活性炭粉末在布袋除尘器上吸附汞研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焚烧烟气汞排放控制受到国内外普遍重视。目前垃圾焚烧厂广泛采用活性炭喷射+布袋除尘脱汞传统技术,但活性炭的喷射量只占飞灰与活性炭混合物总量的5%,活性炭的利用率和脱汞效率低。为了解决上述问题,提出了纯活性炭粉末+布袋脱汞新技术,在小型布袋脱汞实验台上进行了不同混合比的炭灰混合物脱汞比较实验研究和纯活性炭粉末在布袋除尘器上脱汞影响因素研究。
     1、不同混合比的炭灰混合物脱汞比较实验研究。结果表明:在80℃的吸附温度下,纯活性炭粉末初次吸附前85min的平均脱汞效率为99.1%,脱汞效率在75%以上的吸附时间为1335min;纯飞灰在初次吸附的前85min的平均脱汞效率仅为19.3%,165min时脱汞效率已经下降为零。纯活性炭粉末掺杂飞灰比例分别为0%、20%、50%、80%、95%时,初次吸附前85min的平均脱汞效率分别为99.1、95、85.3、79.7、59.6、19.3%,脱汞效率在75%以上的累计汞吸附量分别为196.1、172.5、133.8、123.6、21.7μg Hg/g AC。另外,纯活性炭粉末在布袋除尘器上的汞吸附饱和量可达1667μg Hg/g AC。这些结果表明,布袋+纯活性炭粉末脱汞新工艺在脱汞效率和活性炭利用率方面都有明显的优势。
     2、纯活性炭粉末在布袋除尘器上脱汞影响因素研究。结果表明:吸附温度从80℃上升到170℃时,前65min的平均脱汞效率由99.6%下降到43.2%;吸附温度为100℃,添加体积分数为8% H_2O(g)时,前65min的脱汞效率从无H2O(g)时的75.5%升高到84.6%,但水蒸气含量进一步升高(12%)反而导致脱汞效率降低,纯活性炭粉末的脱汞效率随着活性炭加入量的增加而升高;降低布袋过滤速度能提高纯活性炭粉末脱汞效率;提高汞初始浓度有利于纯活性炭粉末吸附汞。
     3、以烟气排量为1500000m3/h的300MW燃煤电厂锅炉为例,采用布袋+纯活性炭脱汞新方法,估算活性炭年用量为492吨,约为活性炭喷射+布袋除尘脱汞传统方法的1/9,每年节省活性炭成本1579.2万元。
Control of mercury emissions from combustion flue gas has been paid more attention at home and abroad. In mercury capture by activated carbon injection upstream bag filters used widely in MSW at present, the utilization rate and mercury efficiency of activated carbon were very low because the amount of activated carbon was only 5% in the mixture attaching on the surfaces of the bags. The purpose of the current study is to improve Hg0 removal efficiency of activated carbon injection upstream a bag filter and the utilization ratio of powder activated carbon (PAC). Mercury removal experiments were conducted in a small-scale bag filter with different proportions of powder activated carbon (PAC) and fly ash, and and to investigate the influence factors on mercury removal by PAC in bag filter.
     For comparison, many mercury removal experiments were conducted in a small-scale bag filter with mixture of different proportions of PAC and fly ash. The results indicated that the average mercury removal efficiency (AMRE) was 99.1% within 85 minutes for the first adsorption, and the adsorption time was 1335 minutes with removal efficiency above 75% with pure PAC as sorbent, while the AMRE within 85 minutes for the first adsorption was 19.3% and the removal efficiency fell to nil after 165 minutes with fly ash as the sorbent. The AMRE within 85 minutes for the first adsorption were 99.1% ,95%, 85.3%, 79.7% and 59.6%, and the mercury adsorption capacity with removal efficiency above 75% were 196.1 172.5, 133.8, 123.6 and 21.7μg Hg/g AC with the sorbents of fly ash proportion of 0%, 20%, 50%, 80% and 95% respectively. The PAC had a saturation capacity of 1667μg Hg/g AC at 80℃. These results indicated that the mercury removal technology by pure PAC on bag filter had the obvious superiority in mercury removal efficiency and the utilization ratio of PAC compared to the traditional process by PAC together with fly ash.
     Experiments on the influence factors on mercury removal by pure PAC in bag filter were performed. The results indicated that the average mercury removal efficiency (AMRE) decreased from 99.6% to 43.2% within 65min as the adsorption temperature increased from 80℃to 170℃, and increased from 75.5% to 84.6% as the volume fraction of flue gas H2O(g) increased from 0% to 8% at 100℃, but the Hg0 removal efficiency reduced instead when H2O(g) content further increased to 12%. Higher PAC mass loading and lower filtration flow velocity could also improve the AMRE of the PAC. The AMRE decreased as the inlet Hgo concentration increased at 150℃.
     For flue gas of 1500000m3/h in a 300 MW (thermal power) coal-fired power plant boiler, the estimated annual consumption of PAC is about 492 tons with the mercury removal by pure PAC on bag filter, which is only about 1/9 of that by PAC together with fly ash on bag filter, thus it will save $15.792 million RMB in consumption of PAC every year.
引文
[1]高洪亮.模拟焚烧烟气中汞形态转化及脱除技术的实验研究[D].浙江大学机械与能源工程学院,2004.
    [2]魏国强,何伯述,王丽莉.燃煤电厂烟气汞排放技术[J].环境保护,2007,(7):61-65.
    [3]生活垃圾焚烧污染控制标准[S].国际环境保护总局文件,环发[2000]46号,2000.3.1.
    [4]郑楚光.燃煤痕量元素的排放与控制[M].湖北科学技术出版社,2002,11.
    [5]冯新斌,洪业汤.密闭溶样两次金汞齐冷原子吸收光谱法测定煤种微量汞[J].分析测试学报,1998,12(6):312-316.
    [6]徐明厚.燃煤痕量元素的排放与控制[M].湖北科学技术出版社,2002,10-11.
    [7]王起超,沈文国,麻壮伟.中国燃煤汞排放量估算[J].中国环境科学,1999,194:318-321.
    [8] Reimann D O. Deposition of airborne mercury near point sources [J]. Water, Air, and Soil pollution, 974,13:179-193.
    [9]王少峰,冯新斌,仇广乐等.大气汞的自然来源研究进展[J].地球与环境,2006,34(2):1-7.
    [10] Thomas D, Brown, Dennis N, Smith, Richard A. Hargis, Jr, and Winiam J, et el. Control of mercury emissions from coal-fired power plants:a preliminary cost assessment and the next steps for accurately assessing control costs [J]. Fuel Processing Technology, 2000, 65-66:311-341.
    [11] UNECE, EMEP. Atmospheric Emission Inventory Guidebook, 3rd Edition [R]. Copenhagen: European Environment Agency, 2004.
    [12]王书肖,刘敏,蒋靖坤等.中国非燃煤大气汞排放量估算[J].环境科学,2006,27(12):2401-2406.
    [13]任建莉,周劲松,骆仲泱等.煤中汞燃烧过程析出规律试验研究[J].环境科学学报,2002,22(3),289-293.
    [14] C. Ramsay, R.George.Mercury Emission Control Technologie. an EPRI synopsis [J]. Power Engineering, 1995, (11):51-57.
    [15]贺军,白明华,李秋荣等.电晕放电等离子体烟气脱硫放电极的试验研究[J].环境科学与技术,2010,33(4):154-156.
    [16] C R Mclaronom, M D Jones. Electro-Catalytic Oxidation Process for Multi-Pollutant Control an FirstEnergy’s R.E. Burger Generating Station [J], Presented an Electric Power 2000 Cincinnati Convention Center April 5, 2000.
    [17]鲍静静,杨林军,蒋振华等.湿法脱硫工艺对汞的脱除性能研究进展[J].现代化工2008, 28(3):31-35.
    [18]赵毅,陈周燕,汪黎东等.湿式烟气脱硫系统同时脱汞研究[J].环境工程学报,2008,2(1):64-69.
    [19] Ghorishi S B,Gullett B K. An experimental study on mercury sorption by activated carbons and calcium hydroxide, The fifth annual north American waste-to-energy conference, 1997[C].Research Triangle Paik, NC.
    [20] Gullerr B K,Raghunathan K. The effect of sorbent injection technology on emissions of coal-based,metallic air toxics [J]. Waste Management, 1998, 18(6):473-483.
    [21] Ghorishi S B, Sedman C B. Low concentration mercury sorption mechanisms and control by calcium-based sorbents:Application in coal-fired processes [J]. Journal of the Air & Waste Management Association, 1998, 48(5):1191-1198.
    [22] Stouffer M R, Rosenhoover W A, Burke F P. Investigation of flue gas mercury measurement and control for coal-fired sources, Proceedings of the 1996 air & waste management association's 89th annual meeting & exhibition, 1996[C].Nashville, TN, USA.
    [23]任建莉,周劲松,骆仲泱等.钙基类吸附剂脱除烟气中气态汞的试验研究[J].燃料化学学报,2006,34(5):557-561.
    [24]赵旭东,项光明,姚强等.干法烟气脱硫固体颗粒物循环特性及微观机理研究[J].中国电机工程学报,2006,26(1):70-76.
    [25]任建莉.燃煤过程汞析出及模拟烟气中汞吸附脱除试验和机理研究.浙江大学[D], 2003,3:31-32.
    [26]吴彦,占部武生.脉冲放电法消除汞蒸气的试验研究[J].环境科学学报,1996,16(2):221-225.
    [27] C R McLarnon, M D Jones. Electro-Catalytic Oxidation Process for Multi-Pollutant Control at First Energys R.E. Burger Generating Station [J]. Presented at Electric Power 2000 Cincilnnati Convention Center April 5,2000.
    [28] Juyoung Jeong, Jongsoo Jurng. Removal of gaseous elemental mercury by dielectric barrier discharge [J]. Chemosphere,2007,68(10):2007-2010.
    [29]高洪亮,王向宇,周劲松等.煤添加石灰石对燃煤电站汞排放的影响[J].电站系统工程,2007,23(4):8-10.
    [30] Ye Zhuang, Jeffrey S Thompson, Chris J Zygarlicke, et al. Impact of calcium chloride addition on mercury transformations and control in coal flue gas [J]. Fuel, 2007, 86(15):2351-2359.
    [31] Stouffer M R, Rosenhoover W, A Burke F P, et el. Investigation of flue gas mercury measurement and control for coal-fired sources, Proceedings of the Air & Waste Management Associations Annual Meeting & Exhibition, 1996[C]. Nashville, TN, USA.
    [32]向飞.西南地区燃煤烟气汞吸附与电化学回收的研究.上海交通大学[D],2008,1:13-14.
    [33]侯明,胡存杰,钱建平.交联壳聚糖对汞(Ⅱ)的吸附性能[J].桂林国学院学报,2004, 24(2):223-226.
    [34]高鹏,向军,毛金波.高分子化合物壳聚糖脱除燃煤烟气中汞的实验研究[J].中国电机工程学报,2006,26(24):88-93.
    [35]蒋荣芳,马小杰.气态汞净化滤料去除汞性能研究[J].中国公共卫生,2001,17(8):673-674.
    [36] MalyubaA Abu-Daabes, NevilleG Pinto. Synthesis and characterization of a nanostructured sorbent for the direct removal of mercury vapor from flue gases by chelation [J]. Chemical Engineering Science, 2005, 60(7):1901-1910.
    [37] W D Owern, A F Sarofim, D W Pershing. The use of recycle for enhanced volatile metal capture, Trace elements transformation in coal-fired power systems workshop, 1993[C].Scottsdale, AZ.
    [38] Kevin C Galbreath, Christopher J Zygarlicke. Mercury transformations in coal combustion flue gas [J]. Fuel Processing Technology, 2000,65-66:289-310.
    [39] Mei Xin, Mae Sexauer Gustin, Kenneth Ladwing. Laboratory study of air-water-coal combustion product(fly ash and FGD solid) mercury exchange [J]. Fuel, 2006,85(16):22602267.
    [40]王立刚,彭素萍,陈昌和.燃煤飞灰对锅炉烟道气中Hg0的吸附特性[J].环境科学,2003,24(6):59-62.
    [41] William J O’Dowd, Richard A Hargis, Evan J Granite, et al. Recent advances in mercury removal technology at the National Energy Technology Laboratory[J].Fuel Processing Technology, 2004,85(6-7):533-548
    [42] S J Miller, D L Laudal, G E. Dunham.Pilot-scale investigation of mereury control in baghousex, In Proceedings of the EPRI/DOE intemational conference on managing ghazardous and Particulate pollutants, 1995[C].Toronto, Canada.
    [43] M Mercedes Maroto-Valer, Yinzhi Zhang, Evan J Granite, et al. Effect of porous structure and surface functionality on the mercury capacity of a fly ash carbon and its activated sample [J]. Fuel Processing Technology, 2005, 84(1):105-108.
    [44] K C Galbreath, C J Zygarlicke. Mercury transformation in coal combustion flue gas [J]. Fuel processing technology, 2000, 65-66:289-310.
    [45] S V Krishnan, B K Gullett, W Jozewicz. Mercury control in municipal waste combustion and coal-fired utilities [J]. Environmental Progress, 1997,16:47-53.
    [46] A Lancia, D Musmarra, F Pepe, G Volpicelli. Adsorption of mercury chloride vapours from incinerators flue gases on calcium hydroxide particles [J]. Combustion Science, 1993, 93:277-289.
    [47] W Jozewicz, B K Gullett. Reaction mechamisms of dry Ca-based sorbents with gaseous HCl [J]. Ind.Eng.Chem.Res,1995,34:607-612.
    [48] V L Shashkov, L P Mukhlenov, E Ya Benyash, V L Ostanina. Effect of mercury vapors on the oxidation of sulfur dioxide in a fluidized bed of vanadium catalyst [J]. Khim. Promst, 1971,47:288-290.
    [49] L L Zhao, G T Rochelle. Mercury adsorption in aqueous oxidants catalyzed by mercury(Ⅱ)[J]. Ind.Eng.Chem.Res, 1998,37:380-387.
    [50] Chandler A J; Rigo H G. Effect of temperature control and carbon injection on the control of municipal solid waste incinerator emissions-a retrofit demonstration, Proceedings of the Air & Waste Management Association's Annual Meeting & Exhibition, 1996[C].Nashville, TN, USA.
    [51] Mazluk J Jr. Comparison of dry sorbent injection of sodium bicarbonate, lime, and carbon and their control of dioxins/furans, mercury, chlorides, and sulfur dioxide, Proceedings of the Air & Waste Management Association's Annual Meeting & Exhibition, 1996[C].Nashville, TN, USA.
    [52] Huang H S, Wu J M, Livengood C D. Development of Dry Control Technology for Emissions of Mercury in Flue Gas Systems and Applications [J]. Hazardous Waste& Hazardous Materials, 1996, 13(1):107.
    [53] Broderick T, Haythornthwaite S, Bell W, et al. Determination of dry carbon-based sorbent injection for mercury control in utility ESP and baghouses. Proceedings of the Air & Waste Management Association's Annual Meeting & Exhibition, 1998[C].Nashville, TN, USA.
    [54]金峰,曾汉才,钟毅等.颗粒活性炭对汞的吸附试验研究[J].电力科学与工程,2003, 01:1-4.
    [55] HORNE R A. The Chemistry of Our Environment [M]. New York: John Wiley & Sons, 1978.
    [56] LINAK W P, WENDT J. Trace element transformation mechanisms during coal combustion [J]. Fuel Processing Technology, 1994,39:173-198.
    [57] FRANDSEN F, DAMJOHANSEN K, RASMUSSEN P. Trace-elements from combustion and gasification of coal-an equilibrium approach [J]. Progress in Energy and Combustion Science, 1994, 20 (2):115-138.
    [58]王军辉,史惠祥,汪大翚.固定床活性炭吸附元素态汞的试验研究[J].浙江大学(理学版),2008,35(1):68-72.
    [59] B Brown and K S. Felsvang, in:Proc. 1991 Int. Conf.on Municipal Waste Combustion, 1992[C] Toronto, Canada.
    [60] Tom Machalek, Carl Richardson, Katherine Dombrowski. Full-scale activated carbon injection for mercury control in flue gas derived from north Dakota lignite [J].Hazardous Waste& Hazardous Materials, 2002, 45(3):321-342.
    [61] James D, Kilgroe. Control of dioxin, furan, and mercury emissions from municipal waste combustors [J]. Journal of Hazardous Materials, 1996, 47:163-194.
    [62] H U Hartenstein, in:Proc.1993Conf.on Municipal Waste Combustion, Air and Waste Management Association(VIP-32), 1993[C].Pittsburgh, PA.
    [63] K L Nebel, et al. Emission test report: OMSS field test on carbon injection for mercury control, EPA-600/R-92-192(NTIS PB 93-105518) Air and Energy Engineering Research Laboratory, 1993[C].Research Triangle Park, NC.
    [64] .D M White, et al. Paper No. 92-40.06, 1992 Annual Meeting, Air and Waste Management Association, 1992[C].Kansas City, MO.
    [65] D.M.White, et el.Field test of carbon injection for mercury control, Camden County municipal waste combustor, EPA-600/R-93-181(NTIS PB 94-101540), 1993[C].Research Triangle Park, NC.
    [66] Liberti L, Notarnicola M, Amicarelli V, et al. Mercury removal with powdered activated carbon from flue gases at the Coriano municipal solid waste incineration plant [J]. Waste Management & Research, 1998, 16(2):183-189.
    [67] Takaoka M, Takeda, Nobuo, Fujiwara T, et al. Control of mercury emissions from a municipal solid waste incinerator in Japan [J]. Journal of the Air and Waste Management Association, 2002,52(8):931-940.
    [68] Chung-shin Yuan, Hsun-Yu Lin, Chun-Hsin Wu, et al. Partition and size distribution of heavy metals in the flue gas from municipal solid waste incinerators in Taiwan [J]. Chemosphere, 2005, 59:135-145.
    [69] Bustard J, Durham M. Starns T, et al. Full-Scale Evaluation of Sorbent Injection for Mercury Control on Coal-Fired Power Plants. In proceedings of Air QualityⅢ:Mercury, Trace Elements and Particulate Matter Conference; 2002[C]. Arlington, VA.
    [70] Change R, Offen G R. Mercury emission control technologies an EPRI synopsis [J]. Power Engineering (Barrington, Illinois), 1995, 99(11):51-57.
    [71]杨国华,周江华等.双层滤料颗粒床过滤除尘新方法研究[J].动力工程,2005,25(6):891-894.
    [72] Yang Guohua, Zhou Jianghua. Experimental study on a new dual-layer granular bed filter for removing particulates [J].Fuel, 2003, 82(4):451-457.
    [73] Li Y H, Lee C W, Gullett B K. Importance of activated carbon’s oxygen surface functional groups on elemental mercury adsorption [J]. Fuel, 2003, 82(4):451-457.
    [74]金峰,曾汉才,钟毅.颗粒活性炭对汞的吸附实验研究[J].电力科学与工程,2003,1:1-4.
    [75] S Evan, J Granite, Henry W Pennline, Richard A Hargis. Novel sorbents for mercury removal from flue gas[J]. Industrial & engineering Chemistry Research, 2000, 39, 1020-1029,.
    [76] Grant E Dunham, Raymond A De Wall, et al. Fixed-bed studies of the interactions between mercury and coal combustion fly ash [J]. Fuel Processing Technology, 2003, (82):197-213.
    [77]周劲松,王岩,胡长兴等.N2气氛下活性炭的汞吸附性能[J].动力工程,2008,28(4):625-628.
    [78]王军辉.活性炭吸附脱除燃煤烟气中汞的研究[D].浙江大学环境与资源学院,2006,5.
    [79]王军辉,史惠祥,汪大翚.固定床活性炭吸附元素态汞的实验研究[J].浙江大学学报(理学版),2008,35(1):69-72.
    [80] Jozewiczw, Gullet B K. Sorption of elemental mercury by activated carbons [J]. Environmental Science Technology, 1994, 28 (3):1506-1512.
    [81] Li Y H,Lee C W,Gullett B K. The effect of activated carbon surface moisture on low temperature mercury adsorption [J]. Carbon, 2002, 40(1):65-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700