院院刊, 25(4): 2001, 293-296.
    [12]欧阳安力,周燕,华平,等.胰酶对皮肤角质细胞分离和传代德影响.生物医学工程学报, 17(1): 2002, 59-62.
    [13]Van Dorp AG, Verhoeven MC, Nat-Van Der Meij TH , et al. A modifiled culture system for epidermal cells for grafting purposes: an in vitro and in vivo study. Wound Repair Regen, 7(4): 1999, 214-225.
    [14]Hybbinette S, Bostrom M, Lindberg K. Enzymatic dissociation of keratinocytes from human skin biopsies for in vitro cellpropagation. Exp Dermatol, 8(1): 1999, 30-38.
    [15]Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell, 6(3): 1975, 331-343.
    [16]汪培铭,冯光珍,孙红,等.体外人表皮细胞培养技术:不同滋养层细胞对角朊细胞生长融合的影响.中国临床康复, 8(35): 2004, 7945-7948.
    [17]Elisa Tamariz, Marsch-Moreno M, Castro-Munozledo F, et al. Frozen cultured sheets of human epidermal keratinocytes enhance healing of full-thickness wounds in mice. Cell Tissue Res, 296(3): 1999, 575-585.
    [18]Daniels JT, Kearney JN, Ingham E. Human keratinocyte isolation and cell culture:a survey of current practices in the UK. Burns, 22(1): 1996, 35-39.
    [19]Boyce ST, Ham RG. Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J Invest Dermatol, 81(suppl 11): 1983, 33s-40s.
    [20]Yuspa SH, Hawley-Nelson P, Stanley JR. Epidermal cell culture. Transplant Proc, 12(3suppl 1): 1980, 114-122.
    [21]Bernstam LI, Vaughan FL, Bemstein IA. Keratinocytes grown at the air-liquid interface. In Vitro Cell Dev Biol, 22(12): 1986, 695-705.
    [22]Horch RE, Bannasch H, Kopp J, et al. Single-cell suspensions of cultured human keratinocytes in fibrin-glue reconstitute the epidermis. Cell Transplant, 7(3): 1998, 309-317.
    [23]Presonil JE, Villeneuve PE. Automated production of cultured epidermal autografts and sub-confluent epidermal autografts in a computer controlled bioreactor. Biotechnol Bioeng, 59(6): 1998, 679-683.
    [24]Presonil JE, Kino-oka M. Computer controlled bioreactor for large scale production of cultured skin grafts. Ann N Y Acad Sci, 875: 1999, 386-397.
    [25]Hirai H, Umegaki R, Kino-oka M, et al. Characterization of cellular motions through direct observation of individual cells at early stage in anchorage-dependent culture. J Biosci Bioeng, 94(4): 2002, 351-356.
    [26]Masahiro KO, Taya M. Development of culture techniques ofkeratinocytes for skin graft production. Adv Biochem Engin/Biotechnol, 91: 2004, 135-169.
    [27]Howling GI, Dettmar PW, Goddard PA, et al. The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials, 22(22): 2001, 2959-2966.
    [28]Wang TW, Huang YC, Sun JS, et al. Organotypic keratinocyte-fibroblast cocultures on a bilayer gelatin scaffold as a model of skin equivalent. Biomed Sci Instrum, 39: 2003, 523-528.
    [29]Noh HK, Lee SW, Kim JM, et al. Electrospinning of chitin nanofibers: Degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials, 27(21): 2006, 3934-3944.
    [30]吴国选,伍津津,朱堂友,等.猪复方壳多糖组织工程皮肤替代物的构建.中国临床康复, 10(13): 2006, 67-69.
    [31]Gilbert V, Rouabhia M, Wang H, et al. Characterization and evaluation of whey protein-based biofilms as substrates for in vitro cell cultures. Biomaterials, 26(35): 2005, 7471-7480.
    [32]Min BM, Lee G, Kim SH, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials, 25(7-8): 2004, 1289-1297.
    [33]Krasna M, Planinsek F, Knezevic M, et al. Evaluation of a fibrin-based skin substitute prepared in a defined keratinocyte medium. Int J Pharm, 291(1-2): 2005, 31-37.
    [34]Mangoldt F. Dieüberh?utung von Wundfl?chen und Wundh?hlen durch Epithelausaat, eine neue Methode derTransplantation. Deut Med Wschr, 21: 1895, 798-799.
    [35]Pels-Leusden F. Die Anwendung des Spalthautlappens in der Chirurgie. Deut Med Wschr, 31: 1905, 99-102.
    [36]Billingham R, Reynolds J. Transplantation studies on sheet of pureepidermal epithelium and of epidermal cell suspensions. Br J Plast Surg, 23: 1952, 25-32.
    [37]Altmeppen J, Hansen E, Bonnlander GL, et al. Composition and characteristics of an autologous thrombocyte gel. J Surg Res, 117(2): 2004, 202-207.
    [38]Archambault M, Yaar M, Gilchrest BA. Keratinocytes and fibroblasts in a human skin equivalent model enhance melanocyte survival and melanin synthesis after ultraviolet irradiation. J Invest Dermatol, 104(5): 1995, 859-867.
    [39]Pellegrini G, Ranno R, Stracuzzi G, et al. The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation, 68(6): 1999, 868-879.
    [40]Green H, Kehinde O, Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci USA, 76(11): 1979, 5665-5668.
    [41]O’Conner NE, Mulliken JB, Bunks SG, et al. Grafting of burns with cultured epithelium prepared formautogous epidemal cell. Lancet, 1(8211): 1981, 75-78.
    [42]夏照帆.永久性皮肤替代物研究进展和现状.解放军医学杂志, 28(5): 2003, 389-391.
    [43]Compton CC, Butler CE, Yannas IV, et al. Organized skin structure is regenerated in vivo from collagen-GAG matrices seeded with autologous keratinocytes. J Invest Dermatol, 110(6): 1998, 908-916.
    [44]Fabre JW. Epidermal allografts. Immunol Lett, 29: 1999, 161-165.
    [45]Horch RE, Debus M, Wagner G, et al. Cultured human keratinocytes on type I collagen membranes to reconstitute the epidermis. Tissue Eng, 6(1): 2000, 53-67.
    [46]Ronfard V, Rives JM, Neveux Y, et al. Long-term regeneration of humanepidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix. Transplantation, 70(11): 2000, 1588-1598.
    [47]夏照帆,肖仕初,杨珺,等.混合表皮细胞与异种脱细胞真皮构建复合皮的移植和转归研究.解放军医学杂志, 28(5): 2003, 402.
    [48]Larochelle F, Ross G, Rouabhia M. Permanent skin replacement using engineered epidermis containing fewer than 5% syngeneic keratinocytes. Lab Invest, 78(9): 1998, 1089-1099.
    [49]肖仕初,夏照帆,刘旺.异种无细胞真皮活性复合皮的制备.现代康复, 4(12): 2000, 1844-1845.
    [50]苏波,赵雪莲,张仕敏.表皮细胞培养与移植.中华整形烧伤外科杂志, 12(2): 1996,159-160.
    [51]Minuth WW, Sittinger M, Kloth S. Tissue engineering: generation of differentiated artificial tissues for biomedical applications. Cell Tissue Res, 29(1): 1998, 1-11.
    [52]Kirsner RS, Falanga V, Eaglstein WH. The biology of skin grafts, skin grafts as pharmacologic agents. Arch Dermatol, 129(4): 1993, 481-483.
    [53]Renneekampff HO, Hansbrough JF, Kiessing V, et al. Wound closure with human keratinocytes cultured on a polyurethane dressing overlaid on a cultured human dermal replacement. Surg, 12: 1996,16-22.
    [54]Rouabhia M, German L, Bergeron J, et al. Allogeneic-syngeneic cultured epithelia: A successful therapeutic option for skin regeneration. Transplantation, 59(9): 1995, 1229-1235.
    [55]Larochelle F, Ross G,Rouabhia M, Permanent skin replacement using engineered epidermis containing fewer than 5% syngeneic keratinocytes. Lab Inv, 78(9): 1998, 1089-1098.
    [56]Lafrance ML, Artastrong DW, Novel living skin replacement biotherapy approach for wounded skintissues. Tissue Engineering, 5(2): 1999, 153-170.
    [57]焦向阳, Kopp J,刑新,等.新型表皮细胞生物膜移植物的研究.中国修复重建外科杂志, 13: 1999, 105-108.
    [59]Horch RE, Debus M, Wagner G, et al. Cultured human keratinocytes on type I collagen membranes to reconnstitute the epidermis. Tissue Engineering, 6(1): 2000, 53-67.
    [59]Wang TW, Sun JS, Wu HC, et al. The effect of gelatin–chondroitin sulfate–hyaluronic acid skin substitute on wound healing in SCID mice. Biomaterials, 27(33): 2006, 5689-5697.
    [60]Hefton JM, Ambershon JB, Bizes DG, et al. Loss of HLADR expression by human epidermal cells after growth in culture. J Invest Dermal, 83(1): 1984, 48-50.
    [61]Amirpour ML, Ghosh P, Lackowski WM, et al. Mammalian Cell Cultures on Micropatterned Surfaces of Weak-Acid, Polyelectrolyte Hyperbranched Thin Films on Gold. Anal Chem, 73(7): 2001, 1560-1566.
    [62]Gu HY, Chen Z, Sa RX, et al. The immobilization of hepatocytes on 24 nm-sized gold colloid for enhanced hepatocytes proliferation. Biomaterials, 25(17): 2004, 3445-3451.
    [63]Rho KS, Jeong L, Lee G, et al. Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials, 27(8): 2006, 1452-1461.
    [64]Park KE, Jang SY, Lee SJ, et al. Biomimetic nanofibrous scaffolds: Preparation and characterization of chitin/silk fibroin blend nanofibers. Int J Biol Macromol, 38(3-5): 2006, 165-173.
    [65]Sun T, Jackson S, Haycock JW, et al. Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. J Biotechnol, 122(3): 2006, 372-381.
    [66]张杰,刘伟,曹宜林.角质干细胞及其在皮肤组织工程中的应用前景.中国实用美容整形外科杂志, 15(1): 2004,40-43.
    [67]任少强,黄跃生,等.人表皮干细胞的分离和鉴定.第三军医大学学报, 24(11): 2002, 1336-1339.
    [68]李建福,付小兵,等.表皮干细胞体外分离与培养.解放军医学杂志, 27(5): 2002, 386-387.
    [69]董蕊,金岩,刘源,等.人表皮干细胞在不同培养基中生长状态的观察及其生物学性状的初步探讨.中国修复重建外科杂志, 19(4): 2005, 314-317.
    [70]Xie JL, Li TZ, Qi SH, et al. A study of using tissue-engineered skin reconstructed by candidate epidermal stem cells to cover the mice nude with full-thickness skin defect. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2006, In Press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700