文蛤贝壳层状结构及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贝壳是常见的生物材料,具有复杂的微观结构和优良的力学性能。文蛤是常见的软体动物文蛤贝壳是一种天然生物材料,具有的分级结构和优异性能为高性能的复合材料和仿生材料的设计提供了新思路。研究生物原形的几何结构特征、材料的力学性能、材料的组成是研制仿生材料的基本前提。软体贝壳作为天然生物材料的一种,由于其优异的力学性能而受到材料设计和研究者的关注。
     本文以辽宁营口地区的文蛤为研究对象,用扫描电子显微镜和体式显微镜观察了其微观组织结构;采用精密切割机对文蛤贝壳进行分割,得出了不同部分的密度分布情况。用电子万能实验机对文蛤贝壳的力学性能进行了分析,并用ansys有限元分析软件对其结构所对应的优良力学性能进行模拟仿真。最后文蛤片结构和性能之间的关系进行了探讨。
     文蛤贝壳无机成分由方解石和文石两相所构成,表面的角质层是一层硬化蛋白,有机质成分复杂占总重量5%,主要由不可溶的多糖几丁质、富甘氨酸和丙氨酸的不可溶蛋白质、富天冬氨酸等酸性氨基酸的可溶性蛋白等三种生物大分子组成。对文蛤珍珠层和棱柱层进行浸润性测试,发现文蛤棱柱层表面、珍珠层表面均具有较强的亲水性,接触角大小与其表面微观结构有关,其中棱柱层表面微观结构润湿性能满足Wenzel模型。对不同含水量的贝壳进行压缩、剪切等力学性能实验的对比中,压缩实验中,垂直生长表面加载时最大应力从54.3Mpa-90.60Mpa,而且最大应力主要集中于55Mpa和80Mpa左右。沿着生长方向加载时,最大应力范围48.5Mpa—61Mpa之间,相对于垂直加载时稳定。棱柱层和珍珠层的压缩的最大强度明显高于整体压缩强度,分层压缩时的最大强度是整体压缩强度的2倍。当垂直于表面方向加载时表现出了陶瓷的特征。
     本研究采用精密划痕仪,对片状文石之间的临界载荷Lc_1文石层与棱柱层之间的临界载荷Lc_2,并比较了不同含水量下Lc_1、Lc_2的变化情况,讨论了临界载荷对材料的整体力学性能的影响;
     采用微观摩擦磨损实验机对文蛤贝壳的摩擦性能测量,实验表明文蛤贝壳在与不同粗糙程度的砂纸对磨时,实验因素对摩擦因数的影响大小依次为摩擦速度、对副种类、法向载荷。用1000目砂纸做摩擦速度和法向载荷的全面实验时发现,在载荷一定的条件下,摩擦因数随着滑动速度的增大迅速减小。随着滑动速度的增大,摩擦表面的温度升高,壳体材料软化,贝壳中的有机质将填充于表面微观结构之间,从而壳体材料变得相对平坦光滑,摩擦表面间微突体的啮合程度越来越小,微突体间的相互运动阻碍作用减弱,使微观切削抗力减小,在相同法向载荷条件下,宏观的摩擦阻力也就减小,从而使测量得到的摩擦因数降低。这种变化趋势同贝壳材料的结构有一定关系,贝壳最外层为角质层,由很硬的贝壳硬蛋白构成,中间层为棱柱层,由无机物和有机物交替排列组成。实验初期,角质层上凸起的生长线必然会阻碍摩擦的进行,摩擦力的增大导致测量的摩擦因数的增大。贝壳材料的主要磨损机理有疲劳磨损和粘着磨损两种。文蛤贝壳壳体与砂纸摩擦过程中以犁削为主,并出现犁沟和轻微的材料转移现象。
     对实验中采集和测量得到的数据进行处理,建立贝壳的层状结构以及棱柱层和珍珠层模型。采用ansys有限元分析软件,对文蛤贝壳在准静态加载和动态加载过程层状结构模型的应力分布情况位移情况。。
Shell is a common biological materials with complex microstructure and excellent mechanical properties. Is a common mollusk clams clam shells is a natural biological materials with hierarchical structure and excellent performance for high-performance composite materials and biomimetic materials design provides a new idea. Study the biological characteristics of the prototype geometry, mechanical properties, material composition is the basic prerequisite for development of biomimetic materials. Software shell as a kind of natural biological materials, due to its excellent mechanical properties and material design, and researchers are concerned about.
     In this paper, Yingkou clams for the study area, with a scanning electron microscope and stereo microscope observation of its microstructure; using precision cutting machine segmentation of clam shells, obtained the density distribution of different parts. Electronic universal testing machine with a clam shell on the mechanical properties were analyzed, and used finite element analysis software ansys structure corresponding to its excellent mechanical properties of simulation. Last clams film the relationship between structure and properties were discussed.
     Clam shells and inorganic constituents of calcite and aragonite are two-phase composition, surface of the cuticle is a layer of hardened protein, organic matter complex composition of the total weight of 5%, mainly from the insoluble polysaccharide chitin, non-glycine and alanine-rich soluble proteins, and other acidic amino acids aspartic acid-rich soluble protein composed of three kinds of biological macromolecules. Of clams and prismatic layer of nacre invasive tests and found that clams prismatic layer surface, the surface nacre are strong hydrophilic, the contact angle on the size of its surface structure, surface structure in which prismatic layer wetting properties to meet the Wenzel model . Shells of different water content compression, shear and other mechanical properties of the comparison experiment, the compression experiments, the vertical growth from the surface of maximum stress loads 54.3Mpa-90.60Mpa, and the maximum stress mainly in 55Mpa and 80Mpa so. Along the growth direction of the load, the maximum stress range between 48.5Mpa-61Mpa, as opposed to vertical loading and stability. Prismatic layer and nacreous layer of the compression strength was significantly higher than the overall maximum compressive strength, maximum strength of layered compression of the overall compressive strength of 2 times. Direction perpendicular to the surface when the load curve showed the characteristics of ceramics.
     In this study, precision instrument scratches on the sheet between the critical load Lc1 aragonite aragonite prismatic layer between the layer and the critical load Lc2, and compare the different water content Lc1, Lc2 changes, discussed the critical load overall mechanical properties of materials influence.
     Micro-friction and wear test machine using clam shells on the friction performance measurement, results show that clam shells with different roughness of sandpaper on the ground, the experimental factors on the order of the friction factors for the friction velocity, and vice types, the normal load. 1000 grit sand paper to do with friction velocity and normal load of the full experiment found that under certain conditions in the load, the friction factor increases as the sliding velocity decreases rapidly. As the sliding speed increases, the friction surface temperature, the shell material softening, shell organic matter in surface structure will be filled in between the shell material to become relatively flat smooth, micro-friction and conflict between the body surface increasingly engaging small, micro sudden relative movement between the body hindered weakened, reduced resistance to micro-cutting, in the same normal load conditions, the macroscopic friction also decreases, so that the friction factors measured lower . This trend materials with the shell structure of a certain relationship between the outermost shells stratum corneum, the hard shell of a hard protein composition, the middle layer of prismatic layer, alternating the composition of inorganic and organic matter. Early experiments, the cuticle on the raised lines will necessarily impede the growth of the conduct of friction, friction causes the increase of the friction factors measured increases. The main wear mechanism of shell material fatigue wear and adhesive wear are the two. Clam shell case with sandpaper rubbing process to plow the main, and the emergence of a slight furrow and the material transfer phenomenon.
     The experiment data acquisition and processing measured, the establishment of the layered structure and the shell prismatic layer and nacreous layer model. Using finite element analysis software ansys, on clam shells in the quasi-static loading and dynamic loading process of the layered structure of the stress distribution model displacement.
引文
[1] F. Song, A. K. Soh, Y. L. Ba. Structural and mechanical properties of the organic matrix layers of nacre[J]. Biomaterials,2003,24(20): 3631~3623.
    [2]张秀英,廖照江,杨林等.β-环糊精与碳酸钙结晶的相互作用[J].化学学报,2003,61(1):69~73.
    [3] Arnold J M. Nautilus embryology: a new theory of mollus can shell formation[J]. Biol Bull,1992,183: 373~374.
    [4] Belecher A M,Wu X H,Christensen R J. Control of crystalphase switching and orientation by soluble mollusk-shell proteins[J]. Nature,1996,38(2): 56~57.
    [5]李世红,付绍云.竹子——一种天然的生物复合材料的研究[J].材料研究学报,1994,8(2):188-192.
    [6]马建峰,陈五一,赵岭,赵大海.基于竹子微观结构的柱状结构仿生设计机[J].械设计,2008,12(25):52-55.
    [7] Kotha S P,Li Y,Guzelsu N. Micromechanical model of nacre tested in tension[J]. Mater Sci,2001,36(8): 2001~2007.
    [8] Ji Baohua,Gao Huajian. A study of fracture mechanisms in biological nano-composites via the virtual internal bondmodel[J]. Mater Sci Eng A,2004,366(1): 96~103.
    [9]程量,王康乐.文蛤形态学及其亚显微结构的研究.动物学研究[J].1997,18(4):351-357.
    [10] Dinesh Katti,Tang Jingpeng. Effect of nanostructure in nacre: amultiscale modeling approach [C]. 15thASCE Engineering Mechanics Conference,Columbia,2002:1~8.
    [11] Evans A G,Suo Z,Wang R Z,et al. Model for the robust mechanical behavior of nacre[J]. Mater Res,2001,16:2475~2484.
    [12] Katti D R,et al. Modeling microarchitecture and mechanical behavior of nacre using 3D finite element techniques.Part I: elastic properties[J]. Mater Sci,2001,36(6):1411~1417.
    [13] Feng Q L,Cui F Z, Pu G. Crystal orientation,toughing, toughening mechanisms and a mimic of nacre[J]. Mater Sci Eng C,2000,11(1):19~25.
    [14] Feng Q L,Li H B,Cui F Z. Crystal orientation domains found in the single lamina in nacre of the mytilus deulis shell [J]. J Mater Sci Lett,1999,18(19):1573~4811.
    [15]陈斌,彭向和.生物自然复合材料的结构的特征及仿生复合材料的研究[J].复合材料学报,2000,17(3):59~62.
    [16]郭香华等.陶瓷叠层结构增韧设计的数值模拟及实验研究[J].硅酸盐学报,2000,28(3):234~239.
    [17] Nakahara H,Bevelander G,Kakei Mitsuo K. Electro micro-scopic and amino acid studies on the outer and inner shell layers of haliotis rufescens[J]. Venus,1982,41(1): 33~46.
    [18]侯东芳.天然层状贝壳材料的组织结构、力学性能[D].西安:西安交通大学,2004.
    [19] Schaffer T E,Zanetti C I,Proksch R. Does abalone nacreformed by hetereoepitaxial nucleation or by growth throughmineral bridge? [J]. Chem Mater,1997,9:1731~1740.
    [20]李国英.表面工程手册[M].北京:机械工业出版社,1998.
    [21]曲敬信,汪泓宏.表面工程手册[M].北京:化学工业出版社,1998.
    [22] HZhang , D Y Li. Determination of Interfacial Bonding StrengthUsing a CantileverBending Method with in Situ Monitoring A-coustic Emission[J]. Surf Coat Technol,2002,(155):190-194.
    [23]刘长生.汽车摩擦学.合肥:安徽科学技术出版社,1998,p1~20.
    [24] [苏]马尔钦柯.金属表面摩擦破坏实质.北京:国防工业出版社,1990,p13~14.
    [25] Wise D.L., Trantolo D.J., Altobelli D.E., Yaszensje M.J., Gresser J.D., Sckwartz E.R.. Encyclopekic handbook of biolaterials and bioengineering. New York: Marcel Dekker Inc. 1995, part A.
    [26]崔福斋,冯庆玲.生物材料学.北京:科学出版社,1997,p1~79.
    [27]邵荷生,张清.金属的磨料磨损与耐磨材料.北京:机械工业出版社,1988,p4.
    [28]师汉民.论仿生制造.中国机械工程,1998,9(1):51~54.
    [29]许俊泉,贺学忠,周玉祥,刘理天,程京.生物晶片技术的发展与应用.科学通报,1999,44(24):2600~2606.
    [30] Fung Y. G..Biomechanics. Beijing: Science Press,1983,p246.
    [31]沃丁柱.复合材料大全.北京:化学工业出版社,2000.
    [32] Geraed J T.. Life Science. New York: MacMillan Publishing Companty,1978,p313.
    [33]周本濂.新型复合材料研究的一些进展.材料科学进展,1991,5(6):529~531.
    [34]王玉庆,周本濂,师昌绪.仿生材料—一门新兴的交叉学科.材料导报,1995,(4):1~4.
    [35]王立铎,孙文珍,梁彤翔.仿生材料的研究现状.材料工程,1996(2):3~5.
    [36]张双寅.复合材料设计的原理与实践.应用基础与工程科学学报,1998,6(3):278~286.
    [37] Lowenstam H. A., Weiner S.. On Biomineralization. Oxford: Oxford University Press, 1989.
    [38] Mann S., Webb J., Williams R.JP.. Biomineralization: Chemical and BiochemicalPerspectives. Weinheim: VCH Publishers,1989.
    [39] Shigeyasu Amada,Tamotsu Munekata,Yukito Nagase. The mechanical structures of bamboos in viewpoint of functionally gradient and composite materials. Journal of Composite Materials, 1996,30(7): 800~819.
    [40] Li Shihong,Zhang Ronghui. A biomimetic model of fiberreinforced composite materials.J.Mater.Sci.Tech.,1994,(10):34~38.
    [41] Band G.M.,Richman R.H.,Mchaughtan W.P.. J. Mater. Eng. Perf. 1995,4(3):334~345.
    [42] Addadi L.,Weiner S. A pavement of pearls. Nature, 1997, 389(6654): 912.
    [43] Jackson A. P., Vincent JF. V., Briggs D.. Application of surface analytical techniques to the study of fracture surface of mother-of-pearl. J Mater Sci. Lett.,1986,5:975~978.
    [44] Jackson A. P.,Vincent JF. V.,Turner R. M.. The mechanical design of nacre. Proc R Soc L ond,1998,B234:415~440.
    [45] Wang R.Z.,Wen F.Z.,Zhang H.B. Observations of damage morphologies in nacre during deformation and fracture. J. Mater. Sci.,1995,30:2299~2304.
    [46] Jeronimids G.,Atkins A. G.. Mechanics of biological materials and structures: nature’s lessons for the engineer. Proc. Instn. Mech. Engrs,1995,209: 221~235.
    [47]李恒德.生物与材料.科学前言与未来(第四集),张涛主编.北京:科学出版社,1999.
    [48]戴雄杰.摩擦学基础.上海:上海科学技术出版社,1984,p33.
    [49]陈燕生.摩擦学基础.北京:北京航空航天大学出版社,1991,p22~29.
    [50]刘家浚.材料磨损原理及其耐磨性.北京:清华大学出版社,1993,p288~361.
    [51]李顺风,尹起范,阚玉和,吴香兰. X-射线衍射法对贝类贝壳结晶形态的研究.延边大学学报(自然科学版),1995,21(2):57~60.
    [52]陈俊豪.贝壳的晶体结构.中国贝类学会编辑.贝类学论文集(第四辑).青岛:青岛海洋大学出版社,1993,p57~61.
    [53] Kennedy J.D.. Environmental and biological controls on bivavles shell mineralogy. Biol. Rev., 1969,44:499~530.
    [54]吴小平,欧阳珊,梁彦龄,余扬帆.蚌科贝壳的扫描电镜观察.南昌大学学报(理科版),1999,23(1):58~66.
    [55]龚世园,朱子义,张训蒲,王明学,杨学芬,刘俊辉.网湖水域中文蛤贝壳贝壳形态的研究.水生生物学报, 1997,21(4):341-346
    [56]格罗夫斯,亨特.海洋世界百科全书.北京:海洋出版社,1996,p228.
    [57]武汉大学,南京大学,北京师范大学.普通动物学.北京:高等教育出版社,1992
    [58]徐晓波,任露泉,陈秉聪.典型土壤动物体表化学成分的初步研究.农业机械学报,1990, 21(3):79~83.
    [59]崔相旭,张宁,王煜明,任露泉,陈秉聪.穿山甲鳞片成分与结构及其减粘脱土分析.农业工程学报,1990, 6(3):15~21.
    [60] Tong Jin, Ren Luquan, Chen Bingcong. Chemical constitution and abrasive wear behaviour of pangolin scales. Journal of Materials Science Letters, 1995, 14(20): 1468~1470.
    [61]梁金龙,王惊涛,彭明生.贝壳珍珠层的研究与应用.矿物岩石地球化学通报, 1999,18(4):403~405.
    [62]刘家伟.贝壳生长的奥秘启迪材料科学家.国外科技动态,1999,(5):27~31
    [63]北京农业大学.动物生物化学.农业出版社,1987
    [64]佟金.地面机械触土部件减粘降阻的仿生改性研究(博士学位论文).长春:吉林工业大学,1992, p53~55.
    [65]罗启富,陈雪梅.氮化硅陶瓷高温摩擦学性能.硅酸盐通报,1996,(5): 9~14
    [66]孙兴伟,李包顺,黄莉萍.氧化锆陶瓷的摩擦磨损性能.硅酸盐通报,1996,24(2):166~172.
    [67]李建明.耐磨与减磨材料.北京:机械工业出版社,1987.
    [68]张朝阳,魏锡文,张海东.Ni-P化学镀的机理及其研究方法.中国有色金属学报,2001,5:199~201.
    [69] Tong Jin,Ren Luquan,Li Jianqiao,Chen Bingcong. Abrasive wear behaviour of bamboo. Tribology Int.,1995,28:323~328.
    [70] Tong Jin,Arnell R. D.,Ren Luquan. Dry sliding wear behaviour of bamboo. Wear, 1998,221: 37~46.
    [71] Bahadur S.,Gong Deli. The Role of copper compounds as filler in the trans-fer and wear behavior of poly-etheretherketone. 1992,154: 151~165.
    [72]曲建俊,张凯,姜开利,周铁英,齐毓霖.超声马达转子摩擦材料磨损特性研究.摩擦学学报,2001,21(4):283~287.
    [73] Woydt M.,Habig K. H.. High temperature tribology of ceramics. Tribol. Int. 1989,22(2): 75~88.
    [74] Yust C. S.,Devore C. E.. Wear of zirconia-toughened alumina and whisker-reinforced zirconia-toughened alumina,1990,33(4):573~580.
    [75] Dong X..Tribological characteristics of alumina at elevated temperatures. J. Am Ceram. Soc.,1991,74(5:) 1036~1044.
    [76] Aronov V. Friction induced strengthening mechanisms of magnesia partially stabilized zirconia. J. Tribol.,1987(109):531~536.
    [77] Wagne S. F.,Buljan S. T. Wear of ceramic cutting tools in Ni-based superalloy machining. Tribology Transactions,1990,33(4):618~628.
    [78]王新荣,陈永波.有限元法基础及ANSYS应用.北京:科学出版社,2008.
    [79]张朝晖.ANSYS11.0结构分析工程应用实例解析(第二版).北京:机械工业出版社,2008.
    [80]尚晓江,邱峰,赵海峰.ANSYS结构有限元高级分析方法与范例应用(第二版).北京:中国水利水电出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700