用于填埋场臭气控制的微生物除臭剂开发与除臭机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
据统计,我国生活垃圾的年产量已达2亿t,加上历年堆存量高达66亿t,接近发达国家水平,其中填埋处理量达垃圾总量的95%以上。垃圾在转运、平铺、压实、处理及填埋过程中会产生大量强刺激的恶臭气体,对周边环境和人类健康造成直接或间接的影响。因此如何对垃圾产生的恶臭气体进行有效治理与控制,是环境保护领域一个重要的研究课题。
     目前在国内外恶臭治理的各种技术中,生物法因具有处理效率高、无二次污染、费用低廉和管理维护方便等优点,被广泛地使用。近年来无二次污染的微生物除臭技术在恶臭污染控制中得到迅速发展,但是由于微生物技术存在筛选高效菌种难、见效慢,特别是针对成分复杂的垃圾除臭的微生物制剂较少,已有的微生物菌剂往往不能适应填埋场的恶劣环境等缺点,因此研发出针对垃圾除臭的高效微生物菌剂,研究其除臭机理,为填埋场除臭提供理论依据和技术指导,具有重要意义。
     本论文从上海市老港垃圾填埋场的污泥和垃圾渗滤液中分离筛选高效除臭菌株,并制成微生物除臭剂。通过实验室模拟小试研究了投加方式、投加比及培养基浓度等对新开发复合菌剂除臭效果的影响,并与国内同类产品的除臭效果进行比较,通过中试试验检验复合菌剂的除臭效果,同时结合传统微生物计数方法和分子生物学PCR-DGGE技术对微生物菌剂中细菌的群落结构进行分析,初步探究了其除臭机理。最后通过毒性实验检测其使用的安全性。本研究得出以下结论:
     (1)筛选得到7株具有较好除臭能力的菌株。小试结果表明,7株菌株对臭气浓度12 h、24 h、48 h后的去除率分别为10%左右、20%-30%、20%-30%。经过16s rDNA鉴定,这7株菌分别属于芽孢杆菌属、产碱杆菌属、无色菌属、溶藻菌属以及显核菌属,具有较强的环境适应性和抗逆性。
     (2)开发了两种复合菌剂:将麦麸与EM菌液按照一定的比例搅拌混匀后发酵约一周,得到复合菌剂Ⅰ;将筛选出来的7株除臭菌接种到液态培养基中,恒温培养数天得到复合菌剂Ⅱ。
     (3)不同投加方式影响复合菌剂Ⅰ的除臭效果。覆盖于污泥表面时,对NH3的去除率前期高于后期。24 h后对NH3的去除效果最好,去除率达57.8%;48 h和72 h后对NH3的去除率分别为44.4%和40.8%。与污泥搅拌时,对NH3的去除率随时间的延长逐渐增大。24 h、48 h、72 h后的去除率分别为22.7%、54.4%和54.7%。另外随着投加量的减少复合菌剂Ⅰ对NH3的去除率逐渐下降。适宜的投加比为10%,此时对NH3去除效果最佳,72 h内对NH3的去除率为40%~60%。
     (4)当培养基浓度为100‰,投加比为5‰时,复合菌剂Ⅱ对NH3去除效果最好,48 h后对污泥中NH3去除率维持在30%-45%;随着时间的推移,复合菌剂Ⅱ对NH3的去除率呈现先降低后逐渐升高的趋势。
     (5)复合菌剂Ⅱ对NH3的去除效果好于EM菌液。24 h后对NH3的去除率比EM菌液高10个百分点左右;48 h后比EM高20个百分点,对污泥中NH3的去除率维持在30%~45%,对垃圾中NH3的去除率为25%~35%。中试结果表明,24 h后复合菌剂Ⅱ对NH3的去除率达到37.5%,臭气浓度下降了19.1%。
     (6)微生物除臭剂主要是靠化学与微生物的联合作用去除NH3。复合菌剂Ⅱ的优势菌种为产碱杆菌、芽孢杆菌和显核菌,都是筛选的除臭菌株;复合菌剂Ⅰ和EM菌液都富含乳酸菌。这些菌株在发酵过程中产酸,使菌液的pH值为3.0~4.0,酸性介质有利于NH3的吸收,同时可以有效抑制恶臭产生菌的代谢活动,从而减少臭气的产生。复合菌剂Ⅱ中异养菌数量较EM菌液多,表现出较好的除臭效果。
     (7)毒性实验结果表明,复合菌剂Ⅰ和复合菌剂Ⅱ对小白鼠的生长活动无明显影响,不具有致死性、皮肤致敏性。两种复合菌剂都是安全可靠的。
According to statistics, the annual output of the solid waste is as much as 200 million tons in China, and will reach up to 660 million tons if the untreated solid waste over the years is calculated, which is close to those of the developed countries. About 95 percent of the solid waste is treated by landfill. A considerable amount of odor is produced in the process of transport, tile, compression, treatment and landfill, which will have direct or indirect influence on both the environment and the health of human being. Therefore, it is of utmost importance to control and treat the odor effectively, and that has been a crucial research project in the environmental protection field.
     At present, biological technology has been widely and successfully applied due to its high treatment efficiency, no secondary pollution and low operation cost. In recent years, the biological technology has gained more and more popularity in the deodorization of the solid waste. However, there are only a few kinds of microbial deodorizer in allusion to the solid waste, because it is difficult to screen and cultivate the effective strains that can adapt to the harsh environment in the landfill. Consequently, it has great significance to develop a new type of microbial deodorizer and to study on its deodorizing mechanism.
     In this paper, highly efficient deodorizing strains were isolated from the sludge and leachate collected from the Shanghai Laogang Disposal Plant, and they were made into microbial deodorizer. The odor removal efficiency of the deodorizer was studied in the lab experiment with different dosing method, adding dosage and cultural medium concentration, and was compared with that of the similar domestic deodorizer as well. The removal efficiency was further verified in the pilot test. Fianally, the application security was inspected in the toxicity test. Microbial community structure of various deodorizers was studied, and deodorizing mechanism was primarily explored. The main conclusions of this paper are as follows:
     (1) Seven highly-efficient deodorizing strains were isolated in our repetitious optimized cultivations process. The results showed that the odor removal efficiency of the strains was about 10% at the first day,20%~30% at both the second and the third day. The strains were proved to be Alcaligenes sp., Achromobacter sp., Bacillus sp., Lysinibacillus sp. and Caryophanon sp.. All of them have good environmental adaptability and stress resistance.
     (2) Two types of complex microbial deodorizer were developed. Deodorizer I was developed when the mixture of the wheat bran and EM bacteria solution were fermented for about one week. The selected strains were inoculated into certain liquid medium and cultivated for several days to develop Deodorizer II.
     (3) The ammonia removal efficiency of Deodorizer I was affected by the dosing method. When Deodorizer I was covered on the surface of the sludge, the ammonia removal efficiency was higher in the earlier period than that at the later stage. The maximum removal rate could reach up to 57.8% at the first day, and 44.4% at the second day,40.8% at the third day. When mixed around with the sludge, the removal rate increased gradually with the time going, which was 22.7% in 24 hours, 54.4% in 48 hours and 54.7% in 72 hours. In addition, the ammonia removal rate decreased with the adding dosage reduced. When the dosing proportion was 10%, the highest removal rate was achieved, which was up to 40%-60% in 72 hours.
     (4) When the concentration of the culture medium was 100%o, and the dosing proportion was 5%o, Deodorizer II had the maximum removal rate, which was 30%-40% in 48 hours. As the time went by, the ammonia removal rate of Deodorizer II decreased at the beginning and then increased gradually.
     (5) Deodorizer II was more favorable to remove the ammonia than the EM (Efficient Microorganism). Its removal rate was 10 percent points higher than that of the EM in 24hours. The quantity of ammonia released from the sludge decreased by 30%-45%, and 25%-35% from the waste solid in 48 hours, with 20 percent points higher than that of the EM. The ammonia released decreased by 37.5% in the pilot test, while the odor decreased by 19.1%.
     (6) The microbial deodorizer removed the ammonia by chemical absorption and microbial degradation. The dominant bacteria of Deodorize II were Alcaligenes sp., Bacillus sp. and Caryophanon sp., all of which were the selected strains. Lactobacillus sp. was the dominant bacteria of both Deodorizer I and EM. These strains produced acid during the fermentation. The acid medium was helpful for the ammonia absorption, and inhibited the metabolic activity of the bacteria producing odor. Therefore, the odor was effectively reduced. Heterotrophic bacteria of the Deodorizer I was more than that of the EM, and had better odor removal effect.
     (7) The results of the toxicity test demonstrated that Deodorizer I and Deodorize II showed no obvious toxic effect or potential of skin sensitization to the animals tested. Therefore, they were safe for the application in the practice.
引文
[1]童金义,任绍娟,温志玄.简析垃圾卫生填埋场恶臭治理[J].环境卫生工程,2007,15(3):50-51.
    [2]任曼,卢徐节,王晓泳.我国城市垃圾现状与可持续发展研究[J].中国资源综合利用,2008,26(2):19-21.
    [3]龙焰,沈东升,劳慧敏,胡宏.填埋场中垃圾降解微生物机理研究进展[J].浙江大学学报(农业与生命科学版),2006,32(1):9-13.
    [4]黄毅,何强.我国垃圾填埋气的产生和利用状况研究[J].四川理工学院学报(自然科学版),2008,21(1):117-120.
    [5]于尔捷,杨义飞,张晶.生物脱臭技术发展趋势[J].哈尔滨建筑大学学报,1998,31(1):58-63.
    [6]GB14554-93,恶臭污染物排放标准[S].环境保护部,1993.
    [7]Nastev M, Therrien R, Lefebvre R. Gas production and migration in landfills and geological materials [J]. Journal of Contaminant Hydrology,2001,52:187-211.
    [8]Joanna E. Burgess, Simon A. Parsons, Richard M. Stuetz. Developments in odor control and waste gas treatment biotechnology:A review [J]. Biotechnology Advances,2001,19:35-63.
    [9]Rappert S, Maaller R. Odor compounds in waste gas emissions from agricultural operations and food industries [J].Waste Management,2005,25 (9):887-907.
    [10]Istvan Devai, Ronald D. Delaune. Emission of reduced malodorous sulfur gases from wastewater treatment plant [J].Water Environment Research.1999,71(2):203-207.
    [11]苑宏英,郭静VOCs恶臭污染物质的污染状况和一般处理方法[J].四川环境,2004,23(6):45-49.
    [12]Faruk Dincer, Mustafa Odabasi, Aysen Muezzinoglu. Chemical characterization of odorous gases at a landfill site by gas chromatography-mass spectrometry [J]. Journal of Chromatography A,2006,1122:222-229.
    [13]闵一珏,朱韶峰.城市垃圾卫生填埋场废气产生量及主要污染因子的确定[J].环境污染与防治,2000,22(3):33-34.
    [14]徐捷.诗剑,夏凡等.垃圾填埋场挥发性有机物研究[J].环境科学与技术,2007,30(4):48-50.
    [15]彭定一,林少宁.大气污染及其控制[M].中国环境科学出版社,1991:288-291.
    [16]赵由才.城市生活垃圾卫生填埋场技术与管理手册[M].北京:化学工业出版社,1999,125-139.
    [17]纪华,夏立江,王进安.垃圾填埋场硫化氢恶臭污染变化的成因研究[J].生态环境,2004,13(2):173-176.
    [18]朱纯祥.城镇生活垃圾卫生填埋场对环境影响的预测方法及控制措施[J].安徽农学通报,2007,13(1):59-61.
    [19]Mueeelnoglu. A, Sponza. D, Koken I, et al. Hydrogen sulfide and odor control in Izmir. Bay [J].Water, Air and Soil Pollution,2000,123:245-257.
    [20]Frcchen F B. Odor emission inventory of German wastewater treatment plants odor flow rates and odor emission capacity [J]. Water Sci Technol,2004,50(4):139-146.
    [21]环境污染及恶臭测试技术[J].环境科学丛刊,1990,(4)专集.
    [22]金紫阳,徐亚同.恶臭的污染及其治理[J].上海化工,2003,28(5):10-13.
    [23]石磊,边炳鑫,赵由才,牛冬杰.城市生活垃圾卫生填埋场恶臭的防治技术进展[J].环境污染治理技术与设备,2005,6(2):6-9.
    [24]Shen Ying Wa,Gao Ji Xi,Shu Jian Min. Selection of covering materials for eco-engineering restoration at municipal waste landfill sites [J]. Research of Environmental Sciences,1997,10 (6):10-14.
    [25]Wang Zong Ping, Tao Tao, Jin Ru Lin.Study on waste landfill leachate [J]. Environmental Science,1999,7(3):32-39.
    [26]Quina M J, Bordado J C, Quinta-Ferreira R M.Treatment and use of air pollution control residues from MSW incineration:An overview [J]. Waste management,2008,28:2097-2121.
    [27]宋爽.臭气粉尘原位治理装置在环卫行业中的应用[J].环境卫生工程,2008,16(6):38-39.
    [28]徐亚同,史家樑,张明.污染控制微生物工程[M].化学工业出版社,2001.
    [29]比嘉照夫,冯玉润译.拯救地球大变革[M].北京:中国农业出版社,1997.
    [30]尚魏,王启山,郭静.生物过滤除臭技术在城市污水处理厂中的应用[J].天津城市建设学院学报,2001,7(2):121-124.
    [31]李志强,刘绪宗.生物除臭技术[J].中国给水排水,1999,15(9):52-54.
    [32]Kazuh iro Sh inabe, Sato si O ketani, Kanchanataw ee Suntho rn, etc. Characteristics of hydrogen sulfide removal in a carrier-packed bio logical deodorization system [J]. Biochemical Engineering Journal,2000, (5):209-217.
    [33]M. Sehlegelmileh, J. Streese, W. Biedermann, T. Herold, R. Stegmann. Odor control at bio-waste composting facilities [J]. Waste Management.2005, (25):917-927
    [34]方向平,罗永华,邓穗儿等.生物滤池处理生活垃圾恶臭[J].城市环境与城市生态,2003,16(1):34-36.
    [35]Joanna E B, Simon A P, Richard M S. Development in odor control and waste gas treatment biotechnology[J]. Biotechnology Advance,2001,19:35-63.
    [36]郭桂悦,满燕茹,郁向民.生物法治理恶臭研究进展[J].江苏化工.2005,33(4):23-26.
    [37]刀李琳,刘俊新.挥发性有机污染物与恶臭的生物处理技术及其工艺选择[J].环境污染治理技术与设备.2001,2(5):41-47.
    [38]季学李,羌宁主编.空气污染控制工程[M].北京:化学工业出版社.2005:250-251.
    [39]姜安玺.生物脱臭填料的研究进展[J].农业环境保护,2002,21(6):564-566.
    [40]Webster T S, Togna A P, Guarini W J, et al. Treatment of vapor emissions generated from an industrial wastewater treatment plant using a full-scale biotrickling filter reactor[C].Salt Lake City: AWMA annual conference,2000.
    [41]Johan W. van Groenestijn, Panl GM. Hesselink. Biotechniques for air Pollution control [J]. Biodegradation,1993,4:283-301.
    [42]杨虹,徐晓军,史本章,生物滴滤器处理味精厂挥发性恶臭废气的试验研究[J].环境污染治理技术与设备.2005,6(6):72-75.
    [43]Nakasaki K, Kwon SH, Tanaka H, et al. Suppression of malodor from garbage during storage periods by yeast producing fragrances [J]. Process Biochemistry,2006,41:1932-1939.
    [44]罗永华,邓穗儿,孙国平.一种新型微生物除臭剂的垃圾除臭实验[J].城市环境与城市生态,2003,16(3):23-25.
    [45]叶芬霞,朱瑞芬,叶央芳.复合微生物吸附除臭剂的制备及其除臭应用[J].农业工程学报,2008,24(8):254-257.
    [46]王光玉,陈雷,马梅荣.固体XM菌剂对生活垃圾减容和除臭的研究[J].环境污染与防治,2006,28(4):261-263.
    [47]李亮,张明杰,阳佳中,张勇.新型天然植物提取液除臭工艺[J].西南给排水,2007,29(5):5-8.
    [48]何晓君.城市生活垃圾防恶臭的技术探讨[J].科技信息,2007,16(5):19-20.
    [49]Nishimura S,Yoda M.Removal of hydrogen sulphide from an anaerobic biogas using a bioscrubber [J].Water Sci Technol,1997,36(6,7):349-356.
    [50]Yamanaka. Extraction of deodorizing component for deodorizing offensive odor of mereaptan [J]. Food Sci. Technol. Int,2006,12(1):38-42.
    [51]Osamu Negishi, Yukiko Negishi, et al. Mercaptan-capturing properties of mushrooms [J]. Agric. Food Chem.2001,49:5509-5514.
    [52]陆光立,候玲娟,郭广寨,张倚马.天然植物除臭剂的应用试验[J].上海应用技术学院学报,2004,4(1):13-17.
    [53]李亮,张明杰,阳佳中,张勇.新型天然植物提取液除臭工艺[J].西南给水排水,2007,29(5):6-9.
    [54]Ephraim M. Govere, Masami Tonegawa,Mary Ann Bruns, et al. Deodorization of Swine Manure Using Minced Horseradish Roots and Peroxides[J]. Agric. Food Chem.2005,53, 4880-4889.
    [55]Lerman, L.S., S.G.Fisher, I.Hurley, K.Silvertein, andN.Lumelsky. Sequence-determined DNA separations [J]. Annul Rev Biopsy's Bioeng,1984,13:399-423.
    [56]Muyzer.G. DGGE/TGGE a method for identifying genes from natural ecosystems [J]. Curropin Microbial,1999,2:17-22.
    [57]Gomes, N. C., O. Fagbola, R. Costa, N. G. Rumjanek, A. Bunchner et al. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics [J]. Appl Environ Microbial,2003, 69:3758-3766.
    [58]Smalla, K., G. Wieland, A. Zock, J. Parzy, et al. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis:plant-dependent enrichment and seasonal shifts revealed [J]. Appl Environ Microbial,2001,67:4742-4751.
    [59]K. Watanabe, M. Teramoto, H. Futamata, S. Harayama. Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge [J]. Appl Environ Microbial,1998,64:4396-4402.
    [60]J. M. Simpson, V. J. McCracken, B. A.White et al. Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota [J]. J Microbial Methods, 1999,36:167-179.
    [61]H. Sekiguchi, N. Tomioka, T. Nakahara, B. Xu, et al. Succession of bacterial community structure along the Changjiang River Determined by Denaturing gradient gel electrophoresis and clone library analysis [J]. Appl Environ Microbial,2002,68:5142-5250.
    [62]Muyzer G., Smalla. K. Application of denatured gradient gel electrophoresis (DGGE) and temperatural gradient gel electrophoresis (TGGE) in microbial ecology [J]. Antonie Van Leeuwenhoek,1998,73:127-141.
    [63]殷峻,陈英旭,刘和,王远鹏.应用PCR-DGGE技术研究处理含氨废气的生物滤塔中微生物多样性[J].环境科学,2004,25(6):12-15.
    [64]陈桐生,李建军,岑英华,孙国萍.不同pH条件下除臭生物滤池微生物种群结构的分子生态分析[J].微生物学报,2005,45(3):446-450.
    [65]谢冰,史家樑,徐亚同.恶臭的微生物处理概述[J].环境导报,1997(1):6-10.
    [66]马肖卫,李建国.生物法净化H2S气体的研究[J].环境工程,1991,12(2):18-21.
    [67]余海晨,张清敏,侯树宇,张杨,白晔.高效除臭菌的筛选及其降解特性研究[J].农业环境科学学报,2004,23(2):300-303.
    [68]黄进刚,徐晓军,李淑芬,赵兵,张秋花.活性污泥中高效除臭菌株的驯化和筛选[J].环境程学报,2008,11(2):1547-1550.
    [69]许光辉,郑洪元.十壤微生物分析方法手册[M].北京:中国农业出版社,1986,110-283.
    [70]Dobson, C.M., Deneer, H., Lee, S., Hemmingsen, S., Glares, S., and Ziola, B. Phylogenetic analysis of the genus Pediococcus, including Pediococcus claussenii sp. nov., a new lactic acid bacterium isolated from beer [J]. Int. J. Syst. Evol. Microbiol.2002,52(06):2003-2010.
    [71]李彪.熊焰.猪粪中除臭微生物的筛选和鉴定[J].家畜生态学报,2008,29(01):74-76.
    [72]布坎南RE.伯杰氏细菌鉴定手册[M].第8版.北京:科学出版社,1984.
    [73]冷云伟.微生物除臭剂的制备[J].今日科技,1992,(06):14-16.
    [74]欧亚玲.耐高温除臭细菌的分离鉴定及其在鸡粪堆肥中的应用[D].四川农业大学,2008.
    [75]屈艳芬,叶锦韶,尹华.生物过滤法处理城市污水处理厂臭气[J].生态科学,2005,24(01):18-20.
    [76]马梅荣,王光玉,刘建等.XM菌剂除臭效果的试验研究[J].哈尔滨师范大学自然科学学报,2003,19(03):64-66
    [77]G Muyzer, E C de Waal, and A G Uitterlinden. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Appl Environ Microbiol.1993,59(3):695-700.
    [78]Francois-Pierre J Martin, Yulan Wang, Norbert Sprenger et al. Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model [J]. Molecular Systems Biology 2008(4):157-165.
    [79]大野胜史.油脂分解菌恶臭对策实例,PPM,1994,(9):55-59.
    [80]鲁艳英,金亮,王谨,李文丹.EM菌组成鉴定及其消除垃圾渗滤液恶臭研究[J].环境科学与技术,2009,32(08):62-63.
    [81]Suzuki M T, Giovannoni S J. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR [J]. Appl Environ Microbiol.1996,62(2):625-630.
    [82]Jackson C R, Rod en E E, Churchill P F. Denaturing gradient gel electrophoresis can fail to separate 16S rDNA fragments with multiple base differences [J]. Molecular Biology Today,2000,1 (2):49-51.
    [83]Rappert S, Miiller R. Microbial degradation of selected odorous substances [J]. Waste Management,2005,25(9):940-954.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700