CIBR工艺数学模型及模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国际水质协会(IWA)提出的活性污泥系统的典型数学模型ASM2D作为模拟生物同步除磷和硝化-反硝化的基础,比ASM2在模拟硝酸盐和磷酸盐动力学方面更加精确,常被看作是进一步研究和发展活性污泥模型的平台。
     本论文以ASM2D作为研究平台,结合CIBR工艺系统自身的特点和工艺特性,开发出CIBR同步脱氮除磷数学模型;并选择了固体通量沉淀模型,构建出CIBR工艺模型。
     以MATLAB作为模拟程序开发语言,基于CIBR工艺系统模型编写了CIBR工艺系统模拟程序;以国际水质协会推荐的ASM2D的参数典型值作为初始值运行模拟程序,COD的模拟效果和实际结果比较吻合,而TN和TP的效果相差较大。根据灵敏度分析的结果,将异养菌的产率系数YH由典型值0.625gCOD/gCOD调整为0.594 gCOD/gCOD;自养菌的产率系数(生物量/硝酸盐)YA由典型值0.24gCOD/gN调整为0.31gCOD/gN,使模拟的结果和实际结果吻合较好。
     最后,针对CIBR的运行特点,模拟了水力停留时间为12h的三种运行工况和运行周期为4h的三种水力停留时间的处理效果。结果表明:在曝气2h、搅拌1h与静沉1h的运行工况下的处理效果最好。而且在运行工况为曝气2h、搅拌1h与静沉1h时,模拟得出水力停留时间为8h时的处理效果最佳。
     研究结果表明:以ASM2D为平台建立的CIBR工艺模型,基于MATLAB开发出的模拟程序能够较好的模拟CIBR的运行过程,为深入研究和应用奠定了一定的基础。
In this thesis summarize and analyze the Activated Sludge Model No.2D (ASM2D) which is proposed by International Water Association (IWA). ASM2D as the modeling basis of simulating simultaneous nitrogen and phosphorus removal, which is often regarded as further research and development platform for activated sludge mathematic model, and more precise than ASM2.
     In this dissertation, the CIBR nitrogen and phosphorus removal process mathematic model based on the research platform of ASM2D was established, which combined with the characteristics and process properties of CIBR process, and chose solid flux theory model as the precipitate zone model.
     Based on the MATLAB platform, CIBR process modeling program was compiled to simulate running conditions and treatment efficiency. Then, take the ASM2D recommended typical parameter values as the initial values to the run the program. It was found that: the simulated results of COD removal efficiency are same as the actual results, while the simulated values of TN and TP showed relatively large difference. Based on the results of sensitivity analysis, adjusting parameters of heterotrophic yield coefficient from the typical value of 0.625gCOD/gCOD to 0.594gCOD/gCOD; and autotrophic yield coefficient from the typical value of 0.24gCOD/gN adjusted to 0.31gCOD/gN.
     Finally, according to the operational features of CIBR process, 12h hydraulic retention time for the three operating conditions and operation of the three cycles for 4h HRT treatment has been simulated. The results indicated that: The optimal working condition was obtained as 2h aeration, 1h agitation, and 1h settling, and under the working condition of 2h aeration, 1h agitation, and 1h settling, 8h HRT had better removal efficiency than the other conditions.
     The results showed that: ASM2D as a platform to building CIBR process mathe- matic model, and based on the MATLAB language developed simulating program could simulate the operation of CIBR process perfectly, it was worth to do further research and applications.
引文
[1]顾夏生.废水生物处理数学模式[M].北京:清华大学出版社, 1998.
    [2] Henze M. , Grady W. , Marasis G v R et al. Activated sludge model No.1. IAWPRC Scientific and Technical Report No.1[R]. London, England: IAWPRC, 1987.
    [3] Willi Gujer, Mogens Henze, Takahashi Mino et al. Activated Sludge Model No.3[J]. Wat. Sci. Tech., 1999, 39(1): 182-192.
    [4] W. Gujer, M. Henze, T. Mino et al. The Activated Sludge Model No.2: Biological Phosphorus Removal[J]. Wat. Sci. Tech., 1995, 31(2): 1-11.
    [5] W. Gujer, M. Henze, T. Mino et al. Wastewater and Biomass Characterization for the Activated Sludge Model No.2: Biological Phosphorus Removal[J]. Wat. Sci. Tech., 1995, 31(2): 12-22.
    [6] Henze M., Gujer W., Mino T., et al. Activated Sludge Model No. 2d-ASM2D [J]. Wat. Sci. Technol., 1999, 39(1): 165-182.
    [7] IWA. IWA task group on mathematical modeling for design and operation of biological wastewater treatment: activated sludge models ASM1, ASM2, ASM2D and ASM3[R]. London, England: IWA, 2000.
    [8] Reto Manser, Willi Gujer, Hansruedi Siegrist. Decay processes of nitrifying bacteria in biological wastewater treatment systems[J]. Wat. Res., 2006, 40: 2416–2426.
    [9] A. Brenner, Modeling of N and P transformation in an SBR treating municipal wastewater[J]. Wat. Sci. Tech., 2000, 42(l2): 55-63.
    [10] S. Marsili-Libelli et al. Implementation, study and calibration of a modified ASM2d for the simulation of SBR processes[J]. Wat. Sci. Tech., 200l, 43(3): 69-76.
    [11] Manga J., Ferrer J., Garcia-Usach F., et al. A modification to the activated sludge model No.2 based on the competition between phosphorus-accumulating-organisms and glycogen-accumulating organisms[C]. Proc.1st World Conf. of IWA.3 (Waste- water Treatment Plants), 2000, 300-307.
    [12] Krist V. Gernaey, Mark C.M. van Loosdrecht, Mogens Henze, et al. Activated sludge wastewater treatment plant modeling and simulation: state of the art [J]. Environmental Modeling & Software, 2004, 19: 763–783.
    [13] L. Novál. Dynamic mathematical modeling of sequencing batch reactors with aerated and mixed filling period[J]. Wat. Sci. Tech., 1997, 35(l): 105-112.
    [14] Hong Zhao et al. Approaches to modeling nutrient dynamics: ASM2, simplified model and neural nets [J]. Wat. Sci. Tech., 1999, 39(l): 227-234.
    [15] M.S. Moussa, C.M. Hooijmans, H.J. Lubberding et al. Modeling nitrification hetero- trophic growth and predation in activated sludge[J]. Wat. Sci. Tech., 2005, 39(20): 5080-5098.
    [16] Ni, B. J., Yu, H. Q., Sun, Y. J.. Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules[J]. Wat. Res., 2008, 42: 1583-1594.
    [17] Bing-Jie Ni, Wen-Ming Xie, Shao-Gen Liu, Han-Qing Yu et al. Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater[J]. Wat. Res., 2008, 43: 751-761.
    [18] Damian Dominguez, Willi Gujera. Evolution of a wastewater treatment plant challenges traditional design concepts[J]. Wat. Res., 2006, 40: 1389-1396.
    [19] F. Béline, H. Boursier, M.L. Daumer et al. Modeling of biological processes during aerobic treatment of piggery wastewater aiming at process optimization [J]. Bioresource Technology, 2007, 98(17): 3298-3308.
    [20] A. A. Kazam et al. Modeling effect of remaining nitrate on phosphorus removal in SBR[J]. Wat. Sci. Tech., 2001, 43(3): 175-182.
    [21] Albert Magrí, Xavier Flotats. Modeling of biological nitrogen removal from the liquid fraction of pig slurry in a sequencing batch reactor[J]. Bio-systems engineer- ing. 2008, 101(2): 239-259.
    [22] Marcos Marcelino, Albert Guisasola, Juan Antonio Baeza. Experimental assessment and modeling of the proton production linked to phosphorus release and uptake in EBPR systems[J]. Wat. Res., 2009, 43(9): 2431-2440.
    [23] Hakan Moral, Aysegul Aksoy, Celal F.Gokcay. Modeling of the activated sludge process by using artificial neural networks with automated architecture screening [J]. Computers and Chemical Engineering, 2008, 32: 2471-2478.
    [24]黄勇,杨铨大,王宝贞等.活性污泥生物反应动力学模型研究[J].环境科学研究, 1995, 8(4): 23-27.
    [25]卢培利,张代钧,刘颖等.活性污泥法动力学模型研究进展和展望[J].重庆大学学报, 2002, 25(3): 109-114.
    [26]郭亚萍,顾国维. ASM2d在污水处理中的研究与应用[J].中国给水排水, 2006,22(6): 8-10.
    [27]于静洁,马超,顾国维等. ASM1中化学计量系数与动力学参数的测定[J].环境污染与防治, 2006, 28 (5): 334-336.
    [28]张代钧,卢培利.城市污水COD组分划分、测试与标准化表征[C].中国环境科学学会.中国环境保护优秀论文集(2005)(上册), 2005: 1017-1024.
    [29]曹海彬,张代钧,卢培利.活性污泥模型进水COD组分的测定方法[J].重庆大学学报(自然科学版), 2005, 28 (9): 87-83.
    [30]黄勇,李勇.废水特性鉴定的批量OUR法试验研究闭[J].上海环境科学, 2001, 20(7): 322-325.
    [31]董姗燕,姚重华.单级活性污泥过程数学模型ASM2D参数的灵敏度分析[J].环境化学, 2005, 24(2): 129-133.
    [32]李慧秋.计算机模拟技术在污水处理厂运行中的应用研究[D].天津:天津大学, 2005.
    [33]徐伟锋.生物脱氮除磷ASM2D模拟及机理研究[D].上海:同济大学, 2006.
    [34]邓科.城市生活污水有机成分与ASM水质特性参数关系研究[D].上海:同济大学, 2006.
    [35]张园园.西安市邓家村城市污水Johannesburg工艺处理系统模拟及分析[D].西安:西安建筑科技大学, 2008.
    [36]石婷.活性污泥数学模型(ASM1)水质特性参数研究[D].西安:西安建筑科技大学, 2007.
    [37]张代钧,卢陪利,陈丹琴等.传统活性污泥法COD去除及脱氮改造的模拟[J].环境科学学报, 2002, 22(4): 448-453.
    [38]赵玲.城市污水单相活性污泥处理系统计算机模拟—ASM3[D].西安:西安建筑科技大学, 2005.
    [39]鞠兴华.城市污水活性污泥生物脱氮模型及模拟研究[D].西安:西安建筑科技大学, 2008.
    [40]朱向东,郝二成,周军等. ASM2d模型在北京高碑店污水处理厂的应用[J].给水排水, 2007, 33(4): 101-104.
    [41]王闯,顾国维,王磊.活性污泥数学模型及其在污水处理厂设计中的应用[C].中国土木工程学会第十届年会.土木工程与高新技术——中国土木工程学会第十届年会论文集, 2002: 483-487.
    [42]卢培利.传统活性污泥过程及其生物脱氮除磷改造的动力学模拟研究[D].重庆:重庆大学, 2002.
    [43]施汉昌,刁慧芳,刘恒等.污水处理厂运行模拟、预测软件的应用[J].中国给水排水, 2001, 17(10): 61-63.
    [44]季民,霍金胜,胡振苓等.活性污泥法数学模型的研究与应用[J].中国给水排水, 2001, 17(8): 18-22.
    [45]周振.活性污泥系统的计算机模拟[D].上海:同济大学, 2006.
    [46]李志颖.城市污水活性污泥系统模拟[D].西安:西安建筑科技大学, 2003.
    [47]刘锋华. SBR工艺的MATLAB仿真模型研究[D].江苏:江苏大学, 2002.
    [48]刘峻岭. SBR工艺数学模型的研究与应用[D].北京:北京交通大学, 2007.
    [49]李秀莲. CASS工艺处理造纸中段废水的建模研究[D].西安:西安建筑科技大学, 2008.
    [50]杨力,张盼月,曾光明等. ASM No.2d模型模拟SBR工艺同步脱氮除磷效能[J].环境工程学报, 2008, 2 (5): 599-603.
    [51]刘礼祥,章北平,周红燕等.一体化CIBR反应器的低温脱氮除磷中试[J].中国给水排水, 2006, 22 (19): 21-24.
    [52] Lixiang Liu, Beiping Zhang, Xiaohui Wu, et al. Simultaneous removal of nitrogen and phosphorous from municipal wastewater using continuous-flow integrated biological reactor[J]. Journal of Environmental Engineering, 2008, 134(3): 169-176.
    [53] Ky R.C., Comeau Y., Perrier M., et al. Modeling of the biological phosphorus removal from a cheese factory effluent by an SBR[C]. 2nd International Symposium on Sequencing Batch Reactor Technology. 2000, 118-126, Narbonne, France.
    [54]高志广.城市污水脱氮除磷过程模拟及工艺优化运行研究[D].上海:同济大学, 2006.
    [55]朱明权.利用COD指标进行活性污泥法系统的设计[J].中国给水排水, 1999, 15(2): 18-24.
    [56]王鹏.城市污水活性污泥处理系统模拟—ASM2D[D].重庆:重庆大学, 2007.
    [57]蒋茹,曾光明,黄国和等.活性污泥系统优化设计对不确定性参数的灵敏度研究[J].环境污染与防治, 2004, 26(6): 404-40.
    [58] Zer C, Glen T, Daigger S P, et al. Evaluation of IAWQ Activated Sludge Model No.2 using steady-state data from four full-scale wastewater treatment plants [J]. Wat. Enviro. Res., 1998, 70(6): 1216-1223.
    [59]卢培利,张代钧,严晨敏等.活性污泥动力学模型应用中的参数校核[J].环境科学与技术, 2002, 25(5): 13-15.
    [60]揭大林,操家顺,花月等. WEST仿真软件在污水处理中的应用研究[J].环境工程学报, 2007, 1(3): 138-141.
    [61]沈静珠.过程系统优化[M].北京:清华大学出版社, 1994, 25-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700