地下变电站通风空调系统的研究及节能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市供电设施是城市基础设施的重要组成部分,随着城市化进程的不断加速,建设全地下变电站是大势所趋。静安(世博)地下变电站是国内首座500kV全地下变电站,站内设备种类多、散热量大,设备安全运行保证要求高,然而目前与此类大型地下变电站通风空调系统设计有关的标准不健全,也缺乏相应的实践经验和参考工程。因此以世博变电站为对象,通过研究其通风空调系统,找到最优化的设计参数,既符合节能的目标,也可以为类似后续工程提供技术支持。
     本文分地下和地上两个部分来研究变电站的通风空调系统。地下部分首先以发热量最大的220kV主变压器室为研究对象,采用CFD软件根据所测得实际通风数据,对变压器室内的流场和温度场进行数值模拟,湍流模拟采用Realizable k-ε模型,温度项采用Boussinesq假设。模拟结果与实测温度数据得到了很好的吻合,由此验证了本文数值模拟的可靠性。在此基础上通过改变通风方式、送风口高度、风口有效面积等要素,得到节能优化的通风方案。并以此模拟方法研究了其它设备间(电抗器、站用变室、接地变室)的最佳空调送风参数。地上部分为大空间模拟,主要研究排风的扩散路径及其对进风温度的影响,并对室外环境进行简化处理,模拟无外界因素干扰和有室外风(风速、风向)干扰下进风温度的状况,通过尝试各种方法(增大风井距离、排风口高度、地面种植植被等)来降低进风温度受影响的程度。
     地下部分模拟结果:变压器室内通风管分居在机器对角两侧的送风方式、送风口中心高度在1.5-1.7m之间、送风口有效风速在4.56-5.91m/s之间即风口有效面积在1.4-1.08m2范围最有利于新风的扩散和降温。35kV的电抗器室最佳送风温度为30℃、通风量为21523m3/h,其他设备间送风参数见表4-4。
     地上部分模拟结果:排风在无外界因素干扰下的扩散不影响进风温度;室外风速在0-5m/s之间时,进风温度受影响的程度有所不同,1m/s时进风温升最大,不同风向下(东南风、南风、西南风)排风的扩散状况不同但对进风温度影响程度差别不大;提高排风口高度、种植树木等方式不能改变排风扩散路径,而增大风井间距、降低地面热力状况的方式可以有效降低进风温度受影响的程度,因此在进排风井所在区域种植草皮并且种植有一定间隔的树木(高大、叶面积密度大)与草坪相结合遮挡太阳辐射,尽可能的降低地面温度是解决问题的有效途径。
Power supply facilities is an important part of the infrastructure of cities. With the accelerated urbanization process, it is a general trend to construct underground substation. Jing An (EXPO) underground substation is the first 500kV whole underground substation in china, with many species equipments, a great capacity of heat emission, and a high requirement of guarantee for safe running of the equipments. However, now the standards related to the design of ventilation and air conditioning system for such large underground substation are not perfect, the corresponding practice experience and the reference project also lacks. Therefore, by setting the EXPO substation as the object of the study, through investigating on its ventilation and air conditioning system, find the optimized design parameters, not only be in accord with energy conservation target, but also can provide technical support for similar follow-up project.
     This article is divided into two parts of underground and overground to study ventilation and air conditioning system. For the underground part, first take the 220kV main transformer room for example, according to the actual measured ventilation data, simulate the flow field and temperature field of the transformer room, adopt Realizable k-εturbulence model and Boussinesq assumption. The simulation results tallies with the actual temperature data, which validated the reliability of numerical simulation. On this basis, by changing the ventilation mode, air vent height, air vent effective area etc, we can get an energy saving optimized scheme. The simulation method was used for other devices (such as reactor, station transformer room, grounding transformer room) to find the best supply parameters. Overground part adopt large space simulate, mainly research on the diffusion path of the air exhaust and the influence to the temperature of inlet air, simplified the outdoor environment, simulated the temperature of inlet air on condition that no external factors and have disturbance from outdoor wind (wind speed, wind direction), and tried various methods (increase air shaft distance, air outlets height, ground vegetation etc) to reduce the inlet air temperature affected degree.
     The simulation results of underground part:the most favorable mode for fresh air diffusion and cooling includes several aspects:separate the ventilating pipe in diagonal on either side of the machine, the height of air supply outlet is between 1.5-1.7m, the effective wind speed is between 4.56-5.91m/s. The optimal supply air temperature of reactor room 35kV is 30℃, the ventilation capacity is 21523m3, air supply parameters of other devices room see table 4-4.
     The simulation results of overground part:diffusion of air outlet without disturb from external factors will not affect the inlet air temperature, when the outdoor wind speed is b etween 0-5m/s, the air inlet temperature is affected differently, when the speed is lm/s the temperature rise maximized, the diffusion of air outlet is differed with the different wi nddirection (southeast, south, southwest), but this have little difference on the inlet air tem perature affected degree. By improving the air outlet height, planting trees, etc which cann ot change the outlet air diffusion path, but the way of increase air shaft distance, reduce ground thermal condition can effectively reduce the inlet air temperature affected degree. T herefore planted grass in air inlet area and trees have a certain space (tall, leaf area big d ensity), combined with the lawn can block out the solar radiation, reduce ground temperat ure as low as possible is an effective way to solve the problem.
引文
[1]秦杰.城市地下与地上变电站造价分析[J].输变电工程与环境,2005,2:155-157.
    [2]周金海.变电站设计中绿色环保概念的引入[J].上海电力,2002,5:12-14.
    [3]徐智勇,田毅,赵桂兰.地下变电站建设现状分析[J].山西建筑,2008,34(6):205-206.
    [4]房岭锋,陈承,李钧.500kV地下变电站深入市中心综述[J].上海电力,2007,5:503-505.
    [5]赵阜东,陈保健,焦冠然.地下建筑可持续性设计方案—地下建筑自然通风设计研究[J].地下空间与工程学报,2006,2(2):532-538.
    [6]薛润平.室内变电站设计中存在的问题及解决措施探讨[J].中国新技术新产品,2008,12:90
    [7]张芝琪,庄涛.上海市人民广场地下变电站设计回顾[J].水利水电技术,2000,31(1):49-53
    [8]朱蓉,成永涛.西大望220kV变电站暖通设计[J].暖通空调,2001,31(1):56-59.
    [9]金立军,韩露.变压器室对流换热的研究[J].变压器,1999,36(5):16-19.
    [10]Nanstell M W and Grief R. Natural convection in undivided and partially divided rectangular enclosures. Journal of Heat Transfer,1981,(103):623-629.
    [11]Keith H W. Laminar natural convection in a partially divided cavity. Numerical Mathod in Thermal Problems,1983.
    [12]彭金能.变压器室通风探讨[J].电网建设,2005,4:14-15.
    [13]陈华山.干式变压器室的通风计算[J].变压器,2000,37(12):14-15.
    [14]宋岩,钟如君,孟繁宇.超大空间气流组织CFD模拟[J].黑龙江科技学院学报,2004,14(5):293-296.
    [15]贾键,侯晓军,贺志学.流体动力学分析技术在电机通风散热中的应用[J].电机与控制应用,2006,33(7):25-28.
    [16]张耀华,李汛.地下箱式变电站内通风换热的模拟计算[J].科学技术与工程,2006,33(7):25-28.
    [17]曹健伟,陈淑玲,邸亚涛等.置换通风空调室内气流分布的数值模拟[J].制冷与空调,2006,6(6):101-104.
    [18]刘国华,王怡,陈靖.建筑室内通风模拟研究[J].西安航空技术高等专科学校学报,2006,24(5):32-35.
    [19]刘艳红.山西农业大学新建职工住宅楼室内流场的CFD分析[J].山西农业大学学报,2008,28(2):237-240.
    [20]封志平,蔡亮.不同通风方式下学生宿舍气流速度场数值模拟[J].建筑热能通风空调2008,27(3):53-56.
    [21]龚光彩,李凌风等.剧场座椅送风气流组织数值模拟[J].建筑热能通风空调2008,27(3):6-9.
    [22]赵民,罗昔联等.送风参数对地板送风房间内温度梯度影响的数值模拟及分析[J].制冷与空调2005,5(5):39-42.
    [23]陈会平,张勇等.微型车室内三维空气流动与传热的数值模拟[J].制冷与空调2005,5(6):47-50.
    [24]Jianming He,Charles CS Song. Evaluation of Pedestrian Winds in Urban Area by Numerical Approach. J Wind Eng Indus Aerodyne.1999,81:295-309.
    [25]Ferreira AD, Sousa ACM, Vie gas DX. Pediction of Building Interference Effects on Pedestrian Level Comfort. J Wind Eng Indus Aerodyne.2002,90:305-315.
    [26]陈建国,钱炜祺,符松.蓝旗营住宅楼群风环境数值模拟[J].清华大学学报.2003,3(8):1074-1078.
    [27]郁有礼.高层建筑物扰流风场的数值模拟研究.西安建筑科技大学硕士论文2005
    [28]任东峰,田苗,肖晓妮等.建筑物周围风绕流水平运动的数值模拟[J].工业建筑.2006,36:131-133
    [29]Jan M.Herbert, Glenn T. Johnson,, A.John Arnfield.. Modeling the Thermal Climate in City Canyons. Environmental Modeling&Software.1998,(13):267-277.
    [30]抠利,袁丽丽,谢平等.不同风向下城市街区风环境的模拟[J].洁净与空调技术.2008,4:21-25.
    [31]魏建明,王晓云等.应用Fluent软件模拟城市小区流场特性[J],Fluent第二届中国用户大会.191-195.
    [32]张晓伟.住宅小区污染物扩散的数值模拟及分析.哈尔滨工业大学硕士论文2007.
    [33]张爱社,张陵,周锦雄.两个相邻建筑物周围风环境的数值模拟[J].计算力学学报.2003,20(5):553-558.
    [34]王辉,陈水福,唐锦春.建筑风场模拟计算的边界处理[J].科技通报.2006,22(5):661-675.
    [35]McNaughtonKG, Efects of windbreaks on turbulent transport and microclimate. Agric Ecosyst Environ,1988,22(23):17-39.
    [36]Heisler GM, Dewalle DR. Effects of windbreak structure on wind flow. Agric Ecosyst Environ.1988,22(23):41-69.
    [37]Wang H, Takle ES, Shen J. Shelterbelts and windbreaks:mathematical modeling and computer simulations of turbulent flows. Annu Rev Fluid Mech.2001,33:549-586.
    [38]Cleugh HA. Effects of windbreaks on airflow, microclimates and crop yields. Agrofor Syst.1998,41:55-84.
    [39]Santiago JL, Martin F, Cuerva A, Bezdenejnykh N. A Experimental and numerical study of wind flow behind windbreaks. Atmos Environ.2007,41:6406-6420.
    [40]Bourdin P, Wilson JD.Windbreak aerodynamics:is computational fluid dynamics reliable?. Boundary-Layer Meteorol.2008,126:181-208.
    [41]Andrey Sogachev, Oleg Panferov. Modification of two-equation models to account for plant drag. Boundary-Layer Meteorol.2006,121:229-266.
    [42]Ronald M. Cionco, Richard Ellefsen. High Resolution Urban Morphology Date for Urban Wind Flow Modeling. Atmospheric Environment.1998,12:7-17.
    [43]Thomas Bouvet, Benjamin Loubet, John D. Filtering of windborne particles by a natural windbreak. Boundary-Layer Meteorol.2007 (123):481-509.
    [44]A. Melese Endalewa, M. Hertoga. Modelling airflow within model plant canopies using an integrated approach. Computers and Electronics in Agriculture.2009 (66):9-24.
    [45]A. Melese Endalewa, M. Hertoga. CFD modelling and wind tunnel validation of airflow through plant canopies using 3D canopy architecture. International Journal of Heat and Fluid Flow.2009 (30):356-368.
    [46]Moshe Rosenfeld, Gil Marom, Arieh Bitan. Numerical Simulation of the Airflow Across Trees in a Windbreak. Boundary-Layer Meteorol.2010.
    [47]F.D. Molina-Aizl, D.L. Valeral, A.J. A Wind Tunnel Study of Airflow through Horticultural Crops:Determination of the Drag Coefficient.2006,93(4),447-457.
    [48]Borong Lin, Xiaofeng Li, Yingxin Zhu, Youguo Qin. Numerical simulation studies of the different vegetation patterns'effects on outdoor pedestrian thermal comfort. Journal of Wind Engineering and Industrial Aerodynamics.2008,96:1707-1718.
    [49]申晓瑜,李湛东.园林植物叶面积指数研究进展[J].吉林林业科技.2007,36(1):18-22.
    [50]谭一波,赵仲辉.叶面积指数的主要测定办法[J].林业调查规划.2008,33(3):45-48.
    [51]常学向,赵文智,赵爱芳.黑河中游二白杨叶面积指数动态变化及其与耗水量的关系[J].冰川冻土.2006,28(1):85-89.
    [52]李勇,刘志友,安亦然.介绍计算流体力学通用软件-Fluent水动力学研究与进展[J],2001,16(2):424-425.
    [53]刘霞,葛新锋.FLUENT软件及其在我国的应用[J],能源研究与利用.2003,23(3):36-38.
    [54]赵琴,王倩.Fluent在暖通空调领域中的应用[J],制冷与空调,2003(1):15-18.
    [55]赵琴,Fluent软件的技术特点及其在暖通空调领域的[J],应用计算机应用.2003,23(12):424-425.
    [56]王福军.计算流体力学分析-CFD软件原理与应用.北京:清华大学出版社,2004,201-219.
    [57]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998年,第三版.
    [58]B.E.Launder,D.B.Spalding. Lectures in Mathematical Models of Turbulence. Academic Press. London,1972.
    [59]S V Patankar, D B Spalding, A calculation processure for heat,mass and momentum transfer in three-dimensional parabolic flows. In J Heat Mass Transfer.1972,15:1787-1806.
    [60]赵彬,李先庭,彦启森.百叶风口送风射流的数值模拟[J].暖通空调,2001,31(6):86-89.
    [61]Nielsen P V. Description of supply openings in numerical models for room air distribution [J].ASHRAE Transaction,1992:963-971.
    [62]Helmut E.Feustel.COMIS-An International Multizone Airflows and Contaminant Transport Model.Environment Energy Technologies Division.1998,8.
    [63]邓天福等.小区风环境数值模拟方法[J].绿色建筑大会选登.2008.
    [64]林波荣.绿化对室外热环境影响的研究.清华大学硕士论文2004.
    [65]R.H.Shaw and I.Seginer. The dissipation of turbulence in plant canopies,7th Symp. American Meteorological Society on Turbulence and diffusion,Boulder,CO,1985.
    [66]李亮,李晓峰等.用带源项k-ε两方程湍流模型模拟树冠流[J].清华大学学报.2006,46(6):753-756.
    [67]Guan D, Zhang Y, Zhu T. A wind-tunnel study of windbreak drag. Agric For Meteorol.2003,118:75-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700