鲫鱼PKR-like(PKZ)Zα结构域与d(GC)、d(TA)重组质粒的亲和性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Zα是能够识别并特异性结合左旋DNA(Z-DNA)的蛋白结构域。鲫鱼PKR-like(PKZ)是首次报道的具有Zα结构域的鱼类蛋白激酶。为深入了解鲫鱼PKR-like(PKZ)Zα的功能,本研究构建替换型P_(Zα1Zα1)的cDNA,并运用PCR定点突变方法构建点突变型(P_(Zα)~(K34A),P_(Zα)~(S35A), P_(Zα)~(R39A) P_(Zα)~(P57A))的cDNA,然后与表达载体连接,转化表达菌BL21(DE3)pLysS并诱导表达。同时,诱导表达野生型P_(Zα1Zα2)。镍柱亲和层析纯化获得突变型融合多肽。
     另一方面,以pMD18-T质粒为母本质粒,将含有(GC)_6、d(GC)_(13)、d(TA)_(13)片段的特殊序列插入到pMD18-T质粒中。甲基化抑制实验证实重组质粒中的插入序列d(GC)_6、d(GC)_(13)为“潜在”的Z-DNA。另外,还构建了发夹结构的核酸(d(GC)_3T_4d(GC)_3、d(GC)_6T_4d(GC)_6)和寡聚核苷酸(d(GC)_6、d(GC)_(13))。
     凝胶阻滞试验分析3种多肽,即野生型P_(Zα1Zα2)、替换型P_(Zα1Zα1)和4个点突变型(P_(Zα)~(K34A), P_(Zα)~(S35A), P_(Zα)~(R39A) P_(Zα)~(P57A)),分别与重组质粒的亲和性。结果显示:野生型P_(Zα)(Zα1Zα2)和替换型P_((Zα1)2)(Zα1Zα1)能够对3种重组质粒的迁移产生明显的阻滞效应,并且随着多肽浓度的增大,阻滞效应越明显。与野生型P_(Zα)(Zα1Zα2)相比,替换型P_((Zα1)2)(Zα1Zα1)结合重组质粒的能力更强。4种突变体都不能与3种重组质粒结合,暗示鲫鱼PKR-like Zα结构域这4个氨基酸残基在结合核酸分子的过程中非常关键。
     凝胶阻滞实验还分析了野生型P_(Zα1Zα2)和替换型P_(Zα1Zα1)分别与发夹结构的核酸、寡聚核苷酸的亲和性,结果显示:野生型P_(Zα1Zα2)和替换型P_(Zα1Zα1)能够与其发生微弱的结合,但其结合能力差异不明显。
Zαdomain can recognise and specially bind to left-handed DNA(Z-DNA).The Carassius auratus PKR-like (CaPKR-like)(PKZ), identifided as the first fish protein kinase, contains Z-DNA binding domain, Za. In order to insight the CaPKR-like Zαmotif, the cDNAs encoded substitution P_((Zα1)2)(Zα1Zα1) and site-mutations (P_(Zα)~(K34A),P_(Zα)~(S35A), P_(Zα)~(R39A) P_(Zα)~(P57A)) constructed by site-directed mutagenesis were linked into experssion vector and transformed into BL21(DE3) pLysS, then induced by IPTG The mutation fusion peptides were obtained by affinity chromatography as wel as wildtype P_(Zα1Zα2).
     At the same time, three recombinant plasmids for mimic Z-DNA, containing d(GC)_6 or d(GC)_(13) or d(TA)_(13) insert respectively, were successfully constrcuted as well as hairpins (d(GC)_3T_4d(GC)_3,d(GC)_6T_4d(GC)_6) and oligodeoxynucleotides (d(GC)_6, d(GC)_(13)). The results of methylation inhibition demonstrated that d(GC)_6 and d(GC)_(13) inserts were "latent" Z-DNA. Theses implied that CaPKR-like Za peptide could bind to the inserted fragments d(GC)_6 or d(GC)_(13) within the recombinant plasmids then gave rise to the band shift effection.
     The wild type P_(Zα1Zα2) and substitution P_(Zα1Zα1) rather than 4 mutations (P_(Zα)~(K34A), P_(Zα)~(S35A), P_(Zα)~(R39A) P_(Zα)~(P57A)) were capable to bind to the three recombinant plasmids in vitro and the affinity enhanced in the present of increasing amounts of protein. In addition, compared with affinity of wild type P_(Zα), substitution P_(Zα1Zα1) was stronger. 4 mutations (P_(Zα)~(K34A), P_(Zα)~(S35A), P_(Zα)~(R39A), P_(Zα)~(P57A)) had no ability to bind to d(GC) and d(TA) recombinant plasmids by the gel mobility shift assay, this result suggested that the 4 amino acids are important to Za binding to DNA.
     The affinity was also detected by the native-PAGE that wild type P_(Zα1Zα2) and substitution P_(Zα1Zα1) binding to hairpins and oligodeoxynucleotides respectively. These peptides were weakly capable to bind to hairpins and oligodeoxynucleotides. No difference was observed between wild type P_(Zα1Zα2) and substitution P_(Zα1Zα1) binding to this kinds of nucleis acids.
引文
[1] Kaufman RJ. Control of gene expression at the level of translation initiation. Curr. Opin.Biotechnol, 1994, 5(5):550-557
    [2] Samuel CE. The eIF-2 alpha protein kinases,regulators of translation in eukaryotes from yeasts to humans. J. Biol. Chem., 1993, 268(11):7603-7606
    [3] Hanks SK, Hunter T. Protein kinases 6.The eukaryotic protein kinase superfamily: kinase(catalytic) domain structure and classification.E4SE5 J, 1995, 9(8):576-596
    [4] Chen JJ, Throop MS, Gehrke L, Kuo I, Pal JK, Brodsky M, London IM. Cloning of the cDNA of the heme-regulated eukaryotic initiation factor 2a (eIF-2a) kinase of rabbit reticulocytes: Homology to yeast GCN2 protein kinase and human double-stranded RNA dependent eIF-2a kinase. Proc. Natl. Acad. Sci. USA., 1991, 88:7729-7733
    [5] Inuzuka T, Yun BG, Ishikawa H, Takahashi S, Hori H, Matts RL, Ishimori K, Morishima I. Identification of Crucial Histidines for Heme Binding in the N-terminal Domain of the Heme-regulated eIF2a Kinase. J. Biol. Chem., 2004,279(8):6778-6782
    [6] Rafie-Kolpin M, Chefalo PJ, Hussain Z, Hahn J, Uma S, Matt RL, Chen JJ. Two heme-binding domains of heme-regulated eukaryotic initiation factor-2a kinase. J. Biol.Chem., 2000,275(7):5171-5178
    [7] Tanaka H, Samuel CE. Mechanism of interferon action: Structure of the mouse PKR gene encoding the interferon-inducible RNA-dependent protein kinase. Proc. Natl. Acad. Sci. USA.,1994,91:7995-7999
    [8] Mellor H, Flowers KM, Kimball SR, Jefferson LS. Cloning and characterization of a cDNA encoding rat PKR, the double-stranded RNA-dependent eukaryotic initiation factor-2 kinase.Biochim.Biophys.Acta., 1994,1219:693-696
    [9] Patel RC, Staanton P, Sen GC. Specific mutations near the amino terminus of double-stranded RNA-dependent protein kinase (PKR) differentially affect its double-stranded RNA binding and dimerization properties. J. Biol. Chem. 1996,271:25657-25663
    [10] Mccormack SJ, Thomis DC, Samuel C E. Mechanism of interferon action: identification of a RNA binding domain within the N-terminal region of the human RNA-dependent Pl/eIF-2a protein kinase. Virology. 1992,188:47-56
    [11] Green SR, Manche I, Mthew MB. Two functionally distinct RNA binding motifs in the regulatory domain of the protein kinase, DAL. Mol. Cell. Biol., 1995,15: 358-364
    [12] Hanks SK, Quinn AM, Hunter T. The protein kinase familyxonserved features and deduced phylogeny of the catalytic domains. Science. 1988,241:42-52
    [13] Wek RC, Jackson BM, Hinnebusch AG Juxtaposition of domains homologous to protein kinases andhistidyl-tRNA synthetases in GCN2 protein suggests a mechanismfor coupling GCN4 expression to amino acid availability. Proc. Nail. Acad. Sci. USA., 1989, 86:4579-4583
    [14] Roussou I, Thireos G, Hauge BM.Transcriptional-translational regulatory circuit in Saccharomyces cerevisiae which involves the GCN4 transcriptional activator and the GCN2 protein kinase. Mol. Cell. Biol., 1988, 8(5):2132-2139
    [15] Ramirez M, Wek RC, Vazquez de Aldana CR, Jackson BM, Freeman B, Hinnebusch AG Mutations activating the yeast eIF-2 alpha kinase GCN2: isolation of alleles altering the domain related to histidyl-tRNA synthetases. Mol. Cell. Biol, 1992,12(12): 5801-5815
    [16] Hinnebusch,A.GThe eIF-2 alpha kinases:regulators of protein synthesis in starvation and stress.Semin. Cell. Biol.1994;5:417-426
    [17] Shi YG,Vattem KM, Sood R,An J,Liang JD, Stramm L,Wek RC. Identification and characterization of pancreatic eukaryotic initiation factor 2a-subunit kinase, PEK, involved in translational control.Mol. Cell. Biol., 1998,18(12):7499-7509
    [18] Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol.Cell. 2000,5(5):897-904
    [19] Haro CD, Mendez R, Santoyo J. The eIF-2 alpha kinases and the control of protein synthesis.FASEBJ, 1996,10(12):1378-1387
    [20] 朱蓉.牙鲆eIF2α激酶基因HRI和PKR的克隆表达及功能分析.中国科学院理学博士学位论文,2006
    [21] Garner JN, Joshi B, Jagus R. Characterization of rainbow trout and zebrafish eukaryotic initiation factor 2a and its response to endoplasmic reticulum stress and IPNV infection. Dev.Comp. Immunol. 2003,27(3):217-231
    [22] Zhu R, Zhang YB, Chen YD, Dong CW, Zhang FT, Zhang QY, Gui JF. Molecular cloning and stress-induced expression of Paralichthys olivaceus heme-regulated initiation factor 2a kinase. Dev. Comp. Immunol. 2006,30:1047-1059
    [23] Zhu R, Zhang YB, Zhang QY, Gui JF. Functional domains and the antiviral effect of the dsRNA-dependent protein kinase PKR from Paralichthys olivaceus J.Virol.,2008, 82(14):6889-6901
    [24] Rothenburg S, Deigendesch N, Dey M, Dever TE, Tazi L. Double-stranded RNA-activated protein kinase PKR of fishes and amphibians: Varying the number of double-stranded RNA binding domains and lineage-specific duplications. http://www.biomedcentral.com/1741-7007/6/12
    [25] Hu CY, Zhang YB, Huang GP, Zhang QY, Gui JF. Molecular cloning and characterization of a fish PKR-like gene from cultured CAB cells induced by UV-inactivated virus. Fish Shellfish Immunol. 2004,17(4): 353-366
    [26] Rothenburg S, Deigendesch N, Dittmar K, Koch-Nolte F, Haag F, Lowenhaupt K, Rich A. A PKR-like eukaryotic initiation factor 2-kinase from zebrafish contains Z-DNA binding domains instead of dsRNA binding domains. Proc. Nail. Acad. Sci. USA., 2005, 102(5):1602-1607.
    [27] Bergan V, Jagus R, Lauksund S, Kileng 0, Robertsen B. The Atlantic salmon Z-DNA binding protein kinase phosphorylates translation initiation factor 2 alpha and constitutes a unique orthologue to the mammalian dsRNA-activated protein kinase R. FEBS. J. 2008,275(1):184-197
    [28] Su JG, Zhu ZY, Wang YP. Molecular cloning, characterization and expression analysis of the PKZ gene in rare minnow Gobiocypris raras. Fish Shellfish Immunol., 2008,25(l-2):106-l 13
    [29] 胡成钰.鲫鱼PKR-like基因的鉴定及其特征分析.中国科学院理学博士学位论文,2004
    [30] Herbert A, Alfken J, Kim YG, Mian IS, Nishikura K, Rich A. A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc. Nail.Acad. Sci. USA., 1997, 94(16): 8421-8426
    [31] Schwartz T, Behlke J, Lowenhaupt K, Heinemann U, Rich A. Structure of the DLM-1-Z-DNA complex reveals a conserved family of Z-DNA-binding proteins. Nat. Struct.Biol., 2001, 8(9): 761-765
    [32] Kahmann JD, Wecking DA, Putter V, Lowenhaupt K, Kim YG, Schmieder P, Oschkinat H,Rich A, Schade M. The solution structure of the N-terminal domain of E3L shows a tyrosine conformation that may explain its reduced affinity to Z-DNA in vitro. Proc. Nail. Acad. Sci.USA., 2004, 101(9): 2712-2717
    [33] Kim YG, Lowenhaupt K, Maas S, Herbert A, Schwartz T, Rich A. The Zab domain of the human RNA editing enzyme ADAR1 recognizes Z-DNA when surrounded by B-DNA. J.Biol. Chem., 2000,275(35): 26828-26833.
    [34] Brown Ⅱ BA, Lowenhaupt K, Wilbert CM, et al. The Zα domain of the editing enzyme dsRNA adenosine deaminase binds left-handed Z-RNA as well as Z-DNA. Proc. Natl. Acad.Sci. USA.,2000, 97(25): 13532-13536
    [35] Oh DB, Kim YG, Rich A. Z-DNA-binding proteins can act as potent effectors of gene expression in vivo. Proc. Natl. Acad. Sci. USA., 2002,99(26):16666-16671
    [36] Kim YG, Lowenhaupt K, Schwartz T, Rich A. The interaction between Z-DNA and the Zab domain of double-stranded RNA adenosine deaminase characterized using fusion nucleases.J. Biol. Chem., 1999,274(27):19081-19086
    [37] Liu Y, Herbert A, Rich A, Samuel CE. Double-stranded RNA-specific adenosine deaminase:Nucleic acid binding properties. Methods, 1998,15(3): 199-205
    [38] Herbert A, Rich A. The role of binding domains for dsRNA and Z-DNA in the in vivo editing of minimal substrates by ADAR1. Proc. Natl. Acad. Sci. USA., 2001, 98(21): 12132-12137
    [39] Kim YG, Muralinath M, Brandt T, Pearcy M, Hauns K, Lowenhaupt K, Jacobs BL, Rich A. A role for Z-DNA binding in vaccinia virus pathogenesis. Proc. Natl. Acad. Sci. USA., 2003,100(12): 6974-6979
    [40] Kim YG, Lowenhaupt K, Oh DB, Kim KK, Rich A. Evidence that vaccinia virulence factor E3L binds to Z-DNA in vivo: Implications for development of a therapy for poxvirus infection.Proc.Natl.Acad.Sci. USA.,2004,101(6): 1514-1518
    [41] Rothenburg S, Schwartz T, Koch-Nolte F, Haag F. Complex regulation of the human gene for the Z-DNA binding protein DLM-1. Nucleic Acids Res., 2002, 30(4): 993-1000
    [42] Ha SC, Quyen DV, Hwang HY, Oh DB, Brown II BA, Lee SM, Park HJ, Ahn JH, Kim KK,Kim YG Biochemical characterization and preliminary X-ray crystallographic study of the domains of human ZBP1 bound to left-handed Z-DNA. Biochim. Biophys. Acta., 2006,1764(2): 320-323
    [43] Pham HT, Park MY, Kim KK, Kim YG, Ahn JH. Intracellular localization of human ZBP1:Differential regulation by the Z-DNA binding domain, Zalpha, in splice variants. Biochem.Biophys. Res. Commun., 2006, 348(1): 145-152
    [44] 胡成钰,谢宗波,张义兵,陈玉栋,邓政东,蒋珺,桂建芳.鲫鱼蛋白激酶PKR-like的Zα结构域与聚肌胞苷酸的结合.动物学研究,2005,26(3):237-242
    [45] Schade M, Turner CJ, Lowenhaupt K, Rich A, Herbert A. Structure-function analysis of the Z-DNA-binding domain Za of dsRNA adenosine deaminase type I reveals similarity to the (α+β) family of helix-turn-helix proteins. EMBO. J. 1999, 18(2):470-479
    [46] Schwartz T, Rould MA, Lowenhaupt K, Herbert A, Rich A. Crystal structure of the Zalpha domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science, 1999,284(5421): 1841-1845
    [47] Athanasiadis A, Placido D, Maas S, Brown Ⅱ BA, Lowenhaupt K, Rich A. The crystal structure of the Zbeta domain of the RNA-editing enzyme ADAR1 reveals distinct conserved surfaces among Z-domains. J. Mol. Biol., 2005, 351(3): 496-507
    [48] Sambrook J,Russell DW黄培堂等译.分子克隆:实验指南.北京:科学出版社,2002.第三版
    [49] 陶敏.鲫鱼 PKR-like Zα结构域与核酸的亲和性及趋化因子等蛋白质的适应性进化.南昌大学理学硕士学位论文.2008
    [50] Gessner RV, Quigley GJ, Wang AH, van der Marel GA, van Boom JH, Rich A. Structural basis for stabilization of Z-DNA by cobalt hexaammine and magnesium cations.Biochemistry, 1985,24(2): 237-240
    [51] Egli M, Williams LD, Gao Q, Rich A. Structure of the pure-spermine form of Z-DNA (magnesium free) at 1-A resolution. Biochemistry, 1991, 30(48): 11388-11402
    [52] Feigon J, Wang AH, van der Marel GA, van Boom JH, Rich A. A one- and two-dimensional NMR study of the B to Z transition of (m5dC-dG)3 in methanolic solution. Nucleic Acids Res., 1984,12(2): 1243-1263
    [53] Klysik J, Stirdivant SM, Larson JE, Hart PA, Wells RD. Left-handed DNA in restriction fragments and a recombinant plasmid. Nature, 1981,290(5808): 672-677
    [54] Ho PS, Ellison MJ, Quigley GJ, Rich A. A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences. EMBO J., 1986, 5(10):2737-2744
    [55] Schroth GP, Chou PJ, Ho PS. Mapping Z-DNA in the human genome. Computer-aided mapping reveals a nonrandom distribution of potential Z-DNA-forming sequences in human genes.J.Biol. Chem., 1992,267(17): 11846-11855
    [56] Liu LF, Wang JC. Supercoiling of the DNA template during transcription. Proc. Natl. Acad.Sci. USA., 1987,84(20): 7024-7027
    [57] McLean MJ, Blaho JA, Kilpatrick MW, Wells RD. Consecutive A-T pairs can adopt a left-handed DNA structure. Proc. Natl Acad. Sci. USA., 1986, (83): 5884-5888
    [58] Ellison MJ, Feigon J, Kelleher Ⅲ RJ, Wang AHJ,Habener JF, Rich A. An assessment of the Z-DNA forming potential of alternating dA-dT stretches in supercoiled plasmids.Biochemistry. 1986, (25): 3648-3655
    [59] Lushnikov AY, Brown BA, Oussatcheva EA, Potaman VN, Sinden RR, Lyubchenko YL..Interaction of the Za domain of human ADAR1 with a negatively supercoiled plasmid visualized by atomic force microscopy. Nucleic Acids Res., 2004,32(15): 4704-4712
    [60] Vardimon L, Rich A. In vitro methylation of B-DNA and Z-DNA. Prog. Clin. Biol. Res. 1985,198:23-35.
    [61] Gessner RV, Quigley GJ, Wang AH, van der Marel GA, van Boom JH, Rich A. Structural basis for stabilization of Z-DNA by cobalt hexaammine and magnesium cations.Biochemistry, 1985, 24(2): 237-240
    [62] Herbert A, Schade M, Lowenhaupt K, Alfken J, Schwartz T, Shlyakhtenko LS, Lyubchenko YL, Rich A. The Zalpha domain from human ADAR1 binds to the Z-DNA conformer of many different sequences. Nucleic Acids Res., 1998,26(15): 3486-3493
    [63] Schade M, Behlkec J, Lowenhaupta K, Herbert A, Rich A, Oschkinat H. A 6 bp Z-DNA hairpin binds two Za domains from the human RNA editing enzyme ADAR1. FEBSL. 1999,458:27-31
    [64]Quyen DV, Ha SC, Lowenhaupt K, Rich A, Kim, KK, Kim YG Characterization of DNA-binding activity of Za domains from poxviruses and the importance of the b-wing regions in converting B-DNA to Z-DNA. Nucleic Acids Res., 2007,35(22):7714-7720
    [65]Lafer EM, Sousa R, Rich A. Anti-Z-DNA antibody binding can stabilize Z-DNA in relaxed and linear plasmids under physiological conditions. EMBO J., 1985,4(13B):3655-3660
    [66]谢宗波.鲫鱼PKR-like Zα结构域的表达及其与核酸的亲和性分析.南昌大学理学硕士学位论文,2006
    [67]时俊华,陶敏,许丹,等.Z-DNA结合蛋白与Zα结构域.生命的化学.2008,28(2):165-168
    [68]陶敏,吴初新,杨攀,等.鲫鱼PKR-like Zα与d(GC)_(13)质粒的结合及其适应性进化.细胞生物学杂志,2008,30(4):494-498

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700