基于前馈控制的舰载光电跟瞄关键技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
舰载光电跟踪系统是集图像处理、信号处理、控制技术、精密光学等技术于一体的用于对目标进行捕获、跟踪和瞄准的舰载综合光电系统。舰载光电跟踪系统在舰载光电对抗、海上精确测量、舰载机起降引导等方面具有举足轻重的作用。舰载光电跟踪系统与地基光电跟踪系统相比面临着更严峻的挑战。舰船在水域中航行时会受到波浪、风向等复杂因素的影响产生晃动,光电跟踪系统与舰船平台刚性连接,会随着舰船做相同的晃动。很大程度上增大了捕获跟踪瞄准目标的难度。另外,随着科技的发展,目标的运动有高速化、强机动化的发展趋势,这对光电跟踪系统的跟踪能力也提出了更高的要求。
     本文旨在提高舰载光电跟瞄系统的跟踪精度和瞄准精度。依照系统数据处理流程,分别对姿态数据的时间对准,捷联惯导设备与光电跟踪设备之间的初装误差标定,船体摇摆对跟踪的扰动,目标运动对跟踪的影响及船体摇摆引起的视场旋转给瞄准带来的误差等方面进行了研究。
     首先,本文对光电跟踪设备的伺服系统进行了简单的介绍,验证了按输入进行前馈可以大大提高系统的跟踪精度。并在此基础上分析了严重影响舰载光电跟踪系统跟踪精度的三大因素:前端多传感器数据时间不同步、船摇及目标运动引起的跟踪误差和船摇引起的视场旋转。
     其次,分析了前端数据对准的重要性,介绍了常用的数据对准方法。引入四元数作为姿态描述的工具。根据用以描述姿态的四元数的物理意义,提出了模型参数球矢插值法用来对姿态四元数进行数据时间对准,较传统的插值方法更能体现姿态四元数的物理意义,插值结果更符合姿态实际变化的规律。同时提出了在捷联惯导系统自身标校完成的前提下,利用最小二乘原理对平台系和设备系之间的关系矩阵进行标定。
     再次,分析了舰载光电跟踪设备观测目标的特点,利用坐标变换的方法推导了船体姿态对目标在设备系中位置的扰动模型。在此基础上,对远距离弱机动目标和近距离强机动目标两种情形,分析了系统前馈量的主要影响因素。根据舰载光电跟踪设备观测目标的特点,对照常用的滤波算法,提出了一种限定阈值间接观测滤波方法,该方法通过对观测量进行了一定的处理,对滤波过程中的系统状态量中的一阶导数进行约束,使得滤波结果中对一阶导数的估计更加准确,进而对系统状态估计的误差也相应减小。
     最后,分析了视场旋转对舰载光电跟踪设备瞄准的影响。引入了透视投影坐标系,定义了视场旋转角,推导了在一定船体姿态和设备指向下视场旋转角的大小。并对结果进行了误差源及误差传递关系进行了分析,并通过仿真验证了结果的有效性。
Shipboard Optoelectronic Tracking System, mainly used for target acquisition,tracking and pointing, is a set of optoelectronic devices which adopted manytechnologies like image processing, signal processing, control technology andprecision optics. Shipboard Optoelectronic Tracking System has a pivotal role inshipboard optoelectronic countermeasure, at-sea accurate measurement, carrier-basedaircraft landing guidance and so on. However, the naval ship sailing on the sea wouldbe wobbled that was a result of effected by many complex factors like wave and wind.The optoelectronic tracking system would do the same shaking with the naval shipbecause of it is a rigid connection between them, which would largely increase thedifficulty of target acquisition, tracking and pointing. So the Shipboard OptoelectronicTracking System need to solve more technological problems comparing with theground-based optoelectronic tracking system. On the other hand, with the developmentof science and technology, there is a general tendency that the targets would be inhigh-speed and strong mechanization, which would put forward higher requirements ofacquisition, tracking and pointing to the photoelectric tracking system.
     This paper aimed to improve the tracking and pointing accuracy of ShipboardOptoelectronic Tracking System. According to the process procedure of system data,the time-aligned of posture data, the initial installation error between SINS (StrapdownInertial Navigation System) and optoelectronic tracking system and the influence onthe tracking caused by the shaking of naval ship, the motion of target and the rotatingof field had been studied in this paper.
     Firstly, this paper gave a brief introduction about the servo system ofoptoelectronic tracking system and verified the fact that it could greatly improve thetracking accuracy adopting feed-forward of input. And on this basis, the three factorsincluding the time non-synchronous of front-end multi-sensor data time, the trackingerror of the shaking of naval ship and the motion of target, the rotating of field effectedby the shaking of naval ship, that seriously affect the tracking accuracy ofoptoelectronic tracking system were analyzed.
     Secondly, this paper analyzed the importance of the front-end data alignment andintroduced the common method of data alignment. The quaternion as a tool to describeattitude was introduced and the model of parameter sphere vector interpolation method,which used to align the time of posture data of attitude quaternion, was put forward onthe basis of the physical significance of quaternion used to describe the attitude. Themodel could better reflect the physical significance of posture quaternion and be morein line with the result of actual situation comparing with the common interpolationmethod. Meanwhile, the method that using the least square method principle tocalibrate the relationshipmatrix between the platform system and the device systemwas put forward in the premise of the SINS self-calibration.
     Then, the characteristics of target observed by shipboard optoelectronic trackingequipment were analyzed and the model of target’s position in the device systemeffected by the posture of naval ship was derived. On this basis, the two casesincluding remote and little maneuvering target and close quarters and largemaneuvering target was analyzed the mainly influence of system’s feed-forwardquantity. According to the characteristics of target observed by shipboardoptoelectronic tracking equipment, a selected threshold indirect measurement filteringmethod, which could decrease the state estimation error of system byprocessing theobserved quantity and constrainting the first-order derivative of system state quantityin thefiltering process that would make the first-order derivative’s estimation offiltering result more accurate, was put forward contrasting the common filteringalgorithm.
     Finally, the impact of the view field rotation on pointing of shipboardoptoelectronic tracking devices was analyzed. The rotation angle of the view fieldunder a certain posture of naval ship and device pointing was derived with introducinga perspective projection coordinates and defining the rotation angle of view field. Theresults of error sources and transfer relationship is analyzed and validated bysimulation results.
引文
[1]乔健,邵帅.舰载光电告警技术的现状和发展趋势[J].光机电信息,2010,(11):7-11.
    [2]王秋平,左玲.光电跟踪伺服系统的位置超前抑制法[J].弹箭与制导学报,2012,(01):7-8+12.
    [3]顾浩,康凤举,韩亮,等.典型反舰导弹运动建模与仿真技术[J].系统仿真学报,2006,(08):2067-2069+2077.
    [4] D. Poullin, M. Flecheux. Passive3D tracking of low altitude targets using DVB (SFNBroadcasters)[J]. Aerospace and Electronic Systems Magazine, IEEE,2012,27(11):36-41.
    [5] P. H. Leong, S. Arulampalam, T. A. Lamahewa, et al. A Gaussian-Sum Based Cubature KalmanFilter for Bearings-Only Tracking[J]. Ieee Transactions on Aerospace and Electronic Systems,2013,49(2):1161-1176.
    [6] S. Yoon, S. Park, Y. Kim. Circular Motion Guidance Law for Coordinated Standoff Tracking of aMoving Target[J]. Ieee Transactions on Aerospace and Electronic Systems,2013,49(4):2440-2462.
    [7] J. Lan, X. R. Li. Equivalent-Model Augmentation for Variable-Structure Multiple-ModelEstimation[J]. Ieee Transactions on Aerospace and Electronic Systems,2013,49(4):2615-2630.
    [8] N. Nadarajah, R. Tharmarasa, M. McDonald, et al. IMM Forward Filtering and BackwardSmoothing for Maneuvering Target Tracking[J]. Ieee Transactions on Aerospace and ElectronicSystems,2012,48(3):2673-2678.
    [9] S. Schoenecker, P. Willett, Y. Bar-Shalom. The ML-PMHT Multistatic Tracker for SharplyManeuvering Targets[J]. Aerospace and Electronic Systems, IEEE Transactions on,2013,49(4):2235-2249.
    [10] S. S. Blackman. Multiple hypothesis tracking for multiple target tracking[J]. Aerospace andElectronic Systems Magazine, IEEE,2004,19(1):5-18.
    [11] J. Lan, X. R. Li, V. P. Jilkov, et al. Second-Order Markov Chain Based Multiple-Model Algorithmfor Maneuvering Target Tracking[J]. Ieee Transactions on Aerospace and Electronic Systems,2013,49(1):3-19.
    [12] N. Nabaa, R. H. Bishop. Solution to a multisensor tracking problem with sensor registrationerrors[J]. Aerospace and Electronic Systems, IEEE Transactions on,1999,35(1):354-363.
    [13]郑岩,谭庆昌,王树范,等.车载火控系统自动跟踪的卡尔曼滤波[J].红外与激光工程,2010,(02):346-351.
    [14]王凤英.船载电视跟踪仪自稳定问题研究[D].大连:大连海事大学,2005.
    [15]李嘉全,丁策,孔德杰,等.基于速度信号的扰动观测器及在光电稳定平台的应用[J].光学精密工程,2011,(05):998-1004.
    [16]邹东明,刘栖山,陈长青,等.舰载光电跟踪设备视轴稳定分析[J].兵工自动化,2003,(01):15-19.
    [17]郭立东.舰载激光武器稳定平台控制技术研究[D].哈尔滨:哈尔滨工程大学,2011.
    [18]罗护,范大鹏,张智勇,等.两轴陀螺稳定系统中陀螺安装的几种方法[J].兵工学报,2005,(03):426-428.
    [19]姬伟,李奇.陀螺稳定平台视轴稳定系统自适应模糊PID控制[J].航空学报,2007,(01):191-195.
    [20] D. Musicki, T. L. Song. Track Initialization: Prior Target Velocity and Acceleration Moments[J].Ieee Transactions on Aerospace and Electronic Systems,2013,49(1):665-670.
    [21]高策,乔彦峰.光电经纬仪测量误差的实时修正[J].光学精密工程,2007,(06):846-851.
    [22]温熙森,陈循,唐丙阳.机械系统动态分析理论与应用[M].长沙:国防科技大学出版社,1998.
    [23]李焱,陈涛,曹立华,等.舰载光电设备跟踪掠海目标的控制[J].光学精密工程,2010,(04):935-942.
    [24]陈娟,耿爱辉,吴绍勇.脱靶量前馈补偿光电跟踪伺服系统的跟踪精度[J].长春工业大学学报(自然科学版),2007,(04):391-393.
    [25]姬伟.陀螺稳定光电跟踪平台伺服控制系统研究[D].南京:东南大学,2006.
    [26]姜志华.基于激光扫描的堆料体积测量系统研究与设计[D].武汉:华中科技大学,2011.
    [27] J. H. Kwon, E. H. Song, I. J. Ha.6Degree-of-Freedom Motion Estimation of a Moving Targetusing Monocular Image Sequences[J]. Ieee Transactions on Aerospace and Electronic Systems,2013,49(4):2818-2827.
    [28] M. Bernaschi, A. Di Lallo, A. Farina, et al. Use of a Graphics Processing Unit for Passive RadarSignal and Data Processing[J]. Ieee Aerospace and Electronic Systems Magazine,2012,27(10):52-59.
    [29]王小军,李殿璞,赵阳,等.舰载三轴雷达波束稳定跟踪的研究[J].哈尔滨工程大学学报,2002,(01):58-63.
    [30]张智永.光电稳定伺服机构的关键测控问题研究[D].长沙:国防科学技术大学,2006.
    [31]顾文锦.反舰导弹的过载控制[J].弹箭与制导学报,2002,(01):14-18.
    [32]王小旭.非线性SPKF滤波算法研究及其在组合导航中的应用[D].哈尔滨:哈尔滨工程大学,2010.
    [33]周晓尧,范大鹏,张智永,等.光电伺服控制系统多回路内模控制器分析与设计[J].红外与激光工程,2011,(10):2020-2027.
    [34]马旭辉,郭强,赵灵琳.基于UKF滤波的近地卫星自主组合导航方法研究[J].测绘与空间地理信息,2011,(05):177-179.
    [35]周晓尧,范大鹏,张智永,等.基于模糊加权EKF的车载光电桅杆姿态估计算法[J].红外与激光工程,2011,(08):1569-1575.
    [36]方强,马杰,毕运波,等.基于扰动观测器的电动负载模拟器控制系统设计[J].浙江大学学报(工学版),2009,(11):1958-1964.
    [37]李英,葛文奇,王绍彬,等.稳定平台的自适应逆控制[J].光学精密工程,2009,(11):2744-2749.
    [38]胡贞,姜会林,佟首峰,等.空间激光通信终端ATP技术与系统研究[J].兵工学报,2011,(06):752-757.
    [39]陈维义,王树宗,李树山.舰载光电跟踪系统的虚拟仿真系统研究[J].系统仿真学报,2002,(12):1647-1648+1651.
    [40]顾文锦,赵红超,王凤莲,等.反舰导弹的模糊变结构控制设计[J].系统仿真学报,2005,(04):944-946.
    [41]刘丽丽.反舰导弹攻击模式探讨[J].上海航天,1999,(03):45-49.
    [42]陈娟.伺服系统低速特性与抖动补偿研究[D].长春:中国科学院长春光学精密机械与物理研究所,2001.
    [43]丁科,黄永梅,马佳光,等.抑制光束抖动的快速反射镜复合控制[J].光学精密工程,2011,(09):1991-1998.
    [44]汪渤,石永生,宫德晶,等.姿态稳定用双轴陀螺仪[J].北京理工大学学报,2002,(03):390-392.
    [45]王晖.两轴瞄准稳定系统最优实现分析[D].西安:西安电子科技大学,2009.
    [46]王瑞双.基于VxWorks的猎雷声纳稳定平台数字控制系统研究[D].哈尔滨:哈尔滨工程大学,2009.
    [47] P. J. Kennedy, R. L. Kennedy. Direct versus indirect line of sight (LOS) stabilization[J]. ControlSystems Technology, IEEE Transactions on,2003,11(1):3-15.
    [48]王连明.机载光电平台的稳定与跟踪伺服控制技术研究[D].长春:中国科学院研究生院(长春光学精密机械与物理研究所),2002.
    [49]贾沛璋.跟踪飞机机动的自适应滤波方法[J].航空学报,1990,(09):456-464.
    [50]李恒年,李济生,黄永宣.轨道机动过程中推力加速度的在线最小方差估计[J].空间科学学报,2002,(04):357-362.
    [51]陈小飞.航天器大范围轨道机动方法与策略研究[D].长沙:国防科学技术大学,2005.
    [52]严仁达.机动飞机的发展前景[J].飞机设计,2003,(03):14-20.
    [53]陈海霞,赵猷肄,董军章.基于测角信息的机动目标轨迹预测研究[J].光电技术应用,2009,(04):6-9+20.
    [54] X. R. Li, V. P. Jilkov. Survey of maneuvering target tracking. Part I. Dynamic models[J].Aerospace and Electronic Systems, IEEE Transactions on,2003,39(4):1333-1364.
    [55]张海洋,苏秀琴,郝伟,等.舰载光电经纬仪预测跟踪技术研究[J].光子学报,2008,(09):1878-1882.
    [56]董云峰,苏建敏.利用小波分析识别空间目标的轨道机动[J].宇航学报,2004,(02):213-218.
    [57]王瑞琪,王光辉,朱兴邦,等.目标机动对反舰导弹目标捕捉概率的影响[J].海军航空工程学院学报,2007,(05):581-583.
    [58]秦帅.遗传算法在航天器轨道机动中的应用研究[D].哈尔滨:哈尔滨工业大学,2007.
    [59] R. Kristiansen, P. J. Nicklasson, J. T. Gravdahl. Satellite, Attitude Control by Quaternion-BasedBackstepping[J]. Ieee Transactions on Control Systems Technology,2009,17(1):227-232.
    [60]宋高顺,王昌明,奚芳华,等.基于EKF载波跟踪环路的INS辅助性能分析[J].测试技术学报,2012,(04):318-323.
    [61] R. A. Singer. Estimating Optimal Tracking Filter Performance for Manned ManeuveringTargets[J]. Aerospace and Electronic Systems, IEEE Transactions on,1970, AES-6(4):473-483.
    [62] X. R. Li, V. P. Jilkov. A survey of maneuvering target tracking, part VIc: approximate nonlineardensity filtering in discrete time[M]//A survey of maneuvering target tracking, part VIc: approximatenonlinear density filtering in discrete time.8393:83930V-83930V-83912.
    [63] X. R. Li, V. P. Jilkov. Survey of Maneuvering Target Tracking. Part II: Motion Models of Ballisticand Space Targets[J]. Aerospace and Electronic Systems, IEEE Transactions on,2010,46(1):96-119.
    [64] X. R. Li, V. P. Jilkov. Survey of maneuvering target tracking. Part V. Multiple-model methods[J].Aerospace and Electronic Systems, IEEE Transactions on,2005,41(4):1255-1321.
    [65] X. R. Li, V. P. Jilkov. Survey of maneuvering target tracking: III. Measurement models[C]//Survey of maneuvering target tracking: III. Measurement models.4473:423-446.
    [66] X. R. Li, V. P. Jilkov. A survey of maneuvering target tracking-part VIa: density-based exactnonlinear filtering[C]//A survey of maneuvering target tracking-part VIa: density-based exactnonlinear filtering.7698:76981D-76981D-76912.
    [67] X. R. Li, V. P. Jilkov. A survey of maneuvering target tracking-part VIb: approximate nonlineardensity filtering in mixed time[C]//A survey of maneuvering target tracking-part VIb: approximatenonlinear density filtering in mixed time.7698:76981E-76981E-76912.
    [68] R. A. Singer. Estimating optimal tracking filter performance for manned maneuvering targets[J].Ieee Transactions on Aerospace and Electronic Systems,1970, AES6(4):473-&.
    [69] G. A. Watson, W. D. Blair. Imm algorithm for tracking targets that maneuver through coordinatedturns[M]. Orlando,1992.
    [70] N. Nabaa, R. H. Bishop. Validation and comparison of coordinated turn aircraft maneuvermodels[J]. Ieee Transactions on Aerospace and Electronic Systems,2000,36(1):250-259.
    [71] Y. Z. Chang, S. C. Chuang, Z. R. Tsai, et al. Adaptive Inverse Control of a TemperatureRegulation System with Feedforward [C].2012Ieee International Conference on Fuzzy Systems.2012.
    [72] Y. Z. Chang, J. F. Hou, Z. R. Tsai. Adaptive Neuron-Like Control of Time-Delay SystemsEnhanced with Feedforward and Supervisory Strategies[J]. Mathematical Problems in Engineering,2013.
    [73] F. Y. Chen, B. Jiang, C. G. Jiang. Direct Adaptive Control of Faulty UAVs via QuantumFeedforward and Fuzzy Feedback [M]//ZHAO H. Mechanical and Electronics Engineering Iii, Pts1-5.2012:1973-1977.
    [74] W. S. Chen, L. C. Jiao, J. S. Wu. Globally stable adaptive robust tracking control using RBFneural networks as feedforward compensators[J]. Neural Computing&Applications,2012,21(2):351-363.
    [75] C. H. Chung, M. S. Chen. A robust adaptive feedforward control in repetitive control design forlinear systems[J]. Automatica,2012,48(1):183-190.
    [76] M. B. Delghavi, A. Yazdani. An Adaptive Feedforward Compensation for Stability Enhancementin Droop-Controlled Inverter-Based Microgrids[J]. Ieee Transactions on Power Delivery,2011,26(3):1764-1773.
    [77] Z. H. Deng, H. G. Wang, G. Y. Chen. Blind adaptive preprocessing to multichannel feedforwardactive noise control system[J]. Iet Signal Processing,2013,7(6):461-470.
    [78] H. Ismail, N. Ishak, M. Tajjudin, et al. Adaptive Feedforward Zero Phase Error Tracking Controlwith Model Reference for High Precision X-Y Table[M]. Kuala Lumpur,2012.
    [79] H. Iwamoto, N. Tanaka, S. G. Hill. Adaptive feedforward control of a rectangular panel using awave filter constructed with point sensors[J]. Journal of Sound and Vibration,2011,330(11):2401-2418.
    [80] S. Kang, W. Kim, H. J. Kim, et al. Adaptive feedforward control of ionic polymer metalcomposites with disturbance cancellation[J]. Journal of Mechanical Science and Technology,2012,26(1):205-212.
    [81] I. D. Landau, M. Alma, T. B. Airimitoaie. Adaptive feedforward compensation algorithms foractive vibration control with mechanical coupling[J]. Automatica,2011,47(10):2185-2196.
    [82] Y. Pasco, O. Robin, P. Belanger, et al. Multi-input multi-output feedforward control ofmulti-harmonic gearbox vibrations using parallel adaptive notch filters in the principal componentspace[J]. Journal of Sound and Vibration,2011,330(22):5230-5244.
    [83] T. Ruppel, S. H. Dong, F. Rooms, et al. Feedforward Control of Deformable Membrane Mirrorsfor Adaptive Optics[J]. Ieee Transactions on Control Systems Technology,2013,21(3):579-589.
    [84] R. Siddha, A. F. Gilbert, K. Natarajan. Frequency domain tuning approach for adaptivefeedforward control using lead-lag compensators[J]. Canadian Journal of Chemical Engineering,2012,90(3):703-711.
    [85] S. Yabui, A. Okuyama, M. Kobayashi, et al. Optimization of adaptive feedforward repeatablerun-out cancellation for positioning control system of hard disk drives[J]. MicrosystemTechnologies-Micro-and Nanosystems-Information Storage and Processing Systems,2012,18(9-10):1703-1709.
    [86] M. Zhu, H. G. Wang, G. Y. Chen, et al. A Two-Stage Adaptive Algorithm in the FrequencyDomain for a Multichannel Feedforward Active Noise Control System[J]. International Journal ofAcoustics and Vibration,2013,18(4):148-154.
    [87] I. Mizumoto, T. Takagi, K. Yamanaka, et al. Parallel Feedforward Compensator Design and ASPRbased Adaptive Output Feedback Control for a Time-delay System [C].2013American ControlConference.2013:4909-4914.
    [88] N. O. Perez-Arancibia, J. P. Whitney, R. J. Wood. Lift Force Control of Flapping-WingMicrorobots Using Adaptive Feedforward Schemes[J]. Ieee-Asme Transactions on Mechatronics,2013,18(1):155-168.
    [89] H. Y. Pu, W. C. Jia, X. D. Chen, et al. Sliding Mode Control with Adaptive FeedforwardCompensator for Ultra-Precision Active Vibration Isolation[M].Suzhou,2013.
    [90] T. Takagi, K. Minehara, I. Mizumoto, et al. Parallel Feedforward Compensator Design via FRITwith T-S Fuzzy Like Model for Discrete-Time Adaptive Control Systems[M]. Akita,2012.
    [91] J. Wu, D. Zhao, W. S. Chen, et al. Globally Stable Adaptive Tracking Control of aWheeledMobile Robot Using RBF Neural Network as Feedforward Compensator [C].201325th ChineseControl and Decision Conference.2013:1888-1893.
    [92] J. H. Kim, S. Zhao, G. H. Kim, et al. Rolling Bearing-Suspended Spindle Run-out Control UsingRepetitive Control and Adaptive Feedforward Cancellation[J]. International Journal of PrecisionEngineering and Manufacturing,2013,14(12):2171-2178.
    [93] L. M. Baade, E. T. Peachey. Device for wirelessly tracking location of asset e.g. shipboard cargocontainer in trucking industry, has controller generating tamper alert information based on switch unitchanging from one state to another second state, US2013127617-A1; WO2013078291-A1[P/OL].://DIIDW:2013H96143.
    [94] H.-H. Wang, W.-H. Liu, S.-Y. Zhang, et al. Analysis of tracking error source for shipboardphotoelectric tracking system[J]. Electronics Optics&Control,2007,14(2):100-103.
    [95] B. Kimiaghalam, A. Homaifar, M. Bikdash, et al. Feedforward control law for a shipboard cranewith Maryland Rigging system[J]. Journal of Vibration and Control,2002,8(2):159-188.
    [96]彭震,周洲,任刚.舰船运动对某无人机发射安全的影响研究[J].飞行力学,2009,(04):22-24+31.
    [97] D. Allen, S. M. Bennett, J. Brunner, et al. A low cost fiber optic gyro for land navigation[M]. SanDiego,1994.
    [98]王建立,吉桐伯,高昕,等.加速度滞后补偿提高光电跟踪系统跟踪精度的方法[J].光学精密工程,2005,(06):681-685.
    [99] D. R. Bostick, J. M. Miletich, ieee. The NAV100(TM) a new paradigm in small, high accuracy,inertial navigation systems[M]. Monterey,2004.
    [100] D. Kubrak, C. Macabiau, M. Monnerat, et al. Real Time Pedestrian Navigation System[M]. FtWorth,2006.
    [101] A. M. Mehta, K. S. J. Pister. Warpwing: A complete open source control platform for miniaturerobots[J].2010IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2010),2010:5169-5174.
    [102] P. Sinha, K. R. Stiehl, E. S. Huo, et al. Design of a modular, compact, multi-role remotelyoperated vehicle for sheltered water operations[J]. Oceans2007,2007:1843-1849.
    [103]Q. Zhang, L. Wang, S. Zhou, et al. Strap-down Inertial Navigation System Applied in Estimatingthe Track of Mobile Robot Based on Multiple-sensor [C].201325th Chinese Control and DecisionConference.2013:3215-3218.
    [104]L. Agnihotri, M. Barbieri, N. Dimitrova. Alignment system for intrinsic and extrinsic audio-visualdata has correlator connected to intrinsic and extrinsic content analyzers, and arranged to correlateintrinsic and extrinsic classifications, providing multi-source data structure, WO2007004110-A2;WO2007004110-A3[P/OL].://DIIDW:2007253549.
    [105]Z. Guo, C. Ding, D. Meng. Method for realizing multi-source data precise time alignment byglobal positioning system second pulse signal of e.g. X86type system of computer system, involvesexecuting steps on multiple computers to realize precise time alignment, CN102193497-A [P/OL].://DIIDW:2011N39181.
    [106]M. Li, Z. Lou, X. Zhang, et al. Current power grid dual time scale delay estimation based sectionraw data alignment method, involves obtaining aligned section data delay correction, and generatingdata report of each measuring point, CN102361353-A [P/OL].://DIIDW:2012C91356.
    [107]钟佑明,金涛,秦树人.希尔伯特-黄变换中的一种新包络线算法[J].数据采集与处理,2005,(01):13-17.
    [108]李跃武,金英姬.等价形式的永恒性原理——皮考克的符号代数[J].西北大学学报(自然科学版),2008,(01):157-160.
    [109]谢荣,鲁海燕.基于四元数的船舶运动姿态仿真研究[J].中国造船,2011,(04):147-152.
    [110]钱伟行.捷联惯导与组合导航系统高精度初始对准技术研究[D].南京:南京航空航天大学,2010.
    [111]曹通.光纤陀螺捷联惯导系统在线对准及标定技术研究[D].哈尔滨:哈尔滨工程大学,2012.
    [112]张义.舰船捷联惯性系统初始对准技术研究[D].哈尔滨:哈尔滨工程大学,2012.
    [113]王晓明.光学实时水平基准测量方法研究[D].长春:中国科学院研究生院(长春光学精密机械与物理研究所),2013.
    [114] K. w. Kim, K. Washimi, Y. Nishiura, et al. Digital output fiber optic gyroscope[J]. SumitomoElectric Technical Review,1994,(38):16-21.
    [115] D. T. Knight. Rapid development of tightly-coupled GPS/INS systems[J]. Ieee Aerospace andElectronic Systems Magazine,1997,12(2):14-18.
    [116] P. Sinha, K. R. Stiehl, E. S. Huo, et al. Design of a modular, compact, multi-role remotelyoperated vehicle for sheltered water operations [M].2007Oceans, Vols1-5.2007:1844-1850.
    [117]王辉华,刘文化,张世英,等.舰载光电跟踪的船摇扰动复合补偿控制[J].海军工程大学学报,2008,2(20):81-84.
    [118]李嘉全,丁策,孔德杰,等.基于速度信号的扰动观测器及字光电稳定平台的应用[J].光学精密工程,2011,19(5):998-1004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700