诱骗寡核苷酸技术靶向阻断STAT3对卵巢癌生物学行为影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     Janus蛋白酪氨酸激酶/信号转导和转录激活因子(Janus kinases/signal transducer and activator of transcription, JAK/STAT)通路是细胞因子信息从细胞外向细胞核传递的重要信号转导通路,其中信号转导和转录激活因子3(Signal Transducer and Activator of Transcription 3, STAT3)是该信号通路中一个至关重要的转录因子。正常信号转导中STAT3蛋白的激活快速而短暂,STAT3持续激活与细胞的恶性转化进程密切相关。目前,在多种肿瘤细胞和组织中检测到STAT3过度激活,如乳腺癌、卵巢癌、头颈部鳞状细胞癌、前列腺癌、恶性黑色素瘤、多发性骨髓瘤、淋巴瘤、脑瘤、非小细胞肺癌和各种白血病等。STAT3过度激活后诱导与细胞增殖、分化、生长、凋亡密切相关的基因的异常高表达,通过各种途径促进细胞增殖、恶性转化、阻碍细胞凋亡,表现出致癌作用。目前STAT3已被定义为癌基因,其在恶性肿瘤发生发展中的作用备受关注,成为肿瘤基因治疗的新靶点。
     卵巢癌是妇科恶性肿瘤中发病率占第三位,死亡率占第一位的恶性疾病。卵巢癌起病隐匿,进展快,缺乏有效的早期诊断方法,一经发现往往已有盆腹腔的播散和转移,尤其盆腹腔的转移发生早,范围广,是卵巢癌患者预后不良的主要原因。卵巢癌的发生是一个多步骤、多因素参与的复杂的生物学过程,涉及多个癌基因的激活和抑癌基因的失活。因此,深入研究卵巢癌发生发展、侵袭转移的机制,从分子水平上寻找合理有效的治疗靶点,是卵巢癌基因治疗研究的目的之一。
     以STAT3为靶点进行卵巢癌基因治疗的依据:(1)STAT3在卵巢癌细胞系及卵巢癌患者组织标本中存在过度激活现象,且STAT3在人类卵巢癌发生发展以及侵袭转移过程中发挥重要作用,STAT3过度激活与卵巢癌恶性进展及不良预后相关。(2)STAT3是多个致癌性通路汇聚的焦点,以STAT3为靶点治疗效应强大。(3)肿瘤细胞中持续激活的STAT3是导致肿瘤免疫逃逸的重大因素,以STAT3为靶点激活抗肿瘤免疫应答对肿瘤治疗起到事半功倍的作用。(4)转录因子诱骗技术是调控持续活化STAT3的有效方法。(5)腹腔注射或腹腔灌洗是STAT3诱骗寡核苷酸制剂(STAT3 decoy ODN)合理的给药途径。
     由于诱骗寡核苷酸技术成本低,特异性高,合成的寡核苷酸片段相对较稳定,该技术已在人类多种肿瘤如肺癌、胰腺癌、头颈部鳞癌等研究中得到应用。然而STAT3 decoy ODN在卵巢癌中的研究较少,尤其是STAT3 decoy ODN在活体内生物学作用的研究更为少见。本课题主要探讨诱骗寡核苷酸技术靶向调控STAT3信号通路对人卵巢癌细胞生长增殖、侵袭活性的影响及相关机制,研究诱骗寡核苷酸技术靶向调控STAT3信号通路对人卵巢癌裸鼠皮下种植瘤治疗作用及其机制。
     第一部分诱骗寡核苷酸靶向阻断STAT3对人卵巢癌细胞生长抑制作用及机制研究
     研究目的:
     1.检测阳离子脂质体将STAT3 decoy ODN转入卵巢癌细胞的转染效率。
     2.探讨STAT3 decoy ODN对体外培养卵巢癌细胞系生长、凋亡及细胞周期的影响。
     3.观察STAT3 decoy ODN对体外培养卵巢癌细胞系紫杉醇敏感性的影响。
     研究方法:
     1.应用阳离子脂质体LipofectamineTM 2000介导STAT3 decoy ODN的转染,流式细胞术及荧光显微镜检测FITC标记STAT3 decoy ODN在卵巢癌细胞中的转染效率。
     2.采用四甲基偶氮唑盐(Dimethylthiazol-2-yl-diphenyl tetrazalium bromide, MTT)比色法,检测不同浓度STAT3 decoy ODN(0,12.5,25,50nmol/L)转染卵巢癌细胞SKOV3和OVCAR3后在不同时间点(24h,48h,72h)的生长抑制率(growth inhibition rate, GIR); MTT比色法检测STAT3 decoy ODN对SKOV3、OVCAR3细胞紫杉醇敏感性的影响。
     3. Annexin V-FITC双染法检测:STAT3 decoy ODN对SKOV3、OVCAR3细胞凋亡的影响;流式细胞术(FCM)检测:STAT3 decoy ODN对SKOV3、OVCAR3细胞周期的影响。
     4. Western blot法检测:STAT3 decoy ODN对卵巢癌细胞SKOV3、OVCAR3中相关蛋白P-gp、pAkt、caspase-3表达的影响。
     结果:
     1. STAT3 decoy ODN在卵巢癌细胞中的转染效率:应用阳离子脂质体LipofectamineTM 2000介导的DNA转染技术,能够将STAT3 decoy ODN高效转导入人卵巢癌细胞中;当转染浓度为25nmol/L时,SKOV3和OVCAR3细胞的转染效率分别为81.6±3.66%和79.5±3.15%。
     2. STAT3 decoy ODN对卵巢癌细胞生长抑制作用:STAT3 decoy ODN 25nmol/L转染24h、48h、72h,SKOV3细胞的生长抑制率分别为25.87±3.02%、35.78±2.98%、44.65±3.21%,OVCAR3细胞的生长抑制率分别为20.17±3.01%、34.78±3.35%、40.67±4.23%;在两种细胞系中,与空白对照组及阴性对照组相比,decoy组生长抑制率均显著增高,差异具有统计学意义(P<0.05)。
     3. STAT3 decoy ODN对卵巢癌细胞凋亡的影响:STAT3 decoy ODN 25 nmol/L转染卵巢癌细胞24h,转染组与空白对照组SKOV3细胞凋亡比例分别为27.76±5.06%、5.32±0.98%,差异具有显著性(P<0.05);转染组与空白对照组OVCAR3细胞凋亡比例分别为27.04±4.89%、6.34±1.20%,差异具有显著性(P<0.05); STAT3 decoy ODN转染卵巢癌细胞后可使细胞凋亡比例显著增加,差异具有统计学意义(P<0.05)。
     4. STAT3 decoy ODN对卵巢癌细胞周期的影响:STAT3 decoy ODN 25 nmol/L转染细胞后,转染组与空白对照组SKOV3细胞中G0/G1期细胞所占比例分别为64.38±3.10%、50.71±1.32%,差异具有统计学意义(P<0.05);转染组与空白对照组SKOV3细胞中S期细胞所占比例分别为26.30±1.50%、37.85±2.31%,差异具有统计学意义(P<0.05);转染组与空白对照组OVCAR3细胞中G0/G1期细胞所占比例分别为63.84±3.31%、47.23±1.32%,差异具有统计学意义(P<0.05);转染组与空白对照组OVCAR3细胞中S期细胞所占比例分别为27.72±1.92%、39.62±1.62%,差异具有统计学意义(P<0.05)。统计学分析结果显示,STAT3 decoy ODN转染SKOV3、OVCAR3细胞后,G0/G1期细胞所占比例显著增加,S期细胞所占比例显著减少,差异具有统计学意义(P<0.05)。
     5. STAT3 decoy ODN对卵巢癌细胞紫杉醇敏感性的影响:STAT3 decoy ODN25nmol/L和紫杉醇2μmol/L单独或联合作用于卵巢癌细胞24h。在SKOV3细胞中,STAT3 decoy ODN、紫杉醇单独作用时细胞生长抑制率分别为24.86±2.87%、37.80±3.64%,两者联合作用时细胞生长抑制率为63.45±3.82%。在OVCAR3细胞中,STAT3 decoy ODN、紫杉醇单独作用时细胞生长抑制率分别为34.67±3.12%、48.67±3.78%,两者联合作用时细胞生长抑制率为65.23±3.90%。统计学分析显示,STAT3 decoy ODN和紫杉醇联合作用产生的生长抑制率显著高于单独作用产生的抑制率(P<0.05)。
     6. STAT3 decoy ODN对卵巢癌细胞中相关蛋白表达的影响:与空白对照组和阴性对照组相比,STAT3 decoy ODN转染组SKOV3和OVCAR3细胞中P-gp、磷酸化Akt(pAkt)的表达水平明显下调,凋亡相关蛋白caspase-3表达显著增加。
     结论:
     1.阳离子脂质体LipofectamineTM 2000介导的STAT3 decoy ODN能够高效转导入人卵巢癌细胞中,STAT3 decoy ODN能够有效抑制人卵巢癌细胞的生长,诱导卵巢癌细胞凋亡,抑制细胞周期从G0/G1期向S转化,并增加卵巢癌细胞对紫杉醇的敏感性。
     2. STAT3 decoy ODN发挥作用的机制与降调卵巢癌细胞中P-gp、pAkt的表达,以及增加细胞中凋亡相关caspase-3活性裂解片段的表达有关。
     第二部分诱骗寡核苷酸靶向阻断STAT3对人卵巢癌细胞侵袭力影响的研究
     研究目的:探讨STAT3 decoy ODN对卵巢癌细胞侵袭力的影响及其机制。
     研究方法:
     1.应用肿瘤细胞侵袭实验(Transwell侵袭实验)检测转染STAT3 decoy ODN对卵巢癌细胞SKOV3、OVCAR3体外侵袭力的影响。
     2.应用Western blot法检测STAT3 decoy ODN对卵巢癌细胞SKOV3、OVCAR3
     侵袭相关蛋白EMMPRIN、MMP-2、MMP-9表达水平的影响。
     结果:
     1. STAT3 decoy ODN对卵巢癌细胞侵袭力的影响:STAT3 decoy ODN 25nmol/L转染卵巢癌细胞SKOV3和OVCAR3 24h后,Transwell侵袭实验结果显示,在SKOV3细胞中,空白对照组、阴性对照组、STAT3 decoy ODN转染组细胞每高倍视野穿过人工基底膜的细胞数目分别为68±7.30个、70.2±5.0个、36±4.33个;在OVCAR3细胞中,空白对照组、阴性对照组、STAT3 decoy ODN转染组细胞每高倍视野穿过人工基底膜的细胞数目分别为73.2+7.4个、69.4±5.6个、39±4.2个。统计学分析显示,与空白对照组和阴性对照组相比,STAT3 decoy ODN转染组卵巢癌细胞穿过人工基底膜的数目显著减少,差异具有统计学意义(P<0.05)。
     2. STAT3 decoy ODN对卵巢癌细胞侵袭相关蛋白表达水平的影响:Western blot检测结果显示,STAT3 decoy ODN转染卵巢癌细胞SKOV3、OVCAR3后,细胞中EMMPRIN、MMP-2、MMP-9蛋白的表达水平受抑制。
     结论:
     1. STAT3 decoy ODN能够明显抑制卵巢癌细胞的体外侵袭力。
     2. STAT3 decoy ODN发挥作用的机制与降调卵巢癌细胞中侵袭相关蛋白EMMPRIN、MMP-2、MMP-9的表达有关。
     第三部分诱骗寡核苷酸靶向阻断STAT3对人卵巢癌裸鼠种植瘤治疗作用的研究
     研究目的:
     1.建立人卵巢癌裸鼠皮下种植瘤模型,探讨STAT3 decoy ODN对荷瘤裸鼠的体内抗瘤效应。
     2.探讨STAT3 decoy ODN体内抗瘤效应的机制及对裸鼠正常器官的影响。
     研究方法:
     1.皮下注射法将常规培养的SKOV3细胞(浓度:2×107/ml)接种到裸鼠右侧胸部皮下,裸鼠在无菌SPF级的动物培养设备中饲养。
     2.接种后约12天,待皮下肿瘤结节明显触到,将裸鼠随机分成三组,分别给予STAT3 decoy ODN、STAT3 decoy ODN、PBS隔日瘤周注射,连续处理30天;通过监测肿瘤体积及治疗结束后瘤体重量,评价其对荷瘤裸鼠的抗瘤效应。
     3.治疗结束后,取肿瘤组织及裸鼠心、肝、肾组织,制作石蜡切片,HE染色镜检。
     4. TUNEL法检测:STAT3 decoy ODN在体内对人卵巢癌细胞的凋亡诱导作用。
     5.应用Western blot法检测STAT3 decoy ODN对裸鼠肿瘤组织中凋亡相关蛋白及肿瘤转移相关蛋白表达水平的影响。
     结果:
     1. STAT3 decoy ODN对裸鼠体内肿瘤生长抑制作用:人卵巢癌细胞SKOV3可以在裸鼠体内成瘤,成瘤时间为10-12天。成瘤后将裸鼠随机分成三组,隔日进行瘤周注射,连续处理30天。治疗结束后,PBS组、scramble组、decoy组三组裸鼠肿瘤平均体积分别为620±68mm3、540±55mm3、226±35mm3。数据统计分析显示,decoy组的肿瘤体积与scramble、PBS两个对照组肿瘤体积有显著性差异(P<0.05),scramble组和PBS组之间的差异无统计学意义。治疗结束后,摘除并称量三组裸鼠肿瘤组织,计算每组裸鼠肿瘤组织的平均重量,结果显示,STAT3 decoy ODN治疗组肿瘤组织的重量比两个对照组肿瘤组织的重量明显降低(P<0.05)。
     2. STAT3 decoy ODN能够诱导裸鼠体内肿瘤细胞凋亡:TUNEL法检测结果显示,decoy组每高倍视野中凋亡细胞数为43±7个,scramble对照组每高倍视野中凋亡细胞数为11±3个,PBS对照组每高倍视野中凋亡细胞数为13±4个。Decoy治疗组与另外两个对照组相比,凋亡细胞数目显著增多,差异具有统计学意义(P<0.05)。
     3. STAT3 decoy ODN对肿瘤组织及裸鼠心、肝、肾组织的影响:裸鼠肿瘤组织切片HE染色显示,肿瘤细胞核大、深染,可见核分裂相;肿瘤组织内部有坏死灶。裸鼠心、肾组织HE染色未见异常;但在STAT3 decoy ODN治疗组的裸鼠中有1只裸鼠肝脏标本中出现部分肝小叶结构异常,存在炎症和坏死。
     4. STAT3 decoy ODN在体内对肿瘤侵袭相关蛋白及凋亡相关蛋白表达水平的影响:Western blot检测结果显示,与PBS治疗组和STAT3 scramble decoy治疗组相比,STAT3 decoy ODN治疗组卵巢癌组织中侵袭转移相关蛋白MMP-2、MMP-9、抗凋亡蛋白Bcl-2的表达受抑制,而凋亡相关蛋白caspase-3活性片段的表达水平增加。
     结论:
     1.人卵巢癌细胞SKOV3可以在裸鼠体内成瘤,成瘤时间为10.12天。STAT3 decoy ODN可以显著抑制裸鼠体内种植瘤的生长,并对肿瘤细胞具有凋亡诱导作用。
     2. STAT3 decoy ODN在体内发挥作用的机制与调控肿瘤侵袭转移相关蛋白及凋亡相关蛋白的表达有关。
Background
     JAK/STAT (Janus kinases/signal transducer and activator of transcription) signaling pathway is an important pathway by which cytokines can transfer information from surface of the cell into nucleus. The signal transducers and activators of transcription 3 (STAT3) is a crucial member in the JAK/STAT signaling pathway. The activation of STAT3 is quickly and transient during the normal signal transduction. However, the constitutive activation of STAT3 is closely related to malignant transformation. Previous studies have found that STAT3 is constitutively activated in many different tumor cell lines and primary tumors, including breast, ovarian, head and neck cancer, prostate cancer, melanoma, leukemia, and so on. The functions of activated STAT3 proteins vary, including cell growth, differentiation, development, apoptosis, and angiogenesis. STAT3 has been recognized as an oncogene, and researchers have paid close attention to the effects of STAT3 on malignant tumor. Therefore, STAT3 may be a potential molecular target for cancer treatment.
     Epithelial ovarian cancer (EOC) is the most common malignant tumors in women. EOC has been described as a silent killer because when it is first diagnosed the disease always has aggravation, local invasion or distant metastasis. As a result, it is a disease with high mortality, and the survival rate within 5 years is only about 15%-30%. The development of ovarian cancer is multi-steps, multi-factors, and complicated biological progress, which involves many oncogenes activation and tumor suppressor genes inactivation. It is essential to make further study on mechanisms of carcinogenesis, development, and metastasis of ovarian cancer.
     The advantages of targeting STAT3 for ovarian cancer treatment are as follows: (1) STAT3 plays important roles in carcinogenesis, development, and metastasis of ovarian cancer. Previous studies have found that STAT3 is constitutively activated in ovarian carcinoma cell lines and clinical specimens, and there is evidence indicating that STAT3 phosphorylation is associated with aggressive epithelial ovarian carcinomas. Recent studies reported that STAT3 activation in tumors may be associated with metastasis and poor prognosis. (2) STAT3 is the focus of multiple cancerigenic pathways, so there will be strong therapeutic effects by targeting STAT3. (3) Constitutively activated STAT3 inhibits the expression of mediators necessary for immune activation against tumour cells. Furthermore, STAT3 activity promotes the production of immunosuppressive factors that activate STAT3 in diverse immune-cell subsets, altering gene-expression programmes and, thereby, restraining anti-tumour immune responses. Consequently, STAT3 has emerged as a promising target for cancer immunotherapy. (4) The decoy oligodeoxynucleotides (decoy ODN) technology, which has high affinity for a target transcription factor (TF) and is a kind of "one-drug, multiple-target" strategy. This technology has advantages of specificity, simplicity, and effectiveness. (5) Intraperitoneal injection or peritoneal lavage is reasonable administration route of STAT3 decoy ODN.
     The decoy ODN technology is a novel tool, which has advantages of low cost, specificity, simplicity, and effectiveness, moreover, the sequence of decoy ODN is relatively stable. This technology has been successfully used to inhibit STAT3 pathway activation in squamous cell carcinoma of the head and neck (SCCHN) pancreatic cancer, and in human lung cancer. However, the study of STAT3 decoy ODN on ovarian cancer is limited, especially the biological effects of STAT3 decoy ODN in vivo is limited, too. This research aims to study the inhibiting potency and mechanisms of STAT3 decoy ODN on ovarian cancer cells proliferation, growth, and invasive power; to evaluate the anti-tumor effects and study the mechanisms of STAT3 decoy ODN on xenografted nude mice.
     Part I Growth Inhibition of Human Ovarian Cancer Cells by Blocking Activated STAT3 with Decoy ODN in Vitro
     Objective:
     1. To assay the transfection efficiency of STAT3 decoy ODN with LipofectamineTM 2000 in ovarian cancer cells.
     2. To study the influence of STAT3 decoy ODN on cell proliferation, apoptosis and cell cycle of ovarian cancer cells in vitro.
     3. To study the influence of STAT3 decoy ODN on chemotherapy sensitivity of ovarian cancer cells in vitro.
     Methods:
     1. STAT3 decoy ODN transfection was carried out with Lipofectamine TM 2000. Flow cytometry and fluorescence microscope were used to assay the transfection efficiency.
     2. MTT assay were used to evaluate the cell growth inhibition rate (GIR) induced by different doses of STAT3 decoy ODN at different time in SKOV3 and OVCAR3 cells. MTT assay were used to evaluate chemotherapy sensitivity to paclitaxel in SKOV3/decoy and OVCAR3/decoy cells.
     3. Annexin V/PI dual staining assay was used to examine cell apoptosis after transfection of STAT3 decoy ODN into SKOV3 and OVCAR3 cells. Flow cytometry (FCM) was used to investigate the cell cycle distribution after transfection of STAT3 decoy ODN into SKOV3 and OVCAR3 cells.
     4. Western blot analysis was used to examine the protein expression level of P-gp、pAkt、caspase-3 after transfection of STAT3 decoy ODN into SKOV3 and OVCAR3 cells.
     Results:
     1. The transfection efficiency of STAT3 decoy ODN:STAT3 decoy ODN could be efficiently transfected into ovarian cancer cells LipofectamineTM 2000. Flow cytometry assay showed the ODN was efficiently introduced into SKOV3 and OVCAR3 cells in a dose-dependent manner. The transfection rate was 81.6±3.66% for SKOV3 and 79.5±3.15% for OVCAR3 at the dosage of 25nmol/L.
     2. The growth inhibition of STAT3 decoy ODN on ovarian cancer cells:With transfection of 25nM STAT3 decoy ODN for 24h,48h, and 72h, the growth inhibition rate (GIR) was respectively 25.87±3.02%,35.78±2.98%, and 44.65±3.21% in SKOV3 cells; and GIR was respectively 20.17±3.01%, 34.78±3.35%, and 40.67±4.23% in OVCAR3 cells. GIR induced by STAT3 decoy ODN was significantly increased, and the difference had statistic significance (P<0.05).
     3. STAT3 decoy ODN could induce apoptosis of SKOV3 and OVCAR3 cells:With transfection of 25nM STAT3 decoy ODN, the percentages of early apoptotic cells and later apoptotic cells were both increased. The percentage of apoptotic cells was significantly increased from 5.32%±0.98% to 27.76%±5.06% (P<0.05) in SKOV3 cells. The percentage of apoptotic cells was also significantly increased from 6.34%±1.20% to 27.04%±4.89%(P<0.05) in SKOV3 cells. However, the difference of apoptotic percentage induced by STAT3 scramble ODN had no statistic significance.
     4. STAT3 decoy ODN could induce cell cycle arrest in SKOV3 and OVCAR3 cells: With transfection of 25nM STAT3 decoy ODN, the percentage of GO/G1 phase in SKOV3 cells was increased from 50.71±1.32% to 64.38±3.10%, and the percentage of S phase in SKOV3 cells was decreased from 37.85±2.31% to 26.30±1.50%. With transfection of 25nM STAT3 decoy ODN, the percentage of GO/G1 phase in OVCAR3 cells was increased from 47.23±0.95% to 63.84±3.31%, and the percentage of S phase in OVCAR3 cells was decreased from 39.62±1.62% to 27.72±1.92%. Results showed that with transfection of STAT3 decoy ODN, the percentages of G0/G1 phase were significantly increased and the percentages of S phase were significantly decreased, the difference had statistic significance (P<0.05).
     5. STAT3 decoy ODN could enhance the chemotherapy sensitivity of ovarian cancer cells:In SKOV3 cells, the growth inhibit rate (GIR) was respectively 24.86±2.87% and 37.80±3.64% with single treatment of STAT3 decoy ODN (25nmol/L) or paclitaxel (2μmol/L), while the GIR was 63.45±3.82% with combined treatment of STAT3 decoy ODN and paclitaxel. In 0VCAR3 cells, the growth inhibit rate (GIR) was respectively 34.67±3.12% and 48.67±3.78% with single treatment of STAT3 decoy ODN (25nmol/L) or paclitaxel (2μmol/L), while the GIR was 65.23±3.90% with combined treatment of STAT3 decoy ODN and paclitaxel. Results showed that GIR caused by combined treatment of STAT3 decoy ODN and paclitaxel was significantly higher than single treatment, the difference had statistic significance (P<O.05).
     6. STAT3 decoy ODN could regulate the expression of proteins:In contrast to vacant and scramble groups, the expression of protein P-gp and pAkt in decoy groups of cells were decreased, and the expression of protein caspase-3 was up-regulated.
     Conclusions:
     1. STAT3 decoy ODN can be efficiently transfected into ovarian cancer cells by using LipofectamineTM 2000. STAT3 decoy ODN can inhibit cell growth, induce cell apoptosis and cell cycle arrest, and enhance the sensitivity to paclitaxel for ovarian cancer cells.
     2. The mechanism of STAT3 decoy ODN is to down-regulate the protein expression of P-gp, pAkt, and up-regulate the expression of caspase-3 in ovarian cancer cells.
     PartⅡSTAT3 decoy ODN Inhibits the Invasive Power of Ovarian Cancer Cells in vitro
     Objective:
     1. To study the influence of STAT3 decoy ODN on invasive power of ovarian cancer cells in vitro. To study the mechanisms of STAT3 decoy ODN influencing the invasive power of ovarian cancer cells.
     Methods:
     1. The invasive power was tested by transwell matrigel invasion assays after SKOV3 and OVCAR3 were transfected with STAT3 decoy ODN.
     2. Western blot analysis was used to examine the protein expression level of EMMPRIN、MMP-2、MMP-9 after transfection of STAT3 decoy ODN into SKOV3 and OVCAR3 cells.
     Results:
     1. The influence of STAT3 decoy ODN on invasive power of ovarian cancer cells: With transfection of 25nM STAT3 decoy ODN, the percentages of SKOV3 cells invading the membrane were reduced from 68±7.30 to 36±4.33 (P<0.05), and the percentages of OVCAR3 cells invading the membrane were reduced from 69.4±5.6 to 39±4.2 (P<0.05). The difference between vacant and scramble control groups had no statistic significance.
     2. Western blot analysis showed the protein expression levels of EMMPRIN、MMP-2、MMP-9 were decreased with transfection of STAT3 decoy ODN into SKOV3 and OVCAR3 cells.
     Conclusions:
     1. STAT3 decoy ODN can significantly inhibit the invasive power of ovarian cancer cells.
     2. The mechanisms of STAT3 decoy ODN on cancer cell invasion involve the down-regulation of protein EMMPRIN、MMP-2、MMP-9 in ovarian cancer cells.
     Part III Therapeutic Effects of STAT3 decoy ODN on Human Ovarian Cancer Cells in vivo
     Objective:
     1. Establish subcutaneous xenografts of human ovarian cancer cells SKOV3 in nude mice, and evaluate the anti-tumor effects of STAT3 decoy ODN on xenografted nude mice.
     2. To study the mechanisms of STAT3 decoy ODN on anti-tumor effects in vivo.
     Methods:
     1. SKOV3 cells (2×107/ml) were subcutaneously injected into the right chest of nude mice. The nude mice were cultured according to the regulation of SPF grade.
     2. STAT3 decoy ODN was peritumorally injected after the tumor formation (about 13 days after SKOV3 cells injection). Evaluate the anti-tumor effects of STAT3 decoy ODN by monitoring the tumor volume and measuring the tumor weight in the end.
     3. After the treatment was finished, make paraffin sections for tissues of tumor, heart, liver and kidney.
     4. The effects on apoptotic induction of STAT3 decoy ODN in vivo was detected by TUNEL.
     5. Western blot analysis was used to examine the expression of associated proteins in the tumor tissues of nude mice.
     Results:
     1. SKOV3 cells could form xenografts in the nude mice, and the average time was about 10-12 days. The xenografted nude mice were divided into 3 groups randomly. STAT3 decoy ODN was peritumorally injected into the xenografts every other day. In the end of the treatment, the average volume of xenografts was as follows:620±68mm3 in PBS group,540±55mm3 in scramble group, 226±35mm3 in decoy group. The average volume of xenografts in decoy group was decreased significantly contrast to PBS and scramble groups (P<0.05). However, the difference between PBS and scramble groups had no statistically significance. The average weight of tumor tissues in decoy group was significantly lower than that in the other control groups (P<0.05).
     2. STAT3 decoy ODN could induce ovarian cancer cells apoptosis in vivo. TUNEL analysis showed that there were 43±7 positive cells per high power field in the group treated with STAT3 decoy ODN, while 11±3 positive cells in scramble group and 13±4 positive cells in PBS group. The difference between decoy group and the other two groups had statistically significance (P<0.05).
     3. The biological effects of STAT3 decoy ODN on tissues of xenograft, heart, liver and kidney in nude mice. The sections of xenograft tissues (HE staining) showed karyomegaly, anachromasis, and karyokinesis in cancer cells. There was necrosis partly in the xenograft tissues. The sections of heart and liver tissues had no significant abnormality. However, one in five nude mice treated with STAT3 decoy ODN had abnormality, inflammation and necrosis in part of hepatic lobule.
     4. The expression of MMP2, MMP9, Bcl-2, and caspase-3 in the xenograft tissues of nude mice:Compared with PBS and scramble treatment group, the protein expression level of MMP2, MMP9, Bcl-2 in STAT3 decoy ODN treatment group decreased significantly, while the protein expression level of caspase-3 increased significantly.
     Conclusions:
     1. SKOV3 cells can form xenografts in the nude mice. STAT3 decoy ODN can inhibit the growth of ovarian cancer cells and induce apoptosis of ovarian cancer cells in vivo.
     2. STAT3 decoy ODN can down-regulate the protein expression level of MMP2, MMP9, Bcl-2, and up-regulate the protein expression level of caspase-3 in vivo.
引文
1. Jing N, Tweardy DJ. Targeting Stat3 in cancer therapy. Anticancer Drugs 2005; 16(6):601-607.
    2. Louvet-Vallee S. ERM Prteins:from cellular architecture to cell signaling. Biol Cell 2000; 92(5):305-316.
    3. Greene MH, Clark JW, Blayney DW. The epidemiology of ovarian cancer. Semin Oncol 1984; 11(3):209-226.
    4. Pan L, Tong Y, Jin Y, Zhou S, Zhang Y, Yang X, et al. Reversing drug resistance in the ovarian carcinoma cell line SKOV3/mdrl in vitro by antisense oligodeoxynucleotides. Chin Med J 2001; 114(9):929-32.
    5. Huang M, Page C, Reynolds RK, Lin J. Constitutive activation of stat 3 oncogene product in human ovarian carcinoma cells. Gynecol Oncol 2000; 79:67-73.
    6. Burke WM, Jin X, Lin HJ, Huang M, Liu R, Reynolds RK, Lin J. Inhibition of constitutively active STAT3 suppresses growth of human ovarian and breast cancer cells. Oncogene 2001; 20:7925-34.
    7. Savarese TM, Campbell CL, McQuain C, Mitchell K, Guardiani R, Quesenberry PJ, et al. Coexpression of oncostatin M and its receptors and evidence for STAT3 activation in human ovarian carcinomas. Cytokine 2002; 17:324-34.
    8. Silver DL, Naora H, Liu J, Cheng W, Montell DJ. Activated signal transducer and activator of transcription (STAT) 3:localization in focal adhesions and function in ovarian cancer cell motility. Cancer Res 2004; 64:3550-8.
    9. Rosen DG, Mercado-Uribe I, Yang G, Bast RC Jr, Amin HM, Lai R, Liu J. The role of constitutively active signal transducer and activator of transcription 3 in ovarian tumorigenesis and prognosis. Cancer 2006; 107(11):2730-40.
    10. Colomiere M, Ward AC, Riley C, Trenerry MK, Cameron-Smith D, Findlay J, et al. Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial-mesenchymal transition in ovarian carcinomas. British Journal of Cancer 2009; 100:134-144.
    11. Buettner R, Mora LB, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 2002; 8(4):945-954.
    12. Haura EB, Turkson J, Jove R. Mechanisms of disease:Insights into the emerging role of signal transducers and activators of transcription in cancer. Nat Clin Pract Oncol 2005; 2(6):315-324.
    13. Leslie K, Lang C, Devgan G, Azare J, Berishaj M, Gerald W, et al. Cyclin D1 is transcriptionally regulated by and required for transformation by activated signal transducer and activator of transcription 3. Cancer Res 2006; 66(5):2544-2552.
    14. Gritsko T, Williams A, Turkson J. Persistent activation of Stat3 signaling induces Survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clinical Cancer Res 2006; 12(1):11-19.
    15. Pardoll D. Does the immune system see tumors as foreign or self? Annu Rev Immunol 2003; 21:807-839.
    16. Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumor microenvironment. Nat Rev Immunol 2007; 7(1):41-51.
    17. Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, et al. Regulation of the innate and adaptive immune responses by Stat3 signaling in tumor cells. Nature Med 2004; 10 (1):48-54.
    18. Wang LH, Yang XY, Kirken RA, Resau JH, Farrar WL. Targeted disruption of stat6 DNA binding activity by an oligonucleotide decoy blocks IL-4-dirven TH2 cell response. Blood 2000; 95:1249-1257.
    19. Gadducci A, Cosio S, Conte PF, Genazzani AR. Consolidation and maintenance treatments for patients with advanced epithelial ovarian cancer in complete response after first-line chemotherapy:a review of the literature. Crit Rev Oncol Hematol 2005; 55(2):153-166.
    20. Leong PL, Andrews GA, Johnson DE, Dyer KF, Xi S, Mai JC, et al. Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell grow. Proc. Natl. Acad. Sci. USA 2003; 100:4138-43.
    21. Zhang X, Zhang L, Wang L, Wei H, Tian Z. Therapeutic effects of STAT3-decoy oligodeoxynucleotide on human lung cancer in xenograft mice. BMC Cancer 2007; 7:149.
    22. Ahn JD, Kim CH, Magae J, Kim YH, Kim HJ, Park KK, et al. E2F decoy oligodeoxynucleotides effectively inhibit growth of human tumor cells. BBRC 2003;310(4):1048-53.
    23. Kume M, Komori K, Matsumoto T, Onohara T, Takeuchi K, Yonemitsu Y, Sugimachi K. Administration of a decoy against the activator protein-1 binding site suppresses neointimal thickening in rabbit balloon-injured arteries. Circulation 2002; 105(10):1226-32.
    24. Yamasaki K, Asai T, Shimizu M, Aoki M, Hashiya N, Sakonjo H, et al. Inhibition of NFkappaB activation using cis-element 'decoy' of NFkappaB binding site reduces neointimal formation in porcine balloon-injured coronary artery model. Gene Ther 2003; 10(4):356-64.
    25. Darnell JE Jr. STATs and gene regulation. Science.1997; 277(5332):1630-1635.
    26. Barbieri I, Pensa S, Pannellini T, Quaglino E, Maritano D, Demaria M, et al. Constitutively Active Stat3 Enhances Neu-Mediated Migration and Metastasis in Mammary Tumors via Upregulation of Cten. Cancer Res 2010; 70(6):2558-67.
    27. Gu F, Ma Y, Zhang Z, Zhao J, Kobayashi H, Zhang L, Fu L. Expression of Stat3 and Notch 1 is associated with cisplatin resistance in head and neck squamous cell carcinoma. Oncol Rep 2010; 23(3):671-6.
    28. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999; 10(1):105-15.
    29. Gao B, Shen X, Kunos G, Meng Q, Goldberg ID, Rosen EM, Fan S. Constitutive activation of JAK-STAT3 signaling by BRCA1 in human prostate cancer cells. FEBS Lett 2001; 488(3):179-84.
    30. Huang M, Page C, Reynolds RK, Lin J. Constitutive activation of stat 3 oncogene product in human ovarian carcinoma cells. Gynecol Oncol 2000; 79(1):67-73.
    31. Real PJ, Sierra A, De Juan A, Segovia JC, Lopez-Vega JM, Fernandez-Luna JL. Resistance to chemotherapy via Stat3-dependent overexpression of Bcl-2 in metastatic breast cancer cells. Oncogene 2002; 21(50):7611-8.
    32. Epling-Burnette PK, Liu JH, Catlett-Falcone R, Turkson J, Oshiro M, Kothapalli R, et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest 2001; 107(3):351-62.
    33. Liu B, Ren Z, Shi Y, Guan C, Pan Z, Zong Z. Activation of signal transducers and activators of transcription 3 and overexpression of its target gene CyclinD1 in laryngeal carcinomas. Laryngoscope 2008; 118(11):1976-80.
    34. Bowman T, Broome MA, Sinibaldi D, Wharton W, Pledger WJ, Sedivy JM, et al. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci USA 2001; 98(13):7319-24.
    35. Wei D, Le X, Zheng L, Wang L, Frey JA, Gao AC, et al. Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene 2003; 22(3):319-29.
    36. Yu H, Jove R. The STATs of cancer—new molecular targets come of age. Nat Rev Cancer 2004; 4(2):97-105.
    37. Burdelya L, Kujawski M, Niu G, Zhong B, Wang T, Zhang S, et al. Stat3 activity in melanoma cells affects migration of immune effector cells and nitric oxide-mediated antitumor effects. J Immunol 2005; 174(7):3925-31.
    38. Nabarro S, Himoudi N, Papanastasiou A, Gilmour K, Gibson S, Sebire N, et al. Coordinated oncogenic transformation and inhibition of host immune responses by the PAX3-FKHR fusion oncoprotein. J Exp Med 2005; 202(10):1399-410.
    39. Bromberg J. Stat proteins and oncogenesis. J Clin Invest 2002; 109:1139-42.
    40. Koltover I, Salditt T, Radler J, Safinya C R. An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 1998,281(5373):78~81.
    41.刘翠香,邓英杰.脂质体复合物与肿瘤的基因治疗.沈阳药科大学学报2002,19(3):227-30.
    42. Sun X, Zhang J, Wang L, Tian Z. Growth inhibition of human hepatocellular carcinoma cells by blocking STAT3 activation with decoy-ODN. Cancer Lett 2008; 262(2):201-13.
    43. Gu J, Li G, Sun T, Su Y, Zhang X, Shen J, et al. Blockage of the STAT3 signaling pathway with a decoy oligonucleotide suppresses growth of human malignant glioma cells. J Neurooncol 2008; 89(1):9-17.
    44. Ekholm SV, Zickert P, Reed SI, Zetterberg A. Accumulation of cyclin E is not a prerequisite for passage through the restriction point. Mol Cell Biol 2001; 21(9):3256-65.
    45. Fennell DA, Cotter FE. Stochastic modeling of apoptosis tolerance distributions measured by multivariate flow analysis of human leukemia cells. Cytometry 2000; 39(4):266-74.
    46. Berchuck A, Elbendary A, Havrilesky L, Rodriguez GC, Bast RC Jr. Pathogenesis of ovarian cancers. J Soc Gynecol Investig 1994; 1(3):181-90.
    47. Hawthorne VS, Huang WC, Neal CL, Tseng LM, Hung MC, Yu D. ErbB2-mediated Src and signal transducer and activator of transcription 3 activation leads to transcriptional up-regulation of p21Cipl and chemoresistance in breast cancer cells. Mol Cancer Res 2009; 7(4):592-600.
    48. Duan Z, Ames RY, Ryan M, Hornicek FJ, Mankin H, Seiden MV. CDDO-Me, a synthetic triterpenoid, inhibits expression of IL-6 and Stat3 phosphorylation in multi-drug resistant ovarian cancer cells. Cancer Chemother Pharmacol 2009; 63(4):681-9.
    49. Duan Z, Foster R, Bell DA, Mahoney J, Wolak K, Vaidya A, et al. Signal transducers and activators of transcription 3 pathway activation in drug-resistant ovarian cancer. Clin Cancer Res 2006; 12:5055-63.
    50. Cuevas P, Diaz-Gonzalez D, Sanchez I, Lozano RM, Gimenez-Gallego G, Dujovny M. Dobesilate inhibits the activation of signal transducer and activator of transcription 3, and the expression of cyclin D1 and bcl-XL in glioma cells. Neurol Res 2006; 28(2):127-30.
    51. Zhang X, Zhang J, Wei H, Tian Z. STAT3-decoy oligodeoxynucleotide inhibits the growth of human lung cancer via down-regulating its target genes. Oncol Rep 2007; 17(6):1377-82.
    52. Bhattacharya S, Ray RM, Johnson LR. STAT3-mediated transcription of Bcl-2, Mcl-1 and c-IAP2 prevents apoptosis in polyamine-depleted cells. Biochem J 2005; 392(Pt 2):335-44.
    53. Peuhu E, Rivero-Muller A, Stykki H, Torvaldson E, Holmbom T, Eklund P, et al. Inhibition of Akt signaling by the lignan matairesinol sensitizes prostate cancer cells to TRAIL-induced apoptosis. Oncogene 2009; [Epub ahead of print]
    54. Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 2005; 9:59-71.
    55. Dan HC, Jiang K, Coppola D, Hamilton A, Nicosia SV, Sebti SM, Cheng JQ. Phosphatidylinositol-3-OH kinase/AKT and survivin pathways as critical targets for geranylgeranyltransferase I inhibitor-induced apoptosis. Oncogene 2004; 23(3):706-15.
    56. Shih WL, Liao MH, Lin PY, Chang CI, Cheng HL, Yu FL, Lee JW. PI 3-kinase/Akt and STAT3 are required for the prevention of TGF-beta-induced Hep3B cell apoptosis by autocrine motility factor/phosphoglucose isomerase. Cancer Lett 2009. [Epub ahead of print]
    57. Du XL, Yang H, Liu SG, Luo ML, Hao JJ, Zhang Y, et al. Calreticulin promotes cell motility and enhances resistance to anoikis through STAT3-CTTN-Akt pathway in esophageal squamous cell carcinoma. Oncogene 2009; 28(42):3714-22.
    58. Lu YJ, Zhou J, Xu CQ, Lin HX, Xiao JN, Wang ZG, Yang B. JAK/STAT and PI3K/AKT Pathways Form a Mutual Transactivation Loop and Afford Resistance to Oxidative Stress-Induced Apoptosis in Cardiomyocytes. Cell Physiol Biochem 2008; 21:305-14.
    59. Liu B, Staren ED, lwamura T, Appert HE, Howard JM. Mechanisms of taxotere-related drug resistance in pancreatic carcinoma. J Surg Res 2001; 99:179-86.
    60. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer:role of ATP dependent transporters. Nat Rev Cancer 2002; 2:48-58.
    61. Bourguignon LY, Peyrollier K, Xia W, Gilad E. Hyaluronan-CD44 Interaction Activates Stem Cell Marker, Nanog, Stat-3-mediated MDR1 Gene Expression, and Ankyrin-regulated Multidrug Efflux in Breast and Ovarian Tumor Cells. J Biol Chem 2008; 283:17635-51.
    62. Green D, Kroemer G The central executioners of apoptosis:caspases or mitochondria? Trends Cell Biol 1998; 8(7):267-71.
    1. Puiffe ML, Le Page C, Filali-Mouhlm A, Zietarska M, Ouellet V, Tonin PN, et al. Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer. Neoplasia 2007; 9:820-829.
    2. Ellerbroek SM, Hudson LG, Stack MS. Proteinase requirements of epidermal growth factor-induced ovarian cancer cell invasion. Int J Cancer 1998; 78(3):331-7.
    3. Kenny HA, Lengyel E. MMP-2 functions as an early response protein in ovarian cancer metastasis. Cell Cycle 2009; 8(5):683-8.
    4. Sillanpaa S, Anttila M, Voutilainen K, Ropponen K, Turpeenniemi-Hujanen T, Puistola U, et al. Prognostic significance of matrix metalloproteinase-9 (MMP-9) in epithelial ovarian cancer. Gynecol Oncol 2007; 104(2):296-303.
    5. Zhang W, Erkan M, Abiatari I, Giese NA, Felix K, Kayed H, et al. Expression of extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) in pancreatic neoplasm and pancreatic stellate cells. Cancer Biol Ther 2007; 6(2):218-27.
    6. Du ZM, Hu CF, Shao Q, Huang MY, Kou CW, Zhu XF, et al. Upregulation of caveolin-1 and CD147 expression in nasopharyngeal carcinoma enhanced tumor cell migration and correlated with poor prognosis of the patients. Int J Cancer 2009; 125(8):1832-41.
    7. Lee J, Kang WK, Park JO, Park SH, Park YS, Lim HY, et al. Expression of activated signal transducer and activator of transcription 3 predicts poor clinical outcome in gastric adenocarcinoma. APMIS 2009; 117(8):598-606.
    8. Kim JE, Kim HS, Shin YJ, Lee CS, Won C, Lee SA, et al. LYR71, a derivative of trimeric resveratrol, inhibits tumorigenesis by blocking STAT3-mediated matrix metalloproteinase 9 Expression. Exp Mol Med 2008; 40(5):514-22.
    9. Tsareva SA, Moriggl R, Corvinus FM, Wiederanders B, Schutz A, Kovacic B, Friedrich K. Signal transducer and activator of transcription 3 activation promotes invasive growth of colon carcinomas through matrix metalloproteinase induction. Neoplasia 2007; 9(4):279-91.
    10.Xie TX, Wei D, Liu M, Gao AC, Ali-Osman F, Sawaya R, Huang S. Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene 2004; 23(20):3550-60.
    11. Yang G, Huang C, Cao J, Huang KJ, Jiang T, Qiu ZJ. Lentivirus-mediated shRNA interference targeting STAT3 inhibits human pancreatic cancer cell invasion. World J Gastroenterol 2009; 15(30):3757-66.
    12. Xiong H, Zhang ZG, Tian XQ, Sun DF, Liang QC, Zhang YJ, Lu R, et al. Inhibition of JAK1,2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia 2008; 10(3):287-97.
    13. Silver DL, Naora H, Liu J, Cheng W, Montell DJ. Activated signal transducer and activator of transcription (STAT) 3:localization in focal adhesions and function in ovarian cancer cell motility. Cancer Res 2004; 64(10):3550-8.
    14.王文萍主编.实用肿瘤转移学[M].沈阳辽宁科学技术出版社,2003:1-4.
    15. Shah NG, Trivedi TI, Tankshali RA, Goswami JA, Jetly DH, Kobawala TP, et al. Stat3 expression in oral squamous cell carcinoma:association with clinicopathological parameters and survival. Int J Biol Markers 2006; 21(3):175-83.
    16. Gao B, Shen X, Kunos G, Meng Q, Goldberg ID, Rosen EM, Fan S. Constitutive activation of JAK-STAT3 signaling by BRCA1 in human prostate cancer cells. FEBS Lett 2001; 488(3):179-84.
    17. Buettner R, Mora LB, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 2002; 8(4):945-54.
    18. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999; 10(1):105-15.
    19. Huang M, Page C, Reynolds RK, Lin J. Constitutive activation of stat 3 oncogene product in human ovarian carcinoma cells. Gynecol Oncol 2000; 79(1):67-73.
    20. Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001; 7(2):186-91.
    21. Xu Q, Briggs J, Park S, Niu G, Kortylewski M, Zhang S, et al. Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene 2005; 24(36):5552-60.
    22. Wei LH, Kuo ML, Chen CA, Chou CH, Lai KB, Lee CN, Hsieh CY. Interleukin-6 promotes cervical tumor growth by VEGF-dependent angiogenesis via a STAT3 pathway. Oncogene 2003; 22(10):1517-27.
    23.Xie TX, Huang FJ, Aldape KD, Kang SH, Liu M, Gershenwald JE, et al. Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res 2006; 66(6):3188-96.
    24. Xie TX, Wei D, Liu M, Gao AC, Ali-Osman F, Sawaya R, Huang S. Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene 2004; 23(20):3550-60.
    25. Itoh M, Murata T, Suzuki T, Shindoh M, Nakajima K, Imai K, et al. Requirement of STAT3 activation for maximal collagenase-1 (MMP-1) induction by epidermal growth factor and malignant characteristics in T24 bladder cancer cells. Oncogene 2006; 25(8):1195-204.
    26. Udayakumar TS, Nagle RB, Bowden GT. Fibroblast growth factor-1 transcriptionally induces membrane type-1 matrix metalloproteinase expression in prostate carcinoma cell line. Prostate 2004; 58(1):66-75.
    27. Takemoto S, Ushijima K, Kawano K, Yamaguchi T, Terada A, Fujiyoshi N, et al. Expression of activated signal transducer and activator of transcription-3 predicts poor prognosis in cervical squamous-cell carcinoma. Br J Cancer 2009; 101(6):967-72.
    28. Abdulghani J, Gu L, Dagvadorj A, Lutz J, Leiby B, Bonuccelli G, et al. Stat3 promotes metastatic progression of prostate cancer. Am J Pathol 2008; 172(6):1717-28.
    29. Dean NR, Newman JR, Helman EE, Zhang W, Safavy S, Weeks DM, et al. Anti-EMMPRIN monoclonal antibody as a novel agent for therapy of head and neck cancer. Clin Cancer Res 2009; 15(12):4058-65.
    30. Reimers N, Zafrakas K, Assmann V, Egen C, Riethdorf L, Riethdorf S, et al. Expression ofextracellular matrix metalloproteases inducer on micrometastatic and primary mammary carcinoma cells. Clin Cancer Res 2004; 10:3422-8.
    31. Pinheiro C, Longatto-Filho A, Simoes K, Jacob CE, Bresciani CJ, Zilberstein B, et al. The prognostic value of CD147/EMMPRIN is associated with monocarboxylate transporter 1 co-expression in gastric cancer. Eur J Cancer 2009; 45(13):2418-24.
    32. Sato T, Ota T, Watanabe M, Imada K, Nomizu M, Ito A. Identification of an active site of EMMPRIN for the augmentation of matrix metalloproteinase-1 and-3 expression in a co-culture of human uterine cervical carcinoma cells and fibroblasts. Gynecol Oncol 2009; 114(2):337-42.
    33. Davidson B, Goldberg I, Berner A, Kristensen GB, Reich R. EMMPRIN (extracellular matrix metalloproteinase inducer) is a novel marker of poor outcome in serous ovarian carcinoma. Clin Exp Metastasis 2003; 20(2):161-9.
    34. Davidson B, Givant-Horwitz V, Lazarovici P, Risberg B, Nesland JM, Trope CG, et al. Matrix metalloproteinases (MMP), EMMPRIN (extracellular matrix metalloproteinase inducer) and mitogen-activated protein kinases (MAPK): co-expression in metastatic serous ovarian carcinoma. Clin Exp Metastasis 2003; 20(7):621-31.
    35. Sillanpaa S, Anttila M, Suhonen K, Hamalainen K, Turpeenniemi-Hujanen T, Puistola U, et al. Prognostic significance of extracellular matrix metalloproteinase inducer and matrix metalloproteinase 2 in epithelial ovarian cancer.Tumour Biol 2007; 28(5):280-9.
    36. Millimaggi D, Mari M, D'Ascenzo S, Carosa E, Jannini EA, Zucker S, et al. Tumor vesicle-associated CD 147 modulates the angiogenic capability of endothelial cells. Neoplasia 2007; 9(4):349-57.
    1. Azar HA, Hansen CT, Costa J. N NIH(S)-nu/nu mice with combined immunodeficiency:a new model for human tumor heterotransplantation. J. Natl. Cancer Inst 1980; 65:421-30.
    2. Fogh J, Fogh JM, Orfeo T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J. Natl. Cancer Inst 1977; 59:221-6.
    3. Cesca M, Frapolli R, Berndt A, Scarlato V, Richter P, Kosmehl H, et al. The effects of vandetanib on paclitaxel tumor distribution and antitumor activity in a xenograft model of human ovarian carcinoma. Neoplasia 2009; 11(11):1155-64.
    4. Rygaard J, Povlsen CO. Heterotransplantation of a human malignant tumor to "Nude" mice. Acta Pathol Microbiol Scand 1969; 77(4):758-60.
    5. Hu W, Kavanagh JJ, Deaver M, Johnston DA, Freedman RS, Verschraegen CF, et al. Frequent overexpression of STK15/Aurora-A/BTAK and chromosomal instability in tumorigenic cell cultures derived from human ovarian cancer. Oncol Res 2005; 15(1):49-57.
    6. Ohta T, Ohmichi M, Hayasaka T, Mabuchi S, Saitoh M, Kawagoe J, et al. Inhibition of phosphatidylinositol 3-kinase increases efficacy of cisplatin in in vivo ovarian cancer models. Endocrinology 2006; 147(4):1761-9.
    7. Janssen ML, Pels W, Massuger LF, Oyen WJ, Boonstra H, Corstens FH, et al. Intraperitoneal radioimmunotherapy in an ovarian carcinoma mouse model:Effect of the radionuclide. Int J Gynecol Cancer 2003; 13(5):607-13.
    8. Sato T, Serikawa T, Sekine M, Aoki Y, Tanaka K. Increased efficiency of cisplatin-resistant cell lines to DNA-mediated gene transfer with cationic liposome. J Obstet Gynaecol Res 2005; 31(5):368-74.
    9. Xi S, Gooding WE, Grandis JR. In vivo antitumor efficacy of STAT3 blockade using a transcription factor decoy approach:implications for cancer therapy. Oncogene 2005; 24(6):970-9.
    10. Zhang X, Zhang J, Wang L, Wei H, Tian Z. Therapeutic effects of STAT3 decoy oligodeoxynucleotide on human lung cancer in xenograft mice. BMC Cancer
    2007; 7:149.
    11. Shen J, Li R, Li G Inhibitory effects of decoy-ODN targeting activated STAT3 on human glioma growth in vivo, In Vivo 2009; 23(2):237-43.
    12. An Z, Wang X, Kubota T, Moossa AR, Hoffman RM. A clinical nude mouse metastatic model for highly malignant human pancreatic cancer.Anticancer Res 1996; 16(2):627-31.
    13.施新猷.医用实验动物学.西安,陕西科学技术出版社,1991,第一版,128.
    14. Cuevas P, Diaz-Gonzalez D, Sanchez I, Lozano RM, Gimenez-Gallego G, Dujovny M. Dobesilate inhibits the activation of signal transducer and activator of transcription 3, and the expression of cyclin D1 and bcl-XL in glioma cells. Neurol Res 2006; 28(2):127-30.
    15. Bhattacharya S, Ray RM, Johnson LR. STAT3-mediated transcription of Bcl-2, Mcl-1 and c-IAP2 prevents apoptosis in polyamine-depleted cells. Biochem J 2005; 392(Pt 2):335-44.
    16. Gagarin D, Yang Z, Butler J, Wimmer M, Du B, Cahan P, et al. Genomic profiling of acquired resistance to apoptosis in cells derived from human atherosclerotic lesions:potential role of STATs, cyclinDl, BAD, and Bcl-XL. J Mol Cell Cardiol 2005; 39(3):453-65.
    17. Marchetti P, Castedo M, Susin SA, Zamzami N, Hirsch T, Macho A, et al. Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 1996; 184(3):1155-60.
    18.李慧,武艺,宋和存,等.卵巢原发癌和转移癌中Survivin的表达与Caspase-3、血管内皮生长因子的相关性研究[J].中国现代医学杂志,2007,17(16):1983-90.
    19. Kleinberg L, Dong HP, Holth A, Risberg B, Trope' CG, Nesland JM, et al. Cleaved caspase-3 and nuclear factor-kappaB p65 are prognostic factors in metastatic serous ovarian carcinoma. Hum Pathol 2009; 40(6):795-806.
    20. Mattern J. Drug resistance in cancer:a multifactorial problem. Anticancer Res 2003; 23(2C):1769-72.
    21. Van Delft MF, Huang DC. How the Bcl-2 family of proteins interact to regulate apoptosis. Cell Res 2006; 16(2):203-13.
    22. Kenny HA, Lengyel E. MMP-2 functions as an early response protein in ovarian cancer metastasis. Cell Cycle 2009; 8(5):683-8.
    23. Belotti D, Calcagno C, Garofalo A, Caronia D, Riccardi E, Giavazzi R, et al. Vascular endothelial growth factor stimulates organ-specific host matrix metalloproteinase-9 expression and ovarian cancer invasion. Mol Cancer Res 2008; 6(4):525-34.
    24. Sillanpaa S, Anttila M, Voutilainen K, Ropponen K, Turpeenniemi-Hujanen T, Puistola U, et al. Prognostic significance of matrix metalloproteinase-9 (MMP-9) in epithelial ovarian cancer. Gynecol Oncol 2007; 104(2):296-303.
    1. Buettner R, Mora LB, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 2002; 8:945-54.
    2. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L, Fernandez-Luna JL, Nunez G, Dalton WS, Jove R. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999; 10:105-15.
    3. Gao B, Shen X, Kunos G, Meng Q, Goldberg ID, Rosen EM, Fan S. Constitutive activation of JAK-STAT3 signaling by BRCAl in human prostate cancer cells. FEBS Lett 2001; 48:179-84.
    4. Bromberg J. Stat proteins and oncogenesis. J Clin Invest 2002; 109:1139-42.
    5. Huang M, Page C, Reynolds RK, Lin J. Constitutive activation of stat 3 oncogene product in human ovarian carcinoma cells. Gynecol Oncol 2000; 79:67-73.
    6. Burke WM, Jin X, Lin HJ, Huang M, Liu R, Reynolds RK, Lin J. Inhibition of constitutively active STAT3 suppresses growth of human ovarian and breast cancer cells. Oncogene 2001; 20:7925-34.
    7. Savarese TM, Campbell CL, McQuain C, Mitchell K, Guardiani R, Quesenberry PJ, Nelson BE. Coexpression of oncostatin M and its receptors and evidence for STAT3 activation in human ovarian carcinomas. Cytokine 2002; 17:324-34.
    8. Silver DL, Naora H, Liu J, Cheng W, Montell DJ. Activated signal transducer and activator of transcription (STAT) 3:localization in focal adhesions and function in ovarian cancer cell motility. Cancer Res 2004; 64:3550-8.
    9. Turkson J, Jove R. STAT proteins:novel molecular targets for cancer drug discovery. Oncogene 2000; 19:6613-26.
    10. Bromberg J, Darnell JE JR. The role of STATs in transcriptional control and their impact on cellular function. Oncogene 2000; 19:2648-73.
    11. Parker SL, Tong T, Bolden S, Wingo PA. Cancer statistics. CA. Cancer. J. Clin 1997; 47:5-27.
    12. Masuda M, Suzui M, Yasumatu R, Nakashima T, Kuraomi Y, Azuma K, Tomita K, Komiyama S, Weinstein IB. Constitutive activation of signal transducers and activators of transcription 3 correlates with cyclin D1 overexpression and may provide a novel prognostic marker in head and neck squamous cell carcinoma. Cancer Res 2002; 62:3351-5.
    13. Kusaba T, Nakayama T, Yamazumi K, Matsuu-Matsuyama M, Shichijo K, Sekine I. Activation of STAT3 is a marker of poor prognosis in human colorectal cancer. Oncol Rep 2006; 15:1445-51.
    14. Fallows S, Price J, Atkinson RJ, Johnston PG, Hichey I, Russell SE. P53 mutation does not affect prognosis in ovarian epithelial malignancies. J Pathol 2001; 194:68-75.
    15. Mao HL, Liu PS, Zheng JF, Zhang PH, Zhou LG, Xin G, Liu C. Transfection of Smac/DIABLO sensitizes drug-resistant tumor cells to TRAIL or paclitaxel-induced apoptosis in vitro. Pharmacol Res 2007; 56:483-92.
    16. Kelly MG, Alvero AB, Chen R, Silasi DA, Abrahams VM, Chan S, Visintin I. TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res 2006; 66:3859-68.
    17. Duan Z, Foster R, Bell DA, Mahoney J, Wolak K, Vaidya A, Hampel C, Lee H, Seiden MV. Signal transducers and activators of transcription 3 pathway activation in drug-resistant ovarian cancer. Clin Cancer Res 2006; 12:5055-63.
    18. Zhou L, Liu P, Chen B, Wang Y, Wang X, Internati MC, Wachtel MS, Frezza EE. Silibinin restores paclitaxel sensitivity to paclitaxel-resistant human ovarian carcinoma cells. Anticancer Res 2008; 28:1119-27.
    19. Wang AC, Su QB, Wu FX, Zhang XL, Liu PS. Role of TLR4 for paclitaxel chemotherapy in human epithelial ovarian cancer cells. Eur J Clin Invest 2009; 39:157-64.
    20. Davidson B, Goldberg I, Berner A, Kristensen GB, Reich R. EMMPRIN (extracellular matrix metalloproteinase inducer) is a novel marker of poor outcome in serous ovarian carcinoma. Clin Exp Metastas 2003; 20:161-9.
    21. Leong PL, Andrews GA, Johnson DE, Dyer KF, Xi S, Mai JC, Robbins PD, Gadiparthi S, Burke NA, Watkins SF, Grandis JR. Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell grow. Proc Natl Acad Sci US A 2003; 100:4138-43.
    22. Zhang X, Zhang L, Wang L, Wei H, Tian Z. Therapeutic effects of STAT3-decoy oligodeoxynucleotide on human lung cancer in xenograft mice. BMC Cancer 2007; 7: 149.
    23. Yeh CN, Pang ST, Chen TW, Wu RC, Weng WH, Chen MF. Expression of ezrin is associated with invasion and dedifferentiation of hepatitis B related hepatocellular carcinoma. BMC Cancer 2009; 9:233.
    24. Darnell JE Jr. STATs and gene regulation. Science 1997; 277:1630-5.
    25. Huang S. Regulation of metastases by signal transducer and activator of transcription 3 signaling pathway:clinical implications. Clin Cancer Res 2007; 13:1362-6.
    26. Colomiere M, Findlay J, Ackland L, Ahmed N. Epidermal growth factor-induced ovarian carcinoma cell migration is associated with JAK2/STAT3 signals and changes in the abundance and localization of alpha6betal integrin. Int J Biochem Cell Biol 2009; 41:1034-45.
    27. Kanekura T, Chen X, Kanzaki T. Basigin (CD 147) is expressed on melanoma cells and induces tumor cell invasion by stimulating production of matrix metalloproteinases by fibroblasts. Int J Cancer 2002; 99:520-8.
    28. Roeb E, Schleinkofer K, Kernebeck T, Potsch S, Jansen B, Behrmann I, Matern S, Grotzinger J. The matrix metalloproteinase 9 (MMP-9) hemopexin domain is a novel gelatin binding domain and acts as an antagonist. J Biol Chem 2002; 277:50326-32.
    29. Wang TN, Albo D, Tuszynski GP. Fibroblasts promote breast cancer cell invasion by up-regulating tumor matrix metalloproteinase-9 production. Surgery 2002; 132:220-5.
    30. Ozols RF, Bundy BN, Greer BE, Fowler JM, Clarke-Pearson D, Burger RA, Mannel RS, DeGeest K, Hartenbach EM, Baergen R. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage Ⅲ ovarian cancer:a Gynecologic Oncology Group study. J Clin Oncol 2003; 21:3194-200.
    31. Gros P, Croop J, Housman D. Mammalian multidrug resistance gene:complete cDNA sequence indicates strong homology to bacterial transport proteins. Cell 1986; 47:371-80.
    32. Fojo AT, Ueda K, Slamon DJ, Pop lack DG, Gottesman MM, Pastan I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci USA 1987; 84:265-9.
    33. Bourguignon LY, Peyrollier K, Xia W, Gilad E. Hyaluronan-CD44 Interaction Activates Stem Cell Marker, Nanog, Stat-3-mediated MDR1 Gene Expression, and Ankyrin-regulated Multidrug Efflux in Breast and Ovarian Tumor Cells. J Biol Chem 2008; 283:17635-51.
    34. Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 2005; 9:59-71.
    35. Lu YJ, Zhou J, Xu CQ, Lin HX, Xiao JN, Wang ZG, Yang B. JAK/STAT and PI3K/AKT Pathways Form a Mutual Transactivation Loop and Afford Resistance to Oxidative Stress-Induced Apoptosis in Cardiomyocytes. Cell Physiol Biochem 2008; 21:305-14.
    36. Yuan ZQ, Feldman RI, Sussman GE, Coppola D, Nicosia SV, Cheng JQ. AKT2 inhibition of cisplatininduced JNK/p38 and Bax activation by phosphorylation of ASK1:implication of AKT2 in chemoresistance. J Biol Chem 2003; 278:23432-40.
    37. Gao H, Xiao J, Sun Q, Lin H, Bai Y, Yang L, Yang B, Wang H, Wang Z. A Single Decoy Oligodeoxynucleotides Targeting Multiple Oncoproteins Produces Strong Anticancer Effects. Mol Pharmacol 2006; 70:1621-29.
    1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ. Cancer statistics, 2006. CA Cancer J Clin 2006; 56:106-30.
    2. Edwards BK, Brown ML, Wingo PA, Howe HL, Ward E, Ries LA, et al. Annual report to the nation on the status of cancer,1975-2002, featuring population-based trends in cancer treatment. J Natl Cancer Inst 2005; 97(19):1407-27.
    3. Buettner R, Mora LB, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 2002; 8:945-54.
    4. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L, Fernandez-Luna JL, Nunez G, Dalton WS, Jove R. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999; 10:105-15.
    5. Gao B, Shen X, Kunos G, Meng Q, Goldberg ID, Rosen EM, Fan S. Constitutive activation of JAK-STAT3 signaling by BRCA1 in human prostate cancer cells. FEBS Lett 2001; 48:179-84.
    6. Lo HW, Hsu SC, Ali-Seyed M, Gunduz M, Xia W, Wei Y, Bartholomeusz G, Shih JY, Hung MC. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell 2005; 7:575-89.
    7. Park OK, Schaefer TS, Nathans D. In vitro activation of Stat3 by epidermal growth factor receptor kinase. Proc Natl Acad Sci USA 1996; 93:13704-8.
    8. Turkson J, Jove R. STAT proteins:novel molecular targets for cancer drug discovery. Oncogene 2000; 19:6613-26.
    9. Bromberg J, Darnell JE JR. The role of STATs in transcriptional control and their impact on cellular function. Oncogene 2000; 19:2648-73.
    10. Landen Jr CN, Lin YG, Armaiz Pena GN, et al. Neuroendocrine modulation of signal transducer and activator of transcription 3 in ovarian cancer. Cancer Res 2007; 67:10389-96.
    11. Duan Z, Foster R, Bell DA, Mahoney J, Wolak K, Vaidya A, Hampel C, Lee H, Seiden MV. Signal transducers and activators of transcription 3 pathway activation in drug-resistant ovarian cancer. Clin Cancer Res 2006; 12:5055-63.
    12. Nefedova Y, Gabrilovich DI. Targeting of Jak/STAT pathway in antigen presenting cells in cancer. Curr Cancer Drug Targets 2007; 7:71-7.
    13. Cai L, Zhang G, Tong X, You Q, An Y, Wang Y, Guo L, Wang T, Zhu D, Zheng J. Growth inhibition of human ovarian cancer cells by blocking STAT3 activation with small interfering RNA. Eur J Obstet Gynecol Reprod Biol 2010; 148(1):73-80.
    14. Yang L, Ma X, Xiao L, Tang M, Weng X, Sun L, Cao Y. Uniquely modified RNA oligonucleotides targeting STAT3 suppress melanoma growth both in vitro and in vivo. Cancer Biol Ther 2009; 8(21):2065-72.
    15. Gu J, Li G, Sun T, Su Y, Zhang X, Shen J, Tian Z, Zhang J. Blockage of the STAT3 signaling pathway with a decoy oligonucleotide suppresses growth of human malignant glioma cells. J Neurooncol 2008; 89(1):9-17.
    16. Zhang X, Liu P, Zhang B, Wang A, Yang M. Role of STAT3 decoy oligodeoxynucleotides on cell invasion and chemosensitivity in human epithelial ovarian cancer cells. Cancer Genet Cytogenet 2010; 197(1):46-53.
    17. Leong PL, Andrews GA, Johnson DE, Dyer KF, Xi S, Mai JC, Robbins PD, Gadiparthi S, Burke NA, Watkins SF, Grandis JR. Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell grow. Proc Natl Acad Sci USA 2003; 100:4138-43.
    18. Zhang X, Zhang L, Wang L, Wei H, Tian Z. Therapeutic effects of STAT3-decoy oligodeoxynucleotide on human lung cancer in xenograft mice. BMC Cancer 2007; 7:149.
    19. Lin XJ, Chen XC, Wang L, Wei YQ, Kan B, Wen YJ, He X, Zhao X. Dynamic progression of an intraperitoneal xenograft model of human ovarian cancer and its potential for preclinical trials. J Exp Clin Cancer Res 2007; 26(4):467-474.
    20. Mao HL, Liu PS, Zheng JF, Zhang PH, Zhou LG, Xin G, Liu C. Transfection of Smac/DIABLO sensitizes drug-resistant tumor cells to TRAIL or paclitaxel-induced apoptosis in vitro. Pharmacol Res 2007; 56:483-92.
    21. Bromberg J. Stat proteins and oncogenesis. J Clin Invest 2002; 109:1139-42.
    22. Leeman RJ, Lui VW, Grandis JR. STAT3 as a therapeutic target in head and neck cancer. Expert Opin Biol Ther 2006; 6(3):231-41.
    23. Colomiere M, Findlay J, Ackland L, Ahmed N. Epidermal growth factor-induced ovarian carcinoma cell migration is associated with JAK2/STAT3 signals and changes in the abundance and localization of alpha6betal integrin. Int J Biochem
    Cell Biol 2009; 41:1034-45.
    24. Shen J, Li R, Li G. Inhibitory effects of decoy-ODN targeting activated STAT3 on human glioma growth in vivo,In Vivo 2009; 23(2):237-43.
    25. Liotta LA, Stetler-Stevenson WG. Tumor invasion and metastasis:an imbalance of positive and negative regulation. Cancer Res 1991; 51:5054-5059.
    26. Belotti D, Paganoni P, Manenti L, Garofalo A, Marchini S, Taraboletti G, Giavazzi R. Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res 2003; 63(17):5224-5229.
    27. dos Santos LG, Lopes-Costa PV, dos Santos AR, Facina G, da Silva BB. Bcl-2 oncogene expression in estrogen receptor-positive and negative breast carcinoma. Eur J Gynaecol Oncol 2008; 29(5):459-61.
    28. Alas S, Bonavida B. Inhibition of constitutive STAT3 activity sensitizes resistant non-Hodgkin's lymphoma and multiple myeloma to chemotherapeutic drug-mediated apoptosis. Clin Cancer Res 2003; 9:316-26.
    29. Selvendiran K, Koga H, Ueno T, Yoshida T, Maeyama M, Torimura T, Yano H, Kojiro M, Sata M. Luteolin promotes degradation in signal transducer and activator of transcription 3 in human hepatoma cells:an implication for the antitumor potential of flavonoids. Cancer Res 2006; 66:4826-34.
    30. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998; 391:43-50.
    31. Kamada S, Kikkawa U, Tsujimoto Y, Hunter T. Nuclear translocation of caspase-3 is dependent on its proteolytic activation and recognition of a substrate-like protein(s). J Biol Chem 2005; 280:857-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700