牙胚发育中ADAM28基因的克隆、表达和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙齿发育是两种相邻组织一外胚上皮和神经嵴来源的间充质相互作用的结果,呈时空变化的基因调控在牙胚发育过程中发挥关键作用,调节细胞的增殖、分化和凋亡,决定牙胚的发育进程。金属蛋白酶解离素28(adisintegrin and metalloproteinase 28,ADAM28)是ADAM家族中的新成员,是定位于细胞膜且具备自身催化活性的分泌型糖蛋白,是前期我科采用改良消减杂交技术从先天性牙根发育不良患儿的差异表达基因中筛选出来的牙齿、牙根发育相关基因。ADAM28在诸多生理过程中起着重要作用:参与细胞增殖、分化,胞外基质重建、血管形成和细胞迁移等。但是,目前尚无有关ADAM28与牙齿发育关系的研究报道。
     本课题的研究目的是从转录、翻译和蛋白水平探讨ADAM28在牙胚发育过程中的时空分布特点及对牙源性间充质细胞增殖、分化、凋亡等生物学特性的影响,并从中分析它可能的作用机制,为今后对ADAM28功能的深入研究提供可靠的实验和理论依据。
     本课题采用组织学、免疫组织化学、细胞培养、基因重组、基因转染、ELISA、Western blot、RT-PCR、反义核酸等技术方法进行了以下四部分实验研究,主要研究内容和结果如下:
     第一部分
     采用组织学方法观察到小鼠下颌第一磨牙牙胚从蕾状期到牙根形成期的发育时序及形态特点。应用免疫组织化学方法检测到BSP、OPN、DSPP、
Teeth develop as a result of the interactions between ectoderm epithelia and mesenchyme from neural crest. Gene regulation with spatiotemporal changes play an important role in the course of tooth germ development such as regulating cell proliferation, differentiation and apoptosis and determine the developmental process of tooth germ. ADAM28 is a newly discovered member of a disintegrin and metalloproteinase (ADAM) family, and it is also a secretion type glycoprotein located in cellular membrane with autocatalytic activity. ADAM28, which is considered as a gene related to tooth and tooth root growth, is screened by improved differential hybridization from differential expression genes of children suffering from congenital hypoplasia of tooth root. ADAM28 plays an important role in various physiological processes such as cell proliferation, differentiation, extracellular matrix reconstruction, vasiformation and cell migration. However, there has not been reported about the relationship between ADAM28 and tooth development.
    Based on the transcription, translation and protein levels, this study is aimed to investigate the spatiotemporal distribution features of ADAM28 during tooth germ development and its effects on the proliferation, differentiation and apoptosis of odontogenic mesenchymal cells and to analyze its possible
引文
1. Peters H, Bailing R. Teeth: where and how to make them. Trends Genet, 1999; 15(3):59-65.
    2. Thesleff I, Nieminen P. Tooth morphogenesis and cell differentiation. Curr Opin Cell Biol, 1996; 8(6): 844-850.
    3. Thesleff I, Aberg T. Molecular regulation of tooth development. Bone, 1999; 25(1): 123-125.
    4. Ruch JV. Determinisms of odontogenesis. Cell Biol Rev RBC, 1987; 14(5): 1-81.5. Tucker AS, Sharpe PT. Molecular genetics of tooth morphogenesis and patterning: the right shape in the right place. J Dent Res, 1999;78(4):826-834.
    6. Ten Cate AR. Oral Histology: Development, structure and function. 5th edition. Ed. Mosby-Year book, Inc, 1998.
    7.于世凤 主编.口腔组织病理学(第4版).北京:人民卫生出版社,2000:88.
    8. Smid JR, Rowland JE, Young WG, et al. Mouse cellular cementum is highly dependent on growth hormone status, J Dent Res, 2004; 83(1):35-39.
    9. Thesleff I, Vaahtokari A, Vainio S, Jowett A. Molecular mechanisms of cell and tissue interactions during early tooth development. Anat Rec, 1996; 245(2): 151-161.
    10.金岩主编.小鼠发育生物学与胚胎实验方法.北京:人民卫生出版社,2005:218-227.
    11. Thomas BL, Sharpe PT. Patterning of the murine dentition by homeobox genes. Eur J Oral Sci, 1998; 106(suppl 1):48-54.
    12. Simeone A, Acampora D, Mallamaci A, et al. A vertebrate gene regulated to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. Embro J, 1993; 12(5):2736-2747.
    13. MacKenzie A, Ferguson MW, Sharpe PT. Expression patterns of the homeobox gene, Hox-8, in the mouse embryo suggest a role in specifying tooth initiation and shape. Development, 1992; 115(2):403-420.
    14. MacKenzie A, Ferguson MW, Sharpe PT. Hox-7 expression during murine craniofacial development. Development, 1991; 113(2):601-611.
    15. Vainio S, Karavanova I, Jowett A, et al. Identification of Bmp4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell, 1993;75(5):45-58.
    16. Robb K. Hox genes in vertebrate development. Cell, 1984;78(3): 191-201.
    17. Dom A, Affolter M, Gehring WJ, et al. Homeodomain proteins in development and therapy. Pharmac Ther, 1994;61 (6): 155-183.
    14. St Amand TR, Ra J, Zhang Y, et aL Cloning and expression pattern of chicken Pix2: a new component in the SHH signaling pathway controlling embryonic heart looping. Biochem Biophys Res Commun, 1998,247(1):100-105.
    15. Jernvall J, Aberg T, Kettunen P, et al. The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development, 1998; 125(2): 161-169.
    16. Tziafas D, Alvanou A, Papadimitriou S, et al. Effects of recombinant basic fibroblast growth factor, insulin-like growth factor-Ⅱ and transforming growth factor-beta 1 on dog dental pulp cells in vivo. Arch Oral Biol, 1998; 43(6):431-444.
    17. Zhang Y, Chang C, Gehling DJ, et al. Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci U S A, 2001; 98(3):974-979.
    18. Dobie K, Smith G, Sloan AJ, Smith AJ. Effects of alginate hydrogels and TGF-beta??1 on human dental pulp repair in vitro. Connect Tissue Res, 2002;43(2-3):387-390.
    19. Begue-Kirn C, Krebsbach PH, Bartlett JD, Butler WT. Dentin sialoprotein, dentin phosphoprotein, enamelysin and ameloblastin: tooth-specific molecules that are distinctively expressed during murine dental differentiation. Eur J Oral Sci, 1998; 106(5):963-970.
    20. Arias AM. Epithelial mesenchymal interactions in cancer and development. Cell, 2001;105(4):425-431.
    21. Cobourne MT, Hardcastle Z, Sharpe PT. Sonic hedgehog regulates epithelial proliferation and cell survival in the developing tooth germ. J Dent Res, 2001;80(11 ): 1974-1979.
    22. Sarkar L, Sharpe PT. Inhibition of Wnt signaling by exogenous Mfrzb1 protein affects molar tooth size. J Dent Res, 2000;79(4):920-925.
    23. Lidral AC, Reising BC. The role of MSX1 in human tooth agenesis. J Dent Res, 2002;81 (4):274-278.
    24. Cobourne MT, Sharpe PT. Tooth and jaw: molecular mechanisms of patterning in the first branchial arch. Arch Oral Biol, 2003;48(1):1-14.
    25. Lezot F, Descroix V, Mesbah M, Hotton D, Blin C. Cross-talk between Msx/Dlx homeobox genes and vitamin D during tooth mineralization. Connect Tissue Res, 2002;43(2-3):509-514.
    26. Tucker AS, Matthews KL, Sharpe PT. Transformation of tooth type induced by inhibition of BMP signaling. Science, 1998,282(5391): 1136-1138.
    27. 31. Carroll TJ, Vize PD. Synergism between Pax-8 and lim-1 in embryonic kidney development. Dev Biol, 1999;214(1):46-59.
    28. 32. Furumoto TA, Miura N, Akasaka T, Mizutani-Koseki Y, Sudo H, Fukuda K, Maekawa M, Yuasa S, Fu Y, Moriya H, Taniguchi M, Imai K, Dahl E, Balling R, Pavlova M, Gossler A, Koseki H. Notochord-dependent expression of MFH1 and PAX1 cooperates to maintain the proliferation of sclerotome cells during the vertebral column development. Dev Biol, 1999;210(1):15-29.
    29. 33. Peters H, Neubuser A, Kratochwil K, Bailing R. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev, 1998; 12(17):2735-2747.
    34. Peters H, Balling R. Teeth. Where and how to make them. Trends Genet, 1999; 15(2):59-65.
    35. Chen Y, Zhang Y, Jiang TX, Barlow A J, St Amand TR, Hu Y, Heaney S, Francis-West P, Chuong CM, Maas R. Conservation of early odontogenic signaling pathways in Aves. Proc Natl Acad Sci U S,4, 2000;97(18): 10044-10049.
    36. Keranen SV, Kettunen P, Aberg T, Thesleff I, Jernvall J. Gene expression patterns associated with suppression of odontogenesis in mouse and vole diastema regions. Dev Genes Evol, 1999;209(8):495-506.
    37. Stockton DW, Das P, Goldenberg M, D'Souza RN, Patel PI. Mutation of PAX9 is associated with oligodontia. Nat Genet, 2000; 24(1): 18-19.
    38.王志峰.Pax9—牙齿发育中的关键调控基因.国外医学口腔医学分册,2002;29(2):112-114.
    39. Liu W, Litwack ED, Stanley MJ, Langford JK, Lander AD, Sanderson RD. Heparan sulfate proteoglycans as adhesive and anti-invasive molecules. Syndecans and glypican have distinct functions. J Biol Chem, 1998; 273(35): 22825-22832.
    40. Kato M, Wang H, Kainulainen V, Fitzgerald ML, Ledbetter S, Ornitz DM, Bernfield M. Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat Med, 1998; 4(6):691-697.
    41. Mali M, Andtfolk H, Miettinen HM, Jalkanen M. Suppression of tumor cell growth by syndecan-1 ectodomain. J Biol Chem, 1994; 269(45):27795-27798.
    42. Yoneya T, Tahara T, Nagao K et al. Molecular cloning of Delta-4, a new mouse and human notch ligand. J Biochem, 2001; 129(1): 27-34.
    43.陆群.Notch信号途径及在牙齿发育中的作用.牙体牙髓牙周病学杂志,2002;12(8):452-454.
    44.何飞.Notch信号与牙齿发生.现代口腔医学杂志,2002;16(5):450-452.
    45. Jacobsen T, Brennan K, et al. Cis-interaction between Delta and Notch modulate neurogenic signaling in Drosophila. Development, 1998, 125(3):4531-4540.
    46. Huppert SS, Jacobsen TL, Muskavitch MA. Feedback regulation is central to Delta-Notch signalling required for Drosophila wing vein morphogenesis. Development, 1997, 124(17): 3283-3291.
    47. Mitsiadis TA, Hirsinger E, Lendahl U, et al. Delta—Notch signaling in odontogenesis: correlation with cytodifferentiation and evidence for feedback regulation. Dev Biol, 1998; 204(2):420-431.
    48. Mitsiadis TA, Fried K. Goridis C. Reactivation of Delta—Notch signaling after injury: complementary, expression patterns of ligand and receptor in dental pulp. Exp Cell Res, 1999; 246(2): 312-318.
    49. Mitsiadis TA, Henrique D, Thesleff I, Lendahl U. Mouse Serrate-1 (Jagged-1): expression in the developing tooth is regulated by epithelial-mesenchymal interactions and fibroblast growth factor-4. Development, 1997;124(8):1473-1483.
    50. Mitsiadis TA, Lardelli M, Lendahl U, et al. Expression ofNotchl, 2 an d 3 is regulated by epithelial—mesenchymal interactions and retinue acid in the developing mouse tooth and associated with determination of ameloblast cell fate. J Cell Biol, 1995; 130(2):407-418.
    51. Becker JW, Marcy AI, Rokosz LL, Axel MG, Burbaum JJ, Fitzgerald PM, Cameron PM, Esser CK, Hagmann WK, Hermes JD, et al. Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Protein Sci, 1995; 4(10): 1966-1976.52. Steffensen B, Wallon UM, Overall CM. Extracellular matrix binding properties of recombinant fibronectin type Ⅱ-like modules of human 72-kDa gelatinase/type Ⅳ collagenase. High affinity binding to native type Ⅰ collagen but not native type Ⅳ collagen. J Biol Chem, 1995; 270(19): 11555-11566.
    53. Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI. Mechanism of cell surface activation of 72-kDa type Ⅳ collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem, 1995; 270(10): 5331-5338.
    54. Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem, 1999 30; 274(31): 21491-21494.
    55.焦岩涛,王大章.基质金属蛋白酶抑制物与骨关节病治疗.国外医学口腔医学分册,1997,24(1):6.
    56. Caron C, Xue J, Sun X, Simmer JP, Bartlett JD. Gelatinase A (MMP-2) in developing tooth tissues and amelogenin hydrolysis. J Dent Res, 2001; 80(7): 1660-1664.
    57. Heikinheimo K, Salo T. Expression of basement membrane type Ⅳ collagen and type Ⅳ collagenases (MMP-2 and MMP-9) in human fetal teeth. J Dent Res, 1995; 74(5):1226-1234.
    58. Hall R, Septier D, Embery G, Goldberg M. Stromelysin-1 (MMP-3) in forming enamel and predentine in rat incisor-coordinated distribution with proteoglycans suggests a functional role. Histochem J, 1999; 31(12):761-770.
    59. Linde A, Goldberg M. Dentinogenesis. Crit Rev Oral Biol Med, 1993; 4(5): 679-728.
    60. Palosaari H, Wahlgren J, Larmas M, Ronka H, Sorsa T, Salo T, Tjaderhane L. The expression of MMP-8 in human odontoblasts and dental pulp cells is down-regulated by TGF-betal. J Dent Res, 2000;79(1):77-84.
    61. DenBesten PK, Heffernan LM, Treadwell BV, Awbrey BJ. The presence and possible functions of the matrix metalloproteinase collagenase activator protein in developing enamel matrix. Biochem J, 1989; 264(3): 917-920.
    62. Takata T, Zhao M, Uchida T, Wang T, Aoki T, Bartlett JD, Nikai H. Immunohistochemical detection and distribution of enamelysin (MMP-20) in human odontogenic tumors. J Dent Res, 2000; 79(8): 1608-1613.
    63.金岩主编.口腔颌面组织胚胎学.西安:陕西科学技术出版社,2002:70.
    64. Pugazhenthi S, Miller E, Sable C, Young P, Heidenreich KA, Boxer LM, Reusch JE. Insulin-like growth factor-Ⅰ induces bcl—2 promoter through the transcription factor cAMP—response element—binding protein. J Biol Chem, 1999;274(39):27529-27535.
    65. Kitamura C, Kimura K, Nakayama T, Toyoshima K, Terashita M. Primary and secondary induction of apoptosis in odontoblasts after cavity preparation of rat molars. J Dent Res, 2001; 80(6): 1530-1534.
    66. Kondo S, Tamura Y, Bawden J W, et al. Immunohistochemical localization ofbax and bcl—2 and their relation to apoptosis during amelogenesis in developing rat molars. Arch Oral Biol, 2001; 46(6):557-568.67. Evan GI, Littlewood TD. The role of c-myc in cell growth. Curr Opin Genet Devel, 1993; 3: 44.
    68. Thompeon CB, Chalkorter PB, Nerman PE, et al. Levels of c myc oncogene mRNA are in variant throughout the cell cycle. Nature, 1985;314:363.
    69. Harm SR, Thompson CB, Eisenman RN. C-myc oncogene protein synthesis is independent of the cell cycle in human and avian cells. Nature, 1985;314(6009):366-369.
    70.赵书芳,赵皿,金岩,等:程序性细胞死亡及其相关基因bcl-2,bax在牙齿发育中的作用.实用口腔医学杂志,1999;15(1):54.
    71. Tsujimoto Y, Finger L R, Yunis J, et al. Cloning of the chromosome breakpoint of neoplatic b cell with The t(14; 18) Chromosomes translocation. Science, 2002; 296(4678): 1097-1099.
    72. Silke J. Vaux D L. Cell death: shadow baxing. Curr Biol, 1998;45(8):528-531.
    73. Mignott B, Vayssoere J L. Mitochodria and apoptosis. Eur J Biochem, 1998; 56(7): 252-256.
    74. Cazals H D, Louie D, Tanaka S, et al. Molecular cloning and DNA sequenceanalysis of DNA encoding chicken homolog of the bcl—2 on corprotein. Biochem Biophys Acta, 1999;1132:109-113.
    75. Kondo S, Raff M C. Programmed Cell death in Animal Development. Cell, 1997; 88:347.
    76. Slootwcng P J, Deweger R A. Immunohistochemical demonstration of bcl—2 protein in human tooth germs. Arch Oral Biol, 1999; 39(7):545.
    77. Hugger A, Inoue T, Shimono M, et al. Behavior of epithelial root sheath during tooth root formation in porcine molars: TUNEL, TEM, and immunohistochemical studies. International Endodontic Journal, 2002;231(5):548-552.
    78.熊俊,訾晓渊,胡以平.位点特异性重组系统及其应用.国外医学遗传学分册,2000;23(6):285—289.
    79. Izant J, Weintraub H. Inhibition of thymidine kinase gene expression by anti-sense RNA: a molecular approach to genetic analysis. Cell, 1984; 36(4): 1007-1015.
    80. Weintraub HM. Antisense RNA and DNA. Sci Am, 1990; 262(1):40-46.
    81. Wagner RW. Gene inhibition using antisense oligodeoxynucleotides. Nature, 1994, 372(6504):333-335.
    82.王全会,毛建平.mRNA靶点筛选方法研究进展.中国生物工程杂志,2003;23(3):1-5.
    83. Zon G. Brief overview of control of genetic expression by antisense oligonucleotides and in vivo applications. Prospects for neurobiology. Mol Neurobiol, 1995; 10(2-3):219-229.
    84. Hunter AJ, Leslie RA, Gloger IS, Lawrence M. Probing the function of novel genes in the nervous system: is antisense the answer? Trends Neurosci, 1995; 18(8): 329-331.
    85. Weiss B, Davidkova G, Zhang SP. Antisense strategies in neurobiology. Neurochem Int,??1997;31(3):321-348.
    86. Wagner RW. The state of the art in antisense research. Nat Med, 1995; 1(11):1116-1118.
    87. Neckers L, Rosolen A, Fahmy B, Whitesell L. Specific inhibition of oncogene expression in vitro and in vivo by antisense oligonucleotides. Ann N Y Acad Sci, 1992; 660:37-44.
    88.唐宗湘,李葆明,包永德.反义寡聚核苷酸:生理学研究中的新工具.生命科学,1999,11(4):180-183.
    89. Neckers L, Whitesell L, Rosolen A, Geselowitz DA. Antisense inhibition of oncogene expression. Crit Rev Oncog, 1992; 3(1-2): 175-231.
    90. Fire A. RNA-triggered gene silencing. Trends Genet, I999; 15(9):358-363.
    91. Emily Bemstein, Amy A. Caudy, Scott M. Hammond, Gregory J. Hannon. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001; 409(6818):363-366.
    92. Sui G, Soohoo C, Affar el B, Gay F, Shi Y, Forrester WC, Shi Y.A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA, 2002; 99(8):5515-5520.
    93. Silva J M, Hammond S M, Harmon G J. RNA interference: a promising approach to antiviral therapy? Trends Mol Med, 2002;8(11):505-508.
    94. Wojtkowiak A, Siek A, Alejska M, Jarmolowski A, Szweykowska-Kulinska Z, Figlerowicz M. RNAi and viral vectors as useful tools in the functional genomics of plants. Construction of BMV-based vectors for RNA delivery into plant cells. Cell Mol Biol Lett, 2002;7(2A):511-522.
    95.宋尔卫主编.RNA干扰的生物学原理与应用.北京:高等教育出版社,2005:117.
    96.陈杰,白春学,张敏.RNA干扰技术在哺乳动物中的应用.生物化学与生物物理进展,2003;30(4):650-653.1. Primakoff P, Myles D G. The ADAM gene family-surface proteins with adhesion and proteinase activity. J Trends in Genetics, 2000; 16(2):83-87.
    2. Wolfsberg TG, Bazan JF, Blobel CP, et al. The precursor region of a protein active in sperm-egg fusion contains a metalloprotease and a disintegrin domain: structural, functional, and evolutionary implications. Proc Natl Acad Sci U S A, 1993; 90(22): 10783-10787.
    3. Black RA, White JM. ADAMs: focus on the protease domain. Curr Opin Cell Biol, 1998; 10(5): 654-659.
    4. Stone AT, Kroeger M, Amysang QX. Structure-function analysis of the adam family of disintegrin-like and metalloproteinase-containing proteins. J Protein Chem, 1999; 18(4): 447-465.
    5.徐存拴,张为民,林俊堂,等.Adams的结构和功能.自然群学进展,2001;11(9):1-7.
    6. Seals DF, Courtneidge SA. The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev, 2003; 17(1):7-30.
    7. Milla ME, Leesnitzer MA, Moss ML et al. Specific sequence elements are required for the expression of functional tumor necrosis factor-alpha-converting enzyme(TACE)[J]. J??Biol Chem, 1999;274(43):30563-30570.
    8. Howard L, Nelson KK, Maciewicz R.A, et al. Interaction of the metalloprotease disintegrins MDC9 and MDC15 with two SH3 domain-containing proteins, endophilin I and SH3 PX1. J Biol Chem; 1999;274(44): 31693-31699.
    9. Van Wart HE, Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A, 1990;87(14):5578-5582.
    10. Roghani M, Becherer J D, Moss M L, et al. Metalloprotease-disintegrin MDC9: intracellular maturation and catalytic activity. J Biol Chem, 1999;274:3531-3540.
    11. Zhang XP, Kamata T, Yokoyama K, et al. Specific interaction of the recombinant disintegrin-like domain of MDC-15 (metargidin, ADAM-15) with integrin alphavbeta3. J Biol Chem, 1998;273(13):7345-7350.
    12. Fourie AM, Coles F, Moreno V, Karlsson L. Catalytic activity of ADAM8, ADAM15, and MDC-L (ADAM28) on synthetic peptide substrates and in ectodomain cleavage of CD23. J Biol Chem, 2003;278(33):30469-30477.
    13. Shi Z, Xu W, Loechel F, et al.. ADAM 12, a disintegrin metalloprotease, interacts with insulin-like growth factor-binding protein-3. J Biol Chem, 2000;275(24): 18574-18580.
    14. Fourie AM, Coles F, Moreno V, et al. Catalytic activity of ADAM8, ADAM15, and MDC-L (ADAM28) on synthetic peptide substrates and in ectodomain cleavage of CD23. J Biol Chem, 2003;278(33):30469-30477.
    15. Seals DF, Courtneidge SA. The ADAMs family of metalloproteases: multidomain proteins with multiple functions, Genes Dev, 2003;17(1):7 - 30.
    16. Ohtsuka T, Shiomi T, Shimoda M, et al. ADAM28 is overexpressed in human non-small cell lung carcinomas and correlates with cell proliferation and lymph node metastasis. Int J Cancer, 2006; 118(2):263-273.
    17. Loechel F, Gilpin BJ, Engvall E, et al. Human ADAM 12 (meltrin alpha) is an active metalloprotease. J Biol Chem, 1998;273(27): 16993-16997.
    18. Mochizuki S, Shimoda M, Shiomi T, et al. ADAM28 is activated by MMP-7 (matrilysin-1) and cleaves insulin-like growth factor binding protein-3. Biochem Biophys Res Commun, 2004;315(1):79-84.
    19. Bates EE, Fridman WH, Mueller CG. The ADAMDEC1 (decysin) gene structure: evolution by duplication in a metalloprotease gene cluster on chromosome 8p12. Immunogenetics, 2002;54(2):96-105.
    20. Yoshiyama K, Higuchi Y, Kataoka M, et al. CD156 (human ADAM8): expression, primary amino acid sequence, and gene location. Genomics, 1997;41(1):56-62.
    21. Kataoka M, Yoshiyama K, Matsuura K, et al. Structure of the murine CD156 gene, characterization of its promoter, and chromosomal location. J Biol Chem, 1997;272(29): 18209-18215.
    22. Schlomann U, Rathke-Hartlieb S, Yamamoto S, et al. Tumor necrosis factor alphainduces a metalloprotease-disintegrin, ADAM8 (CD 156): implications for neuron-glia interactions during neurodegeneration. J Neurosci, 2000;20(21):7964-7971.
    23. Bonnefoy JY, Plater-Zyberk C, Lecoanet-Henchoz S, et al. A new role for CD23 in inflammation, Immunol Today, 1996; 17(9):418-420.
    24. Zhang XP, Kamata T, Yokoyama K, et al. Specific Interaction of the Recombinant Disintegrin-like Domain of MDC- 15 (Metargidin, ADAM- 15) with Integrin α5β3. J Bio Chem, 1998;273(2):7345-7350.
    25. Nath D, Slocombe PM, Stephens PE, et al. Interaction of metargidin (ADAM-15) with alphavbeta3 and alpha5betal integrins on different haemopoietic cells. J Cell Sci, 1999;112(Pt 4):579-587.
    26. Nath D, Slocombe PM, Webster A, et al. Meltrin gamma(ADAM-9) mediates cellular adhesion through alpha(6) beta(1)integrin, leading to a marked induction of fibroblast cell motility. J Cell Sci, 2000;113(6):2319-2328.
    27. Herren B, Raines EW, Ross R. Expression of a disintegrin-like protein in cultured human vascular cells and in vivo. FASEB J, 1997; 11 (2): 173-180.
    28. Bohm BB, Aigner T, Gehrsitz A, et al. Up-regulation of MDC15 (metargidin) messenger RNA in human osteoarthritic cartilage. Arthritis Rheum, 1999;42(9): 1946-1950.
    29. Sekut L, Connolly K. Exp Opin Inves. Drugs, 1998;7(8): 1825-1839.
    30. Moss ML, White JM, Lambert MH, Andrews RC. TACE and other ADAM proteases as targets for drug discovery. Drug Discovery Today, 2001;6(5):417-426.
    31. Perry AC, Jones R, Barker PJ, Hall L. A mammalian epididymal protein with remarkable sequence similarity to snake venom haemorrhagic peptides. Biochem J, 1992;286(Pt3):671-675.
    32. Cornwall GA, Hsia N. ADAM7, a member of the ADAM (a disintegrin and metalloprotease) gene family is specifically expressed in the mouse anterior pituitary and epididymis. Endocrinology, 1997; 138(10):4262-4272.
    33. Lin YC, Sun GH, Lee YM, et al. Cloning and characterization of a complementary DNA encoding a human epididymis-associated disintegrin and metalloprotease 7 protein. Biol Reprod, 2001;65(3):944-950.
    34. Jury JA, Perry AC, Hall L. Identification, sequence analysis and expression of transcripts encoding a putative metalloproteinase, eMDC II, in human and macaque epididymis. Mol Hum Reprod, 1999;5(12): 1127-1134.
    35. Howard L, Maciewicz RA, Blobel CP. Cloning and characterization of ADAM28: Evidence for autocatalytic pro-domain removal and for cell surface localization of mature ADAM28. J Biochem, 2000;348 (Pt1):21-27.
    36. Oh J, Woo JM, Choi E, et al. Molecular, biochemical, and cellular characterization of epididymal ADAMs, ADAM7 and ADAM28. Biochem Biophys Res Commun, 2005;331(4): 1374-1383.
    37. Bridges LC, Sheppard D, Bowditch RD. ADAM disintegrin-like domain recognition by the lymphocyte integrins alpha4betal and alpha4beta7. Biochem J, 2005;387(Pt 1): 101-108.
    38. Pickard B, Damjanovski S. Overexpression of the tissue inhibitor of metalloproteinase-3 during Xenopus embryogenesis affects head and axial tissue formation. Cell Res, 2004;14(5):389-399.
    39. Shi Z, Xu W, Loechel F, et al. ADAM 12, a disintegrin metalloprotease, interacts with insulin-like growth factor-binding protein-3. J Biol Chem, 2000;275(24): 18574-18580.
    40. Brou C, Logeat F, Gupta N, et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell, 2000;5(2):207-216.
    41. Chang C, Werb Z. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol, 2001; 1(11):S37-43.
    42. Yuan R, Primakoff P, Myles DG. A role for the disintegrin domain of cyritestin, a sperm surface protein belonging to the ADAM family, in mouse sperm-egg plasma membrane adhesion and fusion. J Cell Biol, 1997;137(1):105-112.
    43. Loechel F, Gilpin BJ, Engvall E, et al. Human ADAM 12 (meltrin alpha) is an active metalloprotease. J Biol Chem, 1998;273(27): 16993-16997.
    44. Ruiz Gomez M, Bate M. Segregation of myogenic lineages in Drosophila requires numb. Development, 1997; 124(23):4857-4866.
    45. Buxbaum JD, Liu KN, Luo Y. Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J Biol Chem, 1998;273(43):27765-27767.
    46. Verrier S, Hogan A, McKie N, et al. ADAM gene expression and regulation during human osteoclast formation. Bone, 2004;35(1):34-46.
    47. Chubinskaya S, Cs-Szabo G, Kuettner KE, et al. ADAM-10 message is expressed in human articular cartilage. J Histochem Cytochem, 1998;46(6):723-729.
    48. Wood WI, Cachianes G, Henzel WJ, et al. Cloning and expression of the growth hormone-dependent insulin-like growth factor-binding protein. Mol Endocrinol, 1988;2(12):1176-1185.
    49. Yavari R, Adida C, Bray-Ward P, et al. Human metalloprotease-disintegrin Kuzbanian regulates sympathoadrenal cell fate in development and neoplasia. Hum Mol Genet, 1998;7(7):1161-1167.
    50. Harris ES, McIntyre TM, Prescott SM, Zimmerman GA. The leukocyte integrins. J Biol Chem, 2000;275(31):23409-23412.
    51. Calderwood DA, Shattil SJ, Ginsberg MH. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J Biol Chem, 2000;275(30):22607-22610.
    52. Gould RJ, Polokoff MA, Friedman PA, et al. Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Biol Med, 1990; 195(2): 168-171.
    53. McLane MA, Marcinkiewicz C, Vijay-Kumar S, et al. Viper venom disintegrins and related molecules. Proc Soc Exp Biol Med, 1998;219(2): 109-119.
    54. Bridges LC, Sheppard D, Bowditch RD. ADAM Disintegrin-like Domain Recognition by the Lymphocyte Integrins α 4 β 1 and α 4 β 7. Biochem J, 2005; 387(Pt 1): 101-108.
    55. Yamamoto S, Higuchi Y, Yoshiyama K, et al. ADAM family proteins in the immune system. Immunol Today, 1999; 20(6):278-284.
    56.轩昆.先天性牙根发育不全致病相关基因的克隆研究[博士学位论文].西安:第四军医大学,2004:108-120.
    57. Howard L, Zheng Y, Horrocks M, et al. Catalytic activity of ADAM28. FEBS Lett, 2001; 498(1): 82-86.
    58. Haidl ID, Huber G, Eichmann K. An ADAM family member with expression in thymic epithelial cells and related tissues. Gene, 2002; 283(1-2): 163-170.
    59. Roberts CM, Tani PH, Bridges LC, et al. MDC-L, a novel metalloprotease disintegrin eysteine-rich protein family member expressed by human lymphocytes. J Biol Chem, 1999; 274(41):29251-29259.
    60. Pacheco MM, Mourao M, Mantovani EB, et al. Expression of gelatinases A and B, stromelysin-3 and matrilysin genes in breast carcinomas: clinico-pathological correlations. Clin Exp Metastasis, 1998; 16(7):577-585.
    61. Salahifar H, Firth SM, Baxter RC, Martin JL. Characterization of an amino-terminal fragment of insulin-like growth factor binding protein-3 and its effects in MCF-7 breast cancer cells. Growth Horm IGF Res, 2000; 10(6):367-377.
    62. Tummers M, Thesleff I. Root or crown: a developmental choice orchestrated by the differential regulation of the epithelial stem cell niche in the tooth of two rodent species. Development, 2003; 130(6): 1049-1057.
    63. Evans JP. Fertilin beta and other ADAMs as integrin ligands: Insights into cell adhesion and fertilization. Bioessays, 2001; 23(7): 628-639.
    64. Hartmann D, de Strooper B, Serneels L, et al. The disintegrin/metalloproteinase ADAM 10 is essential for Notch signalling but not for α-secretase activity in fibroblasts. Hum Mol Genet, 2002; 11(21): 2615-2624.1.王伯法,李玉松,黄高升主编.病理学实验技术.北京:人民卫生出版社,2000:130-131.
    2. Ruch JV. Determinisms of odontogenesis. Revis Biol Celular, 1987, 14:1-99.
    3. Sena K, Morotome Y, Baba O, Terashima T, Takano Y, Ishikawa I. Gene expression of growth differentiation factors in the developing periodontium of rat molars. J Dent Res, 2003; 82(3): 166-171.
    4. Apajalahti S, Sorsa T, Ingman T. Matrix metalloproteinase-2,-8,-9, and-13 in gingival crevicular fluid of short root anomaly patients. Eur J Orthod, 2003;25(4):365-369.
    5. Redlich M, Roos H, Reichenberg E, Zaks B, Grosskop A, Bar Kana I, Pitaru S, Palmon A. The effect of centrifugal force on mRNA levels of collagenase, collagen type-Ⅰ, tissue inhibitors of metalloproteinases and beta-actin in cultured human periodontal ligament fibroblasts. J Periodontal Res, 2004;39(1):27-32.
    6. Beertsen W, VandenBos T, Everts V. Root development in mice lacking functional tissue non-specific alkaline phosphatase gene: inhibition of acellular cementum formation. J Dent Res, 1999; 78(6): 1221-1229.
    7. Thesleff I, Mikkola M. The role of growth factors in tooth development. Int Rev Cytol, 2002; 217(2):93-135.
    8. Sena K, Morotome Y, Baba O, et al. Gene expression of growth differentiation factors in the developing periodontium of rat molars. J Den Res, 2003;82(3):166-172.
    9. Chen J, Shapiro HS, Sodek J. Development expression of bone sialoprotein mRNA in rat mineralized connective tissues. J Bone Miner Res, 1992; 7(8): 987-997.
    10. Chen J, McKee MD, Nanci A, et al. Bone sialoprotein mRNA expression and ultrastructural localization in fetal porcine calvarial bone: comparisons with osteopontin. Histochem J, 1994; 26(1): 67-78.
    11. Wuttke M, Muller S, Nitsche DP, et al. Structural characterization of human recombinant and bone-derived bone sialoprotein. Functional implications for cell attachment and hydroxyapatite binding. J Biol Chem, 2001; 276(39): 36839-36848.
    12. Ross FP, Chappel J, Alvarez JI, et al. Interactions between the bone matrix proteins osteopontin and bone sialoprotein and the osteoclast integrin alpha v beta 3 potentiate bone??resorption. J Biol Chem, 1993; 268(13): 9901-9907.
    13. O'Regan AW, Nau GJ, Chupp GL, et al. Osteopontin (Eta-1) in cell-mediated immunity: teaching an old dog new tricks, Immunol Today, 2000; 21(10): 475-478.
    14. Asou Y, Rittling SR, Yoshitake H, et al. Osteopontin facilitates angiogenesis, accumulation of osteoclasts, and resorption in ectopic bone. Endocrinology, 2001; 142(3): 1325-1332.
    15. Guo H, Baker TK, Carfagna MA, et al. Temporal gene expression analysis of monolayer cultured rat hepatocytes. J Immunol, 2001; 166(2): 1079-1086.
    16. Hunter GK, Goldberg HA. Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci USA, 1993; 90(18): 8562-8565.
    17. Sodek J, Ganss B, McKee MD. Osteopontin. Crit Rev Oral Biol Med, 2000; 11(3): 279-303.
    18. Sreenath T, Thyagarajan T, Hall B, et al. Dentin sialophos2 phoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogene2 sis imperfecta type Ⅲ. J Biol Chem, 2003; 278(27):24874-24880.
    19.张蓉,肖明振,赵守亮,等.牙本质涎磷蛋白反义核酸对体外培养牙胚发育、矿化的影响.牙体牙髓牙周病学杂志.2004;14(7):354-356.
    20. Higashi T, Okamoto H. Electron microscopic on interodontoblastic collagen fibres in amputal dental pulp. J Endod, 1996; 22(3): 116-120.
    21. Bronckers AL, Lyaruu DM, Woltgens JH Immunohistochemistry of extracellular matrix protein during various stage of dentinogenesis. Connect Tissure Res, 1989; 22(1-4): 65-70.
    22. Hillmann G, Geurtsen W. Light-microscopical investigation of the distribution of extracellular molecules and calcifications in human dental pulps of various ages. Cell Tissue Res, 1997; 289(1): 145-154.
    23.文玲英,吴海珍,王泊云.年轻恒牙牙髓中几种细胞外基质的分布特征.中华口腔医学杂志,1994;29(3):186-190.
    24. Pockwinse SM, Wilming LG, Conlon DM, Stein GS, Lian JB. Expression of cell growth and bone specific genes at single cell resolution during development of bone tissue-like organization in primary osteoblast cultures. J Cell Biochem, 1992;49(3): 310-323.
    25. Takita K, Ohsaki Y, Naketa M, et al. Immunofluorescence localization of type Ⅰ and type Ⅲ collagen and fibronectin in mouse dentaltissure in late development and during molar eruption. Arch Oral Biol, 1987; 3(3): 237-242.
    26. Pavlin D, Dove SB, Zadro R, et al. Mechanical loading stimulates differentiation of periodontal osteoblast in a mouse osteoinduction model: effect on type Ⅰ collagen and alkaline phosphatase genes. Calcif Tissue Int, 2000; 67(2): 163-172.
    27. Mitsiadis TA, Couble P, Dicou E, et al. Patterns of nerve growth factor(NGF), proNGF, and p75 NGF receptor expression in the rat incisor: comparison with expression in the molar. Differentiation, 1993; 54(3): 161-175.
    28.金岩主编.小鼠发育生物学与胚胎实验方法.北京:人民卫生出版社,2005:229-230.1. Howard L, Zheng Y, Horrocks M, Maciewicz RA, Blobel C. Catalytic activity of ADAM28. FEBS Lett, 2001; 498(1):82-86.
    2. Howard L, Maciewicz RA, Blobel CP. Cloning and characterization of ADAM28: evidence for autocatalytic pro-domain removal and for Cell surface localization of mature ADAM28. Biochem J, 2000; 348 Pt:21-27.
    3.金冬雁,黎孟枫编译.分子克隆实验指南.第三版,北京:科学技术出版社,2002:1245-1259.
    4.蔡亮,朱鹏程,商瑛颖,等.ADAM家族的结构特征与生物学功能.生命的化学,2003;23(5):345-346.
    5. Bates EEM, Fridman WH, Mueller CGF. The ADAMDEC1 (decysin) gene structure: evolution by duplication in a metalloprotease gene cluster on Chromosome 8p 12. Immuno Genetics, 2002;54(2):96-105.
    6. Tummers M, Thesleff I. Root or crown: a developmental choice orchestrated by the differential regulation of the epithelial stem cell niche in the tooth of two rodent species. Development, 2003; 130(6): 1049-1057.
    7.邓耀祖,屈伸主编.医学分子细胞生物学.北京:科学出版社出版,2002.
    8. Wyszynski DF, Beaty TH, Maestri NE. Genetics of nonsyndromic oral cleft revisited.??Cleft Palate Craniofac J, 1996;35(5):406-417.
    9. Ambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed. New York: Cold Spring Harbor Laboratory Press, 1989:139-166.
    10. Darren F. Seals, Sara A. Courtneidge. The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Gene Development, 2003; 17(1):7-30.
    11.金岩主编.小鼠发育生物学与胚胎实验方法.北京:人民卫生出版社,2005:216-227.
    12.金岩主编.口腔颌面组织胚胎学.西安:陕西科学技术出版社,2002:150.
    13. Verrier S, Hogan A, McKie N, Horton M. ADAM gene expression and regulation during human osteoclast formation. Bone, 2004; 35(1):34-46.
    14. Tucker AS, Yamada G, Grigoriou M, et al. Fgf8 determines rostral-caudal polarity in the first branchial arch. Development, 1999; 126(1):51-61.
    15. MacKenzie A, Ferguson MW, Sharpe PT. Expression patterns of the homeobox gene, Hox8, in the mouse embryo suggest a role in specifying tooth initiation and shape. Development, 1992;115(2):403-420.
    16. Mitsiadis TA, Fried K. Goridis C. Reactivation of Delta-Notch signaling after injury: complementary, expression patterns of ligand and receptor in dental pulp. Exp Cell Res, 1999;246(2):312-318.
    17. Mitsiadis TA, Henrique D, Thesleff. I, Lendahl U. Mouse Serrate-1 (Jagged-1): expression in the developing tooth is regulated by epithelial-mesenchymal interactions and fibroblast growth factor-4. Development, 1997; 124(8): 1473-1483.
    18. Mitsiadis TA, Lardelli M, Lendahl U, Thesleff I. Expression ofNotchl, 2 and 3 is regulated by epithelial-mesenchymal interactions and retinoic acid in the developing mouse tooth and associated with determination of ameloblast cell fate. J Cell Biol, 1995, 130(2):407-418.
    19.金岩主编.组织工程学原理与技术.西安:第四军医大学出版社,2004:255.
    20. Thesleff I, Vaahtokari A, Vainio S, Jowett A. Molecular mechanisms of cell and tissue interactions during early tooth development. Anat Rec, 1996;245(2): 151-161.
    21. Primakoff P, Myles DG. The ADAM gene family-surface proteins with adhesion and proteinase activity. J Trends in Genetics, 2000; 16(2):83-87.
    22. Shi Z, Xu W, Loechel F, et al. ADAM 12, a disintegrin metalloprotease, interacts with insulin-like growth factor-binding protein-3. J Biol Chem, 2000;275(24): 18574-18580.
    23. Brou C, Logeat F, Gupta N, et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell, 2000; 5(2): 207-216.
    24. Milla ME, Leesnitzer MA, Moss ML et al. Specific sequence elements are required for the expression of functional tumor necrosis factor-alpha-converting enzyme(TACE). J Biol Chem, 1999;274(43): 30563-30570.
    25. Howard L, Nelson KK, Maciewicz RA, et al. Interaction of the metalloprotease??disintegrins MDC9 and MDC15 with two SH3 domain-containing proteins, endophilin I and SH3PX1. J Biol Chem, 1999;274(44): 31693-31699.
    26. Bigler D, Takahashi Y, Chen MS,et al. Sequence-specific interaction between the disintegrin domain of mouse ADAM 2 (fertilin beta) and murine eggs. Role of the alpha(6) integrin subunit. J Biol Chem, 2000;275(16): 11576-11584.
    27. Fourie AM, Coles F, Moreno V, et al. Catalytic activity of ADAM8, ADAM15, and MDC-L (ADAM28) on synthetic peptide substrates and in ectodomain cleavage of CD23. J Biol Chem, 2003; 278(33): 30469-30477.
    28. Evans, JP. Fertilin β and other ADAMs as integrin ligands: Insights into cell adhesion and fertilization. Bio Essays, 2001, 23(2): 628-639.
    29. Hartmann D, de Strooper B, Serneels L, et al. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for α-secretase activity in fibroblasts. Hum Mol Genet, 2002; 11(4): 2615-2624.
    30.李鑫,金岩,董绍忠.腭胚间充质细胞增殖变化在腭裂形成中的意义.中华口腔医学杂志,2001;36(6):430.1. Kaufman RJ. Overview of vector design for mammalian gene expression. Mol Biotechnol, 2000; 16(2): 151-160.
    2. Harms JS, Splitter GA. Interferon-gamma inhibits transgene expression driven by SV40 or CMV promoters but augments expression driven by the mammalian MHC I promoter. Hum Gene Ther, 1995;6(10):1291-1297.
    3. Schmidt EV, Christoph G, Zeller R, Schmidt EV et al. The cytomegalovirus enhancer: a pan-active control element in transgenic mice. Mol Cell Biol, 1990; 10(8):4406-4411.
    4. Howard L, Maciewicz RA, Blobel CP. Cloning and characterization of ADAM28: evidence for autocatalytic pro-domain removal and for cell surface localization of mature ADAM28. Biochem J, 2000;348 Pt: 21-27.
    5.司徒镇强,吴军正主编.细胞培养.西安:世界图书出版社,1996:69-187.
    6. Ritchie HH, Ritchie DG, Wang LH. Six decades of dentinogenesis research. Eur J Oral Sci, 1998; 106 (Suppl 1):211-220.
    7. Quarles LD, Yohay DA, Lever LW, et al. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Re, 1992;7(6):683-687.
    8. Aderson DJ. Cellular and molecular biology of neural crest cell lineage diversification. Current Opinion in Neurobiology, 1993;3(1):8-13.
    9. Aderson DJ. Cellular and molecular biology of neural crest cell lineage determination. Trends Genet, 1997; 13(7):276-280.
    10. Chai Y, Jiang X, Ito Y, et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development, 2000; 127(8): 1671-1679.
    11.金岩主编.口腔颌面组织胚胎学.西安:陕西科学技术出版社.2002:110-131.
    12.裴雪涛主编.干细胞生物学.北京:科学出版社.2003:78-101.
    13.宋今丹主编.医学细胞分子生物学.北京:人民卫生出版社.2003:408-447.
    14. Shiba H, Nakanishi K, Rashid F, et al. Proliferative ability and alkaline phosphatase activity with in vivo cellular aging in human pulp cell. J Endod, 2003;29(1):9-14.
    15.金伯泉.细胞和分子免疫学实验技术.西安:第四军医大学出版社,2002:78-81.
    16.司徒镇强,吴军正主编.细胞培养(第2版).西安:世界图书出版公司,2004:10.
    17. Tummers M, Thesleff I.Root or crown: a developmental choice orchestrated by the differential regulation of the epithelial stem cell niche in the tooth of two rodent species. Development, 2003; 130(6): 1049-1057.
    18.何飞.Notch信号与牙齿发生.现代口腔医学杂志,2002;16(5):450-452.
    19. Yoneya T, Tahara T, Nagao K et al. Molecular cloning of Delta-4, a new mouse and??human notch ligand. J Biochem, 2001; 129(1):27-34.
    20. Mitsiadis TA, Fried K. Goridis C. Reactivation of Delta-Notch signaling after injury: complementary, expression patterns of ligand and receptor in dental pulp. Exp Cell Res, 1999;246(2):312-318.
    21. Mitsiadis TA, Henrique D, Thesleff I, et al. Mouse Serrate-1 (Jagged-1): expression in the developing tooth is regulated by epithelial-mesenchymal interactions and fibroblast growth factor-4. Development, 1997; 124(8):1473-1483.
    22. Mitsiadis TA, Lardelli M, Lendahl U, et al. Expression of Notch1, 2 an d 3 is regulated by epithelial-mesenchymal interactions and retinue acid in the developing mouse tooth and associated with determination of ameloblast cell fate. J Cell Biol, 1995; 130(2):407-418.
    1. Izant JG, Weintraub H. Inhibition of thymidine kinase gene expression by anti-sense RNA: a molecular approach to genetic analysis. Cell, 1984; 36(4): 1007-1015.
    2. Weintraub HM. Antisense RNA and DNA. Sci Am, 1990; 262(1):40-46.
    3. Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A, 1978; 75(1): 280-284.
    4. Wagner RW. Gene inhibition using antisense oligodeoxynucleotides. Nature, 1994; 372(6504): 333-335.
    5.王全会,毛建平.mRNA靶点筛选方法研究进展.中国生物工程杂志,2003;23(3):1-5.
    6. Zon G. Brief overview of control of genetic expression by antisense oligonucleotides and in vivo applications. Prospects for neurobiology. Mol Neurobiol, 1995; 10(2-3):219-229.
    7. Wagner RW. The state of the art in antisense research. Nat Med, 1995;1(11): 1116-1118.
    8. MacDougall M, Simmons D, Luan X, et al. Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4. Dentin phosphoprotein DNA sequence determination. J Biol Chem, 1997;272(2):835-842.
    9. Nakasone N, Yoshie H, Ohshima H. An immunohistochemical study of the expression of heat-shock protein-25 and cell proliferation in the dental pulp and enamel organ during odontogenesis in rat molars. Arch Oral Biol, 2005 Oct 27; [Epub ahead of print].
    10.金岩主编.小鼠发育生物学与胚胎实验方法.北京:人民卫生出版社,2005:226-227.
    11. Ohtsuka T, Shiomi T, Shimoda M, et al. ADAM28 is overexpressed in human non-small cell lung carcinomas and correlates with cell proliferation and lymph node metastasis, Int J Cancer, 2006; 118(2):263-273.
    12. Haidl ID, Huber G, Eichmann K. An ADAM family member with expression in thymic epithelial cells and related tissues. Gene, 2002; 283(1-2): 163-170.
    13. Howard L, Zheng Y, Horrocks M, et al. Catalytic activity of ADAM28. FEBS Lett, 2001; 498(1):82-86.14. Beatus P, Lundkvist J, Oberg C, et al. The origin of the ankyrin repeat region in notch intracellular domains is critical for regulation of HES pro2 moter activity. Mech Dev, 2001; 104(1-2):3-20.
    15. Mitsiadis TA, Lardelli M, Lendahl U, Thesleff I. Expression of Notch 1, 2 and 3 is regulated by epithelial-mesenchymal interactions and retinoic acid in the developing mouse tooth and associated with determination of ameloblast cell fate. J Cell Biol, 1995; 130(2): 407-418.
    16. Dontu G, Jackson KW, McNicholas E, et al. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res, 2004;6(6): R605-615.
    17.何飞.Notch信号与牙齿发生.现代口腔医学杂志,2002;16(5):450-452.
    18. Ross FP, Chappel J, Alvarez JI, et al. Interactions between the bone matrix proteins osteopontin and bone sialoprotein and the osteoclast integrin alpha v beta 3 potentiate bone resorption. J Biol Chem, 1993; 268(13):9901-9907.
    19. Hunter GK, Goldberg HA. Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci USA, 1993;90(18):8562-8565.
    20. Sodek J, Ganss B, McKee MD. Osteopontin. Crit Rev Oral Biol Med, 2000;11(3): 279-303.
    21. Wuttke M, Muller S, Nitsche DP, et al. Structural characterization of human recombinant and bone-derived bone sialoprotein. Functional implications for cell attachment and hydroxyapatite binding. J Biol Chem, 2001;276(39):36839-36848.
    22.金岩主编.口腔颌面组织胚胎学.西安:陕西科学技术出版社.2002:110-131.
    23. Higashi T, Okamoto H. Electron microscopic on interodontoblastic collagen fibres in amputal dental pulp. J Endod, 1996; 22(3): 116.
    24.文玲英,吴海珍编著.现代牙髓免疫学.合肥:安徽科学技术出版社,1998:64.
    25. Bronckers AL, Lyaruu DM, Woltgens JH. Immunohistochemistry of extracellular matrix protein during various stage of dentinogenesis. Connect Tissure Res, 1989; 22(1-4): 65-70.
    26. Pockwinse SM, Willing LG, Conlon DW. Expression of cell growth and bone specific genes at single cell resolution during development of bone tissue-like organization in primary osteoblasts. Cell Biochem, 1992, 49(2):310.27. Pavlin D, Dove SB, Zadro R, et al. Mechanical loading stimulates differentiation of periodontal osteoblast in a mouse osteoinduction model: effect on type Ⅰ collagen and alkaline phosphatase genes. Calcif Tissue Int, 2000; 67(2): 163-172.
    28. Thesleff I, Aberg T. Molecular regulation of tooth development. Bone, 1999;25(1): 123-125.
    29.张蓉.牙本质涎磷蛋白在牙齿发育、矿化及牙髓损伤修复中作用的研究.第四军医大学学位论文,2001.
    30.郭鹏.成釉蛋白在小鼠牙胚发育中的表达和作用研究.第四军医大学学位论文,2003.
    31.汪平,郝建军,史俊南.鼠牙胚的体外培养的实验观察.口腔医学,1998;18(3):121-122.
    32. Bronckers A, Bervoets T, Woltgens J. Effect of developmental stage of explants on further in vitro development of hamster molars. Arch Oral Biol, 1983;28(1):69-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700