膦酸锆、杂化磷酸锆的合成、表征插层及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膦酸锆、杂化磷酸锆的合成、表征、插层及催化研究对于主-客体超分子化学、多功能材料的性质、制备、应用和开发具有重要意义。本文通过类Mannich方法合成了10种α-氨基膦酸衍生物,进行了元素分析、红外光谱(FTIR)、核磁共振氢谱(1H NMR)和核磁共振磷谱(31P NMR)等表征,详细讨论了它们的结构。
     本文合成了层状甲基、乙基、丙基、丁基、庚基、癸基-N,N-双甲基膦酸锆主体及相应的6种苯胺插层化合物,并进行了元素分析、电感偶合等离子发射光谱(ICP)、X射线粉末衍射(XRD)、红外光谱(FTIR)、激光拉曼光谱(Raman Spectra)、扫描电镜(SEM)、热重分析(TG-DSC)等表征。结果表明6种膦酸锆组成:Zr(O3PCH2)2N(CH2)nCH3·xH2O (n=0,1,2,3,6,9),层间距:1.046~1.962 nm,其结构;带有机侧链的双膦酸连在主体的同一层板上。苯胺插层化合物组成:Zr(O3PCH2)2N(CH2)nCH3·xC6H5NH2·yH2O,层间距:1.097~2.526 nm,苯胺以单分子层排列于主体层间。苯胺聚合反应结果表明聚苯胺并没有包夹在主体层间,而是分散在主体微粒之间。
     本文合成了x=1.0的层状晶态和无定形脯氨酸-N-甲基膦(磷)酸锆(分别记为:α-ZLPMPAx=1和ZLPMPAx=1),并进行了相应表征。α-ZLPMPAx=1的组成:Zr(O3PG)(HPO4)·H2O,层间距:1.520 nm,理想结构模型:有机基团与无机基团尽可能均匀地交错排布。通过振荡法、回流法和微波法研究了丁胺(BA)、庚胺(HA)、癸胺(DA)、精氨酸(Arg)、赖氨酸(Lys)、组氨酸(His)等碱性客体分子与α-ZLPMPAx=1主体的插层反应,每个α-ZLPMPAx=1主体分子分别嵌入:0.43 BA、0.34 HA、0.33 DA、0.20 Arg、0.54 Lys和0.39 His。插层化合物α-ZLPMPAx=1-BA、α-ZLPMPAx=1-HA、α-ZLPMPAx=1-DA成功地吸附了酚。
     本文合成了4种层状晶态、无定形甘氨酸-N,N-双甲基膦(磷)酸锆(分别记为:α-ZGMDPAx=0.66、α-ZGMDPAx=2、ZGMDPAx=0.66、ZGMDPAx=2),并进行了相应表征。α-ZGMDPAx=0.66、α-ZGMDPAx=2的组成分别为: Zr[(O3PCH2)2NCH2COOH]0.33 (HPO4)1.34·0.70 H2O和Zr[(O3PCH2)2NCH2COOH]·H2O,层间距分别为:1.542和1.271 nm。考察了烷基单胺(甲胺(MA)、乙胺(EA)、丙胺(PA)、BA、HA、DA)、烷基多胺(乙二胺(1E2A)、二乙基三胺(2E3A)、三乙基四胺(3E4A)、四乙基五胺(4E5A)、1,3-丙二胺( PDA))和六氢吡啶(HHP)等客体分子与α-ZGMDPAx=0.66、α-ZGMDPAx=2主体的插层反应。烷基单胺、杂环化合物以双分子层排列于α-ZGMDPAx=0.66主体层间,烷基多胺在α-ZGMDPAx=0.66、α-ZGMDPAx=2主体中产生了多种排列方式。
     本文以无定形ZLPMPAx=1、ZGMDPAx=0.66、ZGMDPAx=2为载体制备了固体碱,固体碱强度H-:9.3~15.0,在微波辐射、无溶剂或加热条件下,催化芳香醛与活泼亚甲基化合物的Knoevenagel反应产率:76.4~91.1 %,能重复使用4次以上,是一类环境友好催化剂。ZGMDPAx=0.66固载钯配合物催化Suzuki反应的取代联苯产率:81.4 %。
     本文合成了6种不同x值的层状晶态和无定形苄基-N,N-双甲基膦(磷)酸锆(分别记为:α-ZBMDPA、ZBMDPA),并进行了相应表征。α-ZBMDPAx=1.0的组成:Zr[C6H5CH2N(CH2PO3)2]0.5(HPO4)·2.1 H2O,层间距:2.034 nm,其理想结构:层间苯环与苯环相对。详细研究了α-ZBMDPAx=1.0的插层反应性能,成功地将客体分子:烷基单胺(MA、二甲胺(DMA)、三甲胺(TMA)、EA、二乙胺(DEA)、三乙胺(TEA)、PA、BA、二丁胺(DBA)、三丁胺(TBA)、HA、DA)、烷基多胺(1E2A、2E3A、3E4A、4E5A、PDA)、杂环化合物(四氢吡咯(TPR)、HHP、吗啉(ML)、哌嗪(PH))嵌入层状化合物α-ZBMDPAx=1.0层间,烷基单胺、杂环化合物在α-ZBMDPAx=1.0主体层间单分子层排列并与主体层板倾斜成一定角度,烷基多胺也有多种排列方式。插层化合物α-ZBMDPAx=1.0-BA\α-ZBMDPAx=1.0HA、α-ZBMDPAx=1.0-DA成功地吸附了酚,α-ZBMDPAx=1.0-3E4A、α-ZBMDPAx=1.04E5A吸附了甲醛。
     本文合成了无定形ZBMDPA载体固载多胺(1E2A、2E3A、3E4A、4E5A)配体及4种钯配合物,进行了FTIR、原子吸收光谱(AAS)、X射线光电子能谱(XPS)、XRD等表征,苄基-N,N-双甲基膦(磷)酸锆多胺配体固载钯配合物催化卤代芳烃与芳基硼酸的Suzuki反应,结果表明碘代芳烃偶联反应产率:92.1 %,催化剂与产物分离容易,催化剂能重复使用5次以上,而对溴代芳烃和氯代芳烃催化活性较低。本文通过微波辐射、超声波震荡、回流法等研究了His、Arg、Lys与α-Zr(HPO4)2·H2O(α-ZrP)的超分子插层组装,这些客体以单分子层排列在α-ZrP主体层间,每个α-ZrP分子分别嵌入:0.50 His、0.13 Arg和0.84 Lys。插层化合物α-ZrP-His对水相中丙酮与4-硝基苯甲醛Aldol反应具有一定的催化活性和一定的重复使用性,是一类值得进一步研究的多相催化材料。
It is very important to study synthesis, characterization, intercalation and catalysis of zirconium phosphonates and hybrid zirconium phosphates for host-guest supermolecule chemistry, property, preparation, application and development of multifunctional materials.
     In this paper, 10 kinds ofα-aminomethylphosphonic acid derivitives were synthesized by the Mannich-type reaction. The property and structure ofα-aminomethylphosphonic acid derivitives were characterized and discussed by elemental analysis, Fourier Transform Infrared Transmission-absorption Spectra (FTIR), Nuclear Magnetic Resonance (1H NMR and 31P NMR) in detail.
     12 kinds of layered zirconium dimethylphosphonates and aniline intercalation compounds were synthesized and characterized by elemental analysis, Inductive Coupled Plasma Emission Spectrum (ICP), X-ray Powder Diffraction (XRD), FTIR, Laser Raman Spectra (Raman Spectra), Scanning Electron Microscope (SEM), Thermogravimetry and Differential Scanning Calorimetry (TG-DSC). The results demonstrated that the compositions of zirconium phosphonates were Zr(O3PCH2)2N(CH2)nCH3·xH2O (n=0, 1, 2, 3, 6, 9) with the interlayer distances of 1.046 nm to 1.962 nm, two dimethylphosphonates might bind to the same layer. The compositions of aniline intercalation compounds were Zr(O3PCH2)2N(CH2)nCH3·xC6H5NH2·yH2O with the interlayer distances of 1.097 nm to 2.526 nm, and anilines arranged as monomolecular layers in the gallery of these hosts. The polymerization of aniline showed that polyaniline was not inserted between the layers of host, but diffused in the particles of host.
     2 kinds of layered crystalline and amorphous zirconium proline-N-methylphosphonate-phosphates (α-ZLPMPAx=1 and ZLPMPAx=1) were synthesized and characterized by the above methods, the results indicated that the composition ofα-ZLPMPAx=1 was Zr(O3PG)(HPO4)·H2O with the interlayer distance of 1.520 nm, the N-methylproline groups and P-OH arranged alternatively. The intercalations of butylamine (BA), heptylamine (HA), decylamine (DA), arginine (Arg), lysine (Lys) and histidine (His) withα-ZLPMPAx=1 host had been studied by shaking, refluencing and microwave irradiation, 0.43 BA, 0.34 HA, 0.33 DA, 0.20 Arg, 0.54 Lys and 0.39 His inserted into in the gallery of one moleculeα-ZLPMPAx=1 host, respectively. The intercalation compoundsα-ZLPMPAx=1-BA,α-ZLPMPAx=1-HA andα-ZLPMPAx=1-DA had successfully adsorbed phenol, 4-chlorophenol and 2,4-dichlorophenol.
     4 kinds of layered crystalline and amorphous zirconium glycine-N,N-dimethylphosphonate-phosphate (α-ZGMDPAx=0.66,α-ZGMDPAx=2, ZGMDPAx=0.66 and ZGMDPAx=2) had been prepared and characterized by the above methods. The compositions ofα-ZGMDPAx=0.66 andα-ZGMDPAx=2 were Zr[(O3PCH2)2NCH2COOH]0.33 (HPO4)1.34·0.70 H2O and Zr[(O3PCH2)2NCH2COOH]·H2O, the interlayer distances of them were 1.542 nm and 1.271 nm, respectively. It was found that the intercalations of alkylmonoamines (methylamine (MA), ethylamine (EA), propylamine (PA), BA, HA, DA), polyamines (ethylenediamine (1E2A), diethylenetriamine (2E3A), triethylenetetramine (3E4A), tetrathylenepentamine (4E5A), 1,3-propyldiamine (PDA)), hexahydropyridine (HHP) withα-ZGMDPAx=0.66 andα-ZGMDPAx=2 hosts, alkylmonoamines and heterocyclic compounds arranged as bimolecular layers in the gallery ofα-ZGMDPAx=0.66, polyamines formed multi-array in the gallery ofα-ZGMDPAx=0.66 andα-ZGMDPAx=2.
     The solid bases with H-=9.3 to 15.0 were prepared by the amorphous supports ZLPMPAx=1, ZGMDPAx=0.66 and ZGMDPAx=2. The Knoevenagel condensations of aromatic aldehydes with active methylene compounds were catalyzed by the solid base in yield of 76.4 % to 91.1 % under microwave irradiation and solvent-free, or heating, the solid base could be reused four times. The solid base is a new type of environmentally benign catalyst. On the meanwhile the palldium complex supported on ZGMDPAx=0.66 exhibited a yield of 81.4 % for Suzuki cross-coupling reaction.
     6 kinds of layered crystalline and amorphous zirconium benzyl-N,N-dimethylphosphonate-phosphates (α-ZBMDPA, ZBMDPA) were also prepared and characterized by the above methods. The composition ofα-ZBMDPAx=1.0 with the interlayer distance of 2.034 nm was Zr(HPO4)(C6H5CH2N(CH2PO3)2)0.5?2.1 H2O, and two phenyl ofα-ZBMDPAx=1.0 double layers faced to face each other. Alkylmonoamines (MA, dimethylamine (DMA), trimethylamine (TMA), EA, diethylamine (DEA), triethylamine (TEA), PA, BA, dibutylamine (DBA), tributylamine (TBA), HA, DA), polyamines (1E2A, 2E3A, 3E4A, 4E5A, PDA), heterocyclic compounds (pyrrolidine (TPR), HHP, morpholine (ML), piperazine(PH)) had successfully inserted into the gallery ofα-ZBMDPAx=1 host, alkylmonoamines and heterocyclic compounds arranged as monomolecular layers in the gallery ofα-ZBMDPAx=1, polyamines also formed multi-array in the gallery of.α-ZBMDPAx=1. The intercalation compoundsα-ZBMDPAx=1-BA,α-ZBMDPAx=1-HA andα-ZBMDPAx=1-DA adsorbed phenol, 4-chlorophenol and 2,4-dichlorophenol,α-ZBMDPAx=1-3E4A andα-ZBMDPAx=1-4E5A adsorbed formaldehyde.
     Series of pallidum complexes were prepared by introducing the ligand polyamines (1E2A, 2E3A, 3E4A and 4E5A) into the support ZBMDPA. These pallidum complexes supported on ZBMDPA polyamines were characterized by FTIR, Atomic Absorption Spectra (AAS), X-ray Photoelectron Spectra (XPS) and XRD. The pallidum complexes catalyzed Suzuki cross-coupling reaction of aryl halides with aryl boronic acids, compared with aryl bromides and aryl chloride, aryl iodide obtained better yield (92.1%), the catalyst could be easily recovered and reused more than five times.
     In addition, the intercalations of His, Arg, Lys withα-Zr(HPO4)2·H2O (α-ZrP) had been studied under microwave irradiation, ultrasound and refluencing, these amino acids arranged as monomolecular layers, 0.50 His, 0.13 Arg and 0.84 Lys inserted into the gallery of one moleculeα-ZrP, respectively. The intercalation compoundα-ZrP-His catalyzed Aldol reaction of acetone with 4-nitrobenzaldehyde in proper yield and could be reused. It is necessary to researchα-ZrP-His as multiphase catalysis materials.
引文
1. A. Clearfield, J. A. Stynes. The preparation of crystalline zirconium phosphate and some observation on its exchange behavior. J. Inorg. Nucl. Chem., 1964, 26(1): 117-119.
    2. A. Clearfield. Role of ion exchange in solid-state chemistry. Chem. Rev., 1988, 88(1): 125-148.
    3. A. A. Marti, J. L. Colon. Direct ion exchange of tris(2,2’-bipyridine)ruthenium into an α-zirconium phosphate framework. Inorg. Chem., 2003, 42(9): 2830-2832.
    4. K. M. Parida, B. B. Sahu, D. P. Das. A comparative study on textural characterization: cation-exchange and sorption properties of crystalline α-zirconium(IV), tin(IV), and titanium(IV) phosphates. J. Colloid Interf. Sci., 2004, 270(2): 436-445.
    5. D. Behrendt, K. Beneke, G. Lagaly. Intercalation compounds of zirconium phosphate. Angew. Chem. Int. Ed. Engl., 1976, 15(9): 544-545.
    6. L. Benes, K. Melanova, V. Zima, P. Patrono, P. Galli. Intercalation of amino alcohols into α-Zr(HPO4)2·H2O. Eur. J. Inorg. Chem., 2003, 8: 1577-1580.
    7. G. Alberti, U. Costantino. Recent progress in the intercalation chemistry of layered α-zirconium phosphate and its derivatives, and future perspectives for their use in catalysis. J. Mol. Catal., 1984, 27(1/2): 235-250.
    8. C. V. Kumar, A. Chaudhari. Proteins immobilized at the galleries of layered α-zirconium phosphate. structure and activity studies. J. Am. Chem. Soc., 2000, 122(5): 830-837.
    9. L. A.Vermeulen, M. E. Thompson. Stable photoinduced charge separation in layered viologen compounds. Nature, 1992, 358: 656-658.
    10. I. O. Benftez, B. Bujoli, L. J. Camus, C. M. Lee, F. Odobel, D. R. Talham. Monolayers as models for supported catalysis: zirconium phosphonate films containing manganese (Ⅲ) porphyrins. J. Am. Chem. Soc., 2002, 124 (16): 4363-4370.
    11. A. Clearfield, R. H. Blessing, J. A. Stynes. New crystalline phases of zirconium phosphate possessing ion-exchange properties. J. Inorg. Nucl. Chem., 1968, 30(8): 2249-2259.
    12. H. Benhamza, P. Barboux, A. Baohauss, F, Josien, J. Livage. Sol–gel synthesis of Zr(HPO4)2·H2O. J. Mater. Chem., 1991, 1(4): 681-684.
    13. G. Alberti, E. Torracca. Crystalline insoluble salts of polybasic metals–Ⅱ. synthesiscrystalline zirconium or titanium phosphate by direct precipitation. J. Inorg. Nucl. Chem., 1968, 30(1): 317-318.
    14. 张华, 徐金锁, 唐颐, 高滋. 层状磷酸锆的合成与性质研究. 高等学校化学学报, 1997, 18(2): 172-176.
    15. 杜以波, 李峰, 何静, D. G. Evans, 段雪, 王作新. 层状化合物 α-磷酸锆的制备和表征. 无机化学学报, 1998, 14(1): 79-83.
    16. A. Clearfield, G. D. Smith. The crystallography and structure of a-zirconium bis(monohydrogen orthophosphate) monohydrate. Inorg. Chem., 1969, 8: 431-438.
    17. A. Clearfield, A. L. Landis, A. S. Medina, T. M. Troup. More on crystalline zirconium phosphates. J. Inorg. Nucl. Chem., 1973, 35(4): 1099-1108.
    18. J. M. Troup, A. Clearfield. On the mechanism of ion exchange in zirconium phosphates. 20. refinement of the crystal structure of α-zirconium phosphate. Inorg. Chem., 1977, 16(12): 3311-3314.
    19. D. M. Poojary, B. L. Shpeizer, A. Clearfield. X-ray powder structure and Rietveld Refinement of γ-zirconium phosphate, Zr(PO4)(H2PO4)2H2O. J. Chem. Soc., Dalton Trans., 1995: 111-113.
    20. D. M. Kaschak, S. A. Johnson, D. E. Hooks, H. N. Kim, M. D. Ward, T. E. Mallouk. Chemistry on the Edge: A microscopic analysis of the intercalation, exfoliation, edge functionalization, and monolayer surface tiling reactions of α-zirconium phosphate. J Am.Chem.Soc., 1998, 120(42): 10887-10894.
    21. U. Costantino. Inorganic ion exchange materials. Boca Raton: CRC Press, 1982, 111.
    22. G. Alberti, U. Costantino. Intercalayion chemistry. New York: Academic Press, 1982, 147-179.
    23. E. M. Larsen, D. R. Vissers. The exchange of Li+, Na+ and K+ with H+ on zirconium phosphate. J. Phys. Chem., 1960, 64(11): 1732-1736.
    24. A. Clearfield, W. L. Duax, A. S. Medina, G, D. Smith and J. R. Thomas. On the mechanism of ion exchange in crystalline zirconium phosphates. i. sodium ion exchange of α-zirconium phosphate. J. Phys. Chem., 1969, 73(10): 3424-3430.
    25. A. Clearfield, J. Troup. On the mechanism of ion exchange in crystalline zirconium phosphate. Ⅱ. lithium ion exchange of α-zirconium phosphate. J. Phys. Chem., 1970, 74(2):314-317.
    26. A. Clearfield, A. S. Medina. On the mechanism of ion exchange in crystalline zirconium phosphates. v. thermodynamic treatment of the hydrogen ion-sodium ion exchange of α-zirconium phosphate. J. Phys. Chem., 1971, 75(24): 3750-3756.
    27. A. Clearfield, J. M. Troup. On the mechanisrn of ion exchange in crystalline zirconium phosphates. vii. the crystal structure of α-zirconium bis(ammonium orthophosphate) monohydrate. J. Phys. Chem., 1973, 77(2): 243-247.
    28. A. Clearfield, L. H. Kullberg. On the mechanism of ion exchange in crystalline zirconium phosphates. x. calorimetric determination of heats of Na+-H+ exchange. J. Phys. Chem., 1974, 78(2): 152-159.
    29. A. Clearfield, L. Kullberg, A. Oskarsson. On the mechanisms of ion exchange in crystalline zirconium phosphates. xi. the variation in unit cell dimensions and sodium ion/hydrogen ion exchange behavior in highly crystalline α-zirconium phosphates. J. Phys. Chem., 1974, 78(12): 1150-1153.
    30. A. Clearfield, L. H. Kullberg. On the mechanisms of ion exchange in crystalline zirconium phosphates. xii. calorimetric determination of heats of cesium ion-hydrogen ion exchange. J. Phys. Chem., 1974, 78(18): 1812-1817.
    31. A. Clearfield, D. A. Tuhtar. On the mechanism of ion exchange in crystalline zirconium phosphates. 16. calorimetric determination of heats of Li+-H+ exchange. J. Phys. Chem., 1976, 80(12): 1302-1305.
    32 A. Clearfield, J. M. Garces. On the mechanism of ion exchange in zirconium phosphates-ⅩⅩⅣ exchange of alkali metal ions on γ-zirconium phosphate. J. Inorg. Nucl. Chem., 1979, 41(6): 879-884.
    33. A. Clearfield, Z. Djuric. On the mechanism of ion exchange in zirconium phosphates-ⅩⅩⅥ. Irreversible exchange of alkaline earth cation. J. Inorg. Nucl. Chem., 1979, 41(6): 885-887.
    34. L. Kullbergt, A. Clearfield. Mechanism of ion exchange in zirconium phosphates. 28. calorimetric determination of heats of Rb+-H+ exchange on α-ZrP. J. Phys. Chem., 1980, 84(2): 165-169.
    35. L. Kullbergt, A. Clearfield. Mechanism of ion exchange in zirconium phosphates. 32. thermodynamics of alkali metal ion exchange on crystalline α-ZrP. J. Phys. Chem., 1981, 85(1):1585-1589.
    36. G. Alberti, U. Costantino. Recent progress in the field of synthetic inorganic exchanges having a layered of fibrous structure. J. Chromatogr., 1974, 102: 5-29.
    37. J. P. Gupta, D. V. Nowell. Mechanism of some alkylammonium-ion exchanges by α-zirconium bis-(monohydrogenorthophosphate) monohydrate. J. Chem. Soc., Dalton Trans., 1979, 1178-1182.
    38. D. M. Poojary, B. L. Zhang, Y. P. Dong, G. Z. Peng, A. Clearfield. X-Ray powder structure of monoammonium-exchanged phase of γ-zirconium phosphate, Zr(PO4)(NH4HPO4). J. Phys. Chem., 1994, 98(51): 13616-13620.
    39. A. Dyer, T. Shaheen, M. Zamin. Ion exchange of strontium and caesium into amorphous zirconium phosphates. J. Mater. Chem., 1997, 7: 1895-1899.
    40. V. Y. Kotov, I. A. Stenina, A. B. Yaroslavtsev. Kinetics of hydrogen-sodium ion exchange in acid zirconium phosphate. Solid State Ionics, 1999, 125(1-4): 55-60.
    41. V. Y. Kotov, I. A. Stenina, A. B. Yaroslavtsev. Influence of anions on the kinetics of hydrogen/sodium ion exchanges in a crystalline acid zirconium phosphate. Mendeleev Communications, 1999, 9: 50-53.
    42. M. N. Kislitsyn, A. E. Baranchikov, V. K. Ivanov, Yu. D. Tret’yakov, A. B. Yaroslavtsev. Effect of ultrasonic processing on solid-state H+/Cs+ ion exchange in acid zirconium and tantalum phosphates. Inorg. Mater., 2002, 38(7): 714-717.
    43. M. N. Kislitsyn, A. B. Yaroslavtsev. Solid state reactions of alkali metal chlorides with acid tantalum phosphate, acid zirconium phosphate and vanadium oxyphosphate. Solid State Ionics, 2003, 162-163: 197-202.
    44. N. Suzuki, M. Igarashi, H. Suzuki, M. Itoh, Y. Komatsu, Y. Kanzaki. Ion-exchange reaction of Cs+ selective layered γ-titanium and γ-zirconium phosphates. Bull. Chem. Soc. Jpn., 2004, 77(10): 1829-1833.
    45. S. Allulli, C. Ferragina, A. L. Ginestra, M. A. Massucci, N. Tomassini, A. A. G. Tomlinson. Characterization and electronic properties of some inorganic ion exchangers of the zirconium phosphate type containing transition-metal ions. J. Chem. Soc., Dalton Trans., 1976, (20): 2115-2120.
    46. S. Allulli, C. Ferragina, A. L. Ginestra, M. A. Massucci, N. Tomassini. Ion-exchangemechanism of some bivalent transition-metal ions on half-converted sodium and lithium forms of crystalline zirconium phosphate. J. Chem. Soc., Dalton Trans., 1977, 1879-1884.
    47. U. Costantino, A. Jsernia, G. de Meo. Polyfunctionality of α-Zr(HPO4) 2?H2O case of H+/Ag+ and H+/Tl+ ion exchange processes. Bull. Chem. Soc. Jpn., 1980, 53: 2384.
    48. L. Alagna, Anthony A. G. Tomlinson, C. Ferragina, A. L. Ginestra. Zirconium phosphates partially exchanged with transition-metal ions: characterisation and stereochemical changes induced by heat treatment. J. Chem. Soc., Dalton Trans., 1981, 2376-2384.
    49. J. P. Gupta, D. V. Nowell. Mechanism of cadmium and lead ion exchange by α-zirconium bis-(monohydrogenorthophosphate) monohydrate. J. Chem. Soc., Dalton Trans., 1981, 385-389.
    50. C. Ferragina, A. L. Ginestra, M. A. Massucci, A. A. G. Tomlinson. Ion exchange of VO2+ on α-zirconium phosphate. thermal, redox, and spectroscopic characterization of exchanged vanadium phases. J. Phys. Chem., 1984, 88(14): 3134-3138.
    51. G. Alonzo, N. Bertazzi, C. Ferragina, A. L. Ginestra, M. A. Massuccic, P. Patrono. In situ coordination of Fe2+ to aromatic diamines intercalated into α-zirconium and α-titanium phosphates: evidence from M?ssbauer spectroscopy and thermal studies. J. Mater. Chem., 1997, 7(1): 135–142.
    52. U. Costantino, L. Szirtes, E. Kuzmann, J. Megyeri, K. Lázár. Exchange of iron ions into layers of α-zirconium phosphate. Solid State Ionics, 2001, 141-142: 359-364.
    53. C. Ferragina, P. Cafarelli, R. Di Rocco. Incorporation of cadmium ions and cadmium sulfide particles into sol-gel zirconium phosphate synthesis, thermal behavior and X-ray characterization. J. Therm. Anal. Cal., 2001, 63: 709-721.
    54. C. Ferragina, R. Di Rocco, L. Petrilli.Thermal behavior of zinc γ-zirconium phosphate intercalation compounds synthesis and X-ray characterization. J. Therm. Anal. Cal., 2005, 81: 67-74.
    55. S. Yamanaka, K. Sakamoto, M. Hattori. Mechanism for the heterogeneous exchange of the interlayer phosphate groups of γ-zirconium phosphate with phenyl phosphate groups. J. Phys. Chem., 1984, 88(10): 2067-2070.
    56. M. H. Herzog-Cance, D. J. Jones, R. E. Mejjad, J. Rozière, J. Tomkinson. Study of ion exchange and intercalation of organic bases in layered substrates by vibrational spectroscopy. Inelastic neutron scattering, infrared and Raman spectroscopies of aniline-inserted α- andγ-zirconium hydrogen phosphates. J. Chem. Soc., Faraday Trans., 1992, 88: 2275-2281.
    57. A. Clearfield. Inorganic Ion Exchange Materials. Boca Raton and Florida: CRC Press, 1982, 1-74.
    58. R. Clement. Intercalation of potentially transition-metal complex in the lamellar MnPS3 host lattice. J. Am. Chem. Soc., 1981, 103(23): 6998-7000.
    59. L. F. Nazar, A. J. Jacobson. Intercalation of a large iron sulphur cation into TaS2 by ion exchange with a dispersion of the disulphide. J. Chem. Soc., Chem. Commun., 1986, (7): 570-571.
    60. 吴涛, 张希. 自组装超薄膜:从纳米层状构筑到功能组装. 高等学校化学学报, 2001, 6: 1057-1065.
    61. R. Schollhorn. Physics of Intercalation Compounds. Berlin: Springer Verlag, 1981,33.
    62. M. Sasaki , N. Mikami, T. Ikeda, K. Hachiya, T. Yasunaga. Kinetic studies on protanation-deprotonation of phosphate groups and proton intercalation-deintercalation in α- and γ-zirconium phosphates using the pressure-jump technique. J. Phys. Chem., 1982, 86: 5230-5234.
    63. N. Mkami, M. Sasaki, T. Ysunaga, K. F. Hayes. Kinetic studies on the intercalation-deintercalation of alkali-metal ions in zirconium phosphate using the pressure-jump technique. J. Phys. Chem., 1984, 88(15): 3229-3233.
    64. U. Costantino. Intercalation of alkanols and glycols into zirconium hydrogenphosphate monohydrate. J. Chem. Soc. Dalton Trans., 1979: 402-405.
    65. M. Trchová, P. ?apková, P. Mat?jka, K. Melánová, L. Bene?. Study of host-guest interactions in intercalate Zr(HPO4)2?2CH3CH2OH using a combination of vibration spectroscopy and molecular simulations. J. Solid State Chem., 1999, 145: 1-9.
    66. U. Costantino, M. Nocchetti, R. Vivani. Preparation, characterization, and structure of zirkonium fluoride alkylamino-N,N-bis methylphosphonate: a new design for layered zirconium diphosphonate with a poorly hindered interlayer region. J. Am. Chem. Soc., 2002, 124 (28): 8428-8434.
    67. 杜以波, 李峰, 何静, D. G. Evans, 段雪. 胺和醇对 α-磷酸锆的插层性能研究. 石油学报, 1998, 14(1): 62-65.
    68. U. Costantino, R. Virani, V. Zima. Microwave-Assisted intercalation of 1-alkanols and 1, ω-alkanediols into α-zirconium phosphate. evidence of conformational phase transitions in thebimolecular film of alkyl chains. Langmuir, 2002, 18(4): 1211-1217.
    69. R. M. Tindwa, D. K. Ellis, G. Peng, A. Clearfield. Intercalation of n-alkylamines by α-zirconium phosphate, J. Chem. Soc., Faraday Trans., 1985, 81: 545-552.
    70. L. Basini, A. Raffaelli, G. Zerbi. Vibrational spectra and phase transitions in intercalated layered alkylammonium zirconium phosphates. Chem. Mater., 1990, 2(6): 679-684.
    71. D. J. MacLachlan, K. R. Morgan. 31P Solid-state NMR studies of the structure of amine-intercalated α-zirkonium phosphate 1. reaction of α-zirconium phosphate with excess amine. J. Phys. Chem., 1990, 94: 7656-7661.
    72. D. J. MacLachlan, K. R. Morgan. 31P Solid-state NMR studies of the structure of amine-intercalated α-zirkonium phosphate 2. titration of α-zirconium phosphate with n-propylamine and n-butylamine. J. Phys. Chem., 1992, 96: 3458-3464.
    73. K. Peeters, R. Carleer, J. Mullens, E. F. Vansant. Thermal decomposition of n-alkylamine α-zirconium phosphate intercalates. Micropor. Mat., 1995, 4: 475-487.
    74. 徐金锁, 唐颐, 张华, 高滋. 烷基胺和醇胺在磷酸锆中的嵌入研究. 高等学校化学学报, 1997, 17(1): 88-92.
    75. 徐金锁, 唐颐, 张华, 高滋. 层状磷酸锆在有机胺溶液中的胶体化和稳定性研究. 高等学校化学学报, 1997, 17(1): 93-98.
    76. G. Alberti, F. Marmottini, S. Cavalaglio, D. Severi. Intercalation processes of n-alkyl monoamines in γ-zirconium phosphate. Langmuir, 2000, 16 (9): 4165-4170.
    77. Y. Hasegawa, R. Matsuda, M. Kisa, M. Iso. Intercalation of N, N-dimethyl-1-phenylethylamine into α-zirconium phosphate. J. Incl. Phenom. Macro., 2002, 42: 33-38.
    78. C. Ferragina, P. Cafarelli, A. De Stefanis, R. Di Rocco, L. Petrilli. Synthesis and characterization of sol-gel zirconium phosphate with template surfactants by different methods. J. Therm. Anal. Cal., 2003, 71: 1023-1033.
    79. M. Casciola, G. Alberti, A. Donnadio, M. Pica, F. Marmottini, A. Bottino, P. Piaggio. Gels of zirconium phosphate in organic solvents and their use for the preparation of polymeric nanocomposites. J. Chem. Mater., 2005, 15: 4262-4267.
    80. T. Kijima, K. Ohe, F. Sasaki, M. Yada, M. Machida. Intercalation of dendritic polyamines by α- and γ-Zirconium Phosphate. Bull. Chem. Soc. Jpn., 1998, 71(1): 141-148.
    81. M. Danjo, A. Hayashi, H. Nakayama, Y. Kimira, T. Shimizu, Y. Mizuguchi, Y. Yagita, M. Tsuhako, H. Nariai, I. Motooka. Structure and organic gas-adsorption properties of some polyamine intercataled α-zirconium phosphates. Bull. Chem. Soc. Jpn., 1999, 72(9): 2079-2084.
    82. H. Nakayama, A. Hayashi, T. Eguchi, N. Nakamura, M. Tsuhako. Unusal adsorption mechanism for carboxylic acid gas polyamine Intercataled α-zirconium phosphates, J. Mater. Chem., 2002, 12: 3093-3099.
    83. H. Nakayama, A. Hayashi, T. Eguchi, N. Nakamura, M. Tsukako. Adsorption of formaldehyde by polyamine-intercalated α-zirconium phosphates. Solid State Sci., 2002, 4(8): 1067-1070.
    84. N. Bestaoui, N. A. Spurr, A. Clearfield. Intercalation of polyether amines into α-zirconium phosphate. J. Mater. Chem., 2006, 16: 759-764.
    85. J. A. Gavin, N. L. Deng, M. Alcala. Host-guest chemistry of a chiral cyclohexanediamine-viologen cyclophane in solution and in the solid state. Chem. Mater. , 1998, 10(7): 1937-1944.
    86. S. De, A. De, A. Das, S. K. De. Transport and dielectric properties of α-zirconium phosphate-polyaniline composite. Mater. Chem. Phys., 2005, 91: 477-483.
    87. X. Duan, F. Li, J. He, D. G. Evans, Y. B. Du. Some factors influencing the morphology of α-zirconium phosphates and its intercalation reactions with a bifunctional thioether amine. J. Porous Mat., 2002, 9: 5-16.
    88. T. Kijima, S. Watanabe, K. Ohe, M. Machida. Molecular assembly recognition process. carbon number selective intercalation of amines by a layered zirconium phosphonate. J. Chem. Soc. Chem. Commun., 1995: 75-76.
    89. T. Kijima, K. Sakoh, M. Machida, M. Yada. Intercalation and interlayer amidation properties of n-alkylmonoamines for γ-Zirconium(2-carboxyethyl)phosphonate phosphate. J. Chem. Soc. Dalton Trans., 1997: 1779-1782.
    90. K. Nakamura, K. Matsuyama, I. Tomita, Y. Hasegawa. Intercalation of n-alkylamines and n-alkyldiamines into zirconium phenylphosphonate phosphate. J. Incl. Phenom. Macro., 1998, 31: 351-355.
    91. 饶小平, 傅相锴, 饶凯. 层状(脯氨酸-N-甲基膦酸-磷酸氢)锆的合成及插层性能研究. 高等学校化学学报, 2004, 25(7): 1209-1212.
    92. 牛丽明, 傅相锴, 杨新斌, 饶小平. 晶态层状 N, N-二乙酸亚氨基亚甲基膦酸-磷酸氢锆的制备及插层研究. 功能材料, 2005, 36(3): 448.
    93. 杨新斌, 傅相锴, 牛丽明, 曾仁权. 晶态层状(甘氨酸-N,N-双亚甲基膦酸-磷酸氢)锆的制备和插层. 应用化学, 2005, 22(7): 784-787.
    94. T. Kijima, S. Ueno, M. Goto. Uptake of amino-acids by zirconium phosphates. part 2. intercalation of L-histidine, L-lysine and L-arginine by α-zirconium phosphate. J. Chem. Soc. Dalton Trans., 1982, (12): 2499-2503.
    95. T. Kijima, S. Ueno. Uptake of amino-acids by zirconium phosphate. part 3. intercalation of L-histidine, L-lysine and L-arginine by γ-zirconium phosphate. J. Chem. Soc. Dalton Trans., 1986, (1): 61-66.
    96. R. Droagone, P. Galli, M. A. Massucci et al. Preparation and characterization of histidine-and iron-histidine α-zirconium phosphate intercalation compounds. Catalytic behaviour of the iron derivatives in oxidation reactions with H2O2. J. Mater. Chem., 2003, 13(4): 834-840.
    97. C. V. Kumar, G. L. McLendon. Nanoencapsulation of cytochrome c and horseradish peroxidase at the galleries of α-zirconium phosphate. Chem. Mater., 1997, 9(3): 863-870.
    98. C. V. Kumar, A. Chaudhari. Efficient renaturation of immobilined methemoglobin at the galleries of α-zirconium phosphate . Chem. Mater., 2001, 13(2):238-240.
    99. L. N. Geng, N. Li, X. F. Wen, N. Dai, F. L. Zhao, K. A. Li. Preintercalation of layered γ-zirconium phosphate for preparation of immobilized hemoglobin. Chinese Chem. Lett., 2002, 13(8): 801-804.
    100. L. N. Geng , N. Li , N. Dai, X. F. Wen, F. L. Zhao, K. A. Li. Layered γ-zirconium phosphate a new matrix for immobilization of hemoglobin. Colloid Surf. B: Biointerfaces, 2003, 29(1): 81-88
    101. L. N. Geng, N. Li, M. H. Xiang, X. F. Wen, D. Xu, F. L. Zhao, K. A. Li. The covalent immobilization of trypsin at the galleries of layered γ-zirconium phosphate. Colloid Surf. B: Biointerfaces, 2003, 30(1-2): 99-109.
    102. L. N. Geng, X. Wang, N. Li, M. H. Xiang, K. A. Li. Characterization of hemoglobin immobilized on γ-zirconium phosphate. Colloid Surf. B: Biointerfaces, 2004, 34(4): 231-238.
    103. L. N. Geng , T. Bo, H. Liu, N. Li, F. Liu, K. Li. Chromatographia, 2004, 59(1P2): 65-70.
    104. C. Ferragina, M. A. Massucci, A. A. G.Tomlinson. Pillar chemistry. part 5. intercalation of2,2'-bipyridine,1,10-phenanthroline and 2,9-dimethyl-1,10-phenanthroline into γ-zirconium phosphate and formation of interlayer copper(ii) complexes. J. Chem. Soc. Dalton Trans., 1990, 4: 1191-1196.
    105. C. Ferragina, P. Cafarelli, A. De Stefanis, G. Mattei. Intercalation of 2,2’-bipyridyl, 2,4’-bipyridyl and 4,4’-bipyridyl into γ-zirconium phosphate. physical-chemical characterization and solvent effect on the intercalation. Mater. Res. Bull., 1999, 34(7): 1039-1053.
    106. R. M. Kim, J. E. Pillion, D. A. Burwell, J. T. Groves, M. E. Thompson. Intercalation of aminophenyl- and pyridinium-substituted porphyrins into zirconium hydrogen phosphate: evidence for substituent-derived orientational selectivity. Inorg. Chem., 1993, 32(21): 4509-4516.
    107. M. Casciola, U. Costantino, A. Calevi. Intercalation compounds of zirconium phosphates with substituted pyrazoles and imidazoles and their AC conductivity. Solid State Ionics, 1993, 61: 245-250.
    108. M. Casciola, R. Clementini, E. Skou, J. Munk. AC and DC electrochemical investigation of α-zirconium phosphate intercalated with hexamethylenetetramine. J. Chem. Mater., 1995, 5: 991-994.
    109. C. V. Kumar, Z. J. Williams, F. Kher. Supramolecular assemblies of ethidium and acridinium ions at the interlayer regions of α-zirconium phosphate. Micropor. Mat., 1996, 7: 161-171.
    110. S. Okuno, G. Matsubayashi. Direct intercalation of pyridinium-derivative cations into the α-zirconium phosphate interlayer by a redox reaction and fluorescence behavior of the intercalation compounds. Inorg. Chim. Acta, 1996, 245: 101-104.
    111. P. Wang, Y. Yuan, G. Y. Zhu. Carbon ceramic electrodes modified with sub-micron particles of new methylene blue (NMB) intercalated α-zirconium phosphate. J. Electroanal. Chem., 2002, 519: 130-136.
    112. U. Costantino, L. Szirtes. Probing the donor and acceptor dye assemblies at the galleries of α-zirconium phosphate. Micropor. Mespor. Mat., 2000, 41: 307-318.
    113. G. B. Hix, Harrias. Eur. Solid State Inorg. Chem., 1997, 34(6): 589-598.
    114. R. M. Krishna, V. Kurshev, L. Kevan. Photoinduced charge separation of phenothiazine derivatives in layered zirconium phosphate at room temperature. Phys. Chem. Chem. Phys., 1999, 1, 2833-2839.
    115. M. Bach-Vergés, S. J. Kitchin, G. B. Hix, K. D. M. Harris. Dynamic properties of the guest molecules in the pyrazine/α-zirconium phosphate intercalation compound: a multinuclear solid-state NMR study. Chem. Mater., 2002, 14(6): 2656-2663.
    116. R. A. Bermúdez, Y. Colón, G. A. Tejada, J. L. Colón. Intercalation and photophysical characterization of 1-pyrenemethylamine in zirconium phosphate layered materials. Langmuir, 2005, 21(3): 890-895.
    117. H. Y. Wang, D. X. Han, N. Li, K. A. Li. Study on the intercalation and interlayer state of porphyrins into α-zirconium phosphate. J. Incl. Phenom. Macro., 2005, 52: 247-252.
    118. D. P. Vliers, R. A. Schoonheydt, F. C. De Schrijver. Synthesis and luminescence of ruthenium tris(2,2’-bipyridine)-zirconium phosphates. J. Chem. Soc. Dalton Trans. 1, 1985, 81: 2009-2019.
    119. C. Ferragina, A. L. Ginestra, M. A. Massucci, P. Patrono, A A. G. Tomlinson. Intercalation of 2, 2’-bipyrldyl into α-zirconium phosphate and in situ formation of Co2+, Ni2+, and Cu2+/2, 2’-bipyridyl complex pillars. J. Phys. Chem., 1985, 89 (22): 4762-4769.
    120. C. Ferragina, M. A. Massucci, P. Patrono, A. L. Ginestra, A. A. G. Tomlinson. Pillaring of layers in α-zirconium phosphate by 1, 10-phenanthroline and bis(1,10-phenanthroline)copper(II): formation of complex pillars in situ. J. Chem. Soc. Dalton Trans., 1986: 265-271.
    121. C. Ferragina, A. L. Ginestra, M. A. Massucci, G. Mattogno, P. Patrono, P. Giannoccaro, P. Cafarelli, M. Arfelli. Intercalation compounds of α-zirconium hydrogen phosphate with RhIII ions and RhIII-diamine complexes. part 1. preparation, thermal behaviour and x-ray photoelectron spectroscopy investigation. J. Chem. Mater., 1995, 5: 461-467.
    122. C. V. Kumar, Z. J. Williams. Supramolecular assemblies of tris(2,2'-bipyridine)ruthenium(ii) bound to hydrophobically modified α--zirconium phosphate: photophysical studies. J. Phys. Chem., 1995, 99(49): 17632-17639.
    123. Q. H. Xu, L. S. Fu, L. S. Li, H. J. Zhang, R. R. Xu. Preparation, characterization and photophysical properties of layered zirconium bis(monohydrogenphosphate) intercalated with rare earth complexes. J. Mater. Chem., 2000, 10: 2532-2536.
    124. T. Shanez, Z. Daniel, M. Rachid, et al. Incorporation of rare-earth complexes in α-zirconium phosphate layered matrices via pendant amino groups. Mateials Research Society Symposium Proceedings, 2002: 155-160.
    125. E. Brunet, M. Alonso, M. J. Mata, S. Fernandez, O. Juanes, O. Chavanes, J. C. Rodriguez-Ubis. Covalent bonding of phosphonates of fullerene and Ru complexes to γ-zirconium phosphate as a template for building chemical devices in the solid state. Chem. Mater., 2003, 15(6):1232-1234.
    126. T. Kijima, Y Matsui. A new type of host compound consisting of α-zirconium phosphate and an animated cyclodextrin. Nature,1986, 322: 533-534.
    127. T. Kijima. Intercalation of 2-aminopropylamino-substituted β-cyclodextrin by α- and γ- zirconium phosphates. J. Chem. Soc. Dalton. Trans., 1990: 425-428.
    128. T. Kijima, K. Ohe. Intercalation of 2-aminoethylamino-substituted β-cyclodextrin by γ-zirconium phosphate. J.Chem. Soc. Dalton. Trans., 1992: 2877-2879.
    129. T. Kijima, K. Sakoh, M. Machida. Intercalation of 1,4,10,13- tetraoxa-7,16-diazacyclooctade-cane by α- and γ-zirconium phosphates. J. Chem. Soc. Dalton. Trans., 1996: 1245-1248.
    130. K. Yamamoto, Y. Hasegawa, K. Nikki. Intercalation of aminomethylcrowns into zirconium phosphate. J. Incl. Phenom. Macro., 1998, 31: 289-303.
    131. S. M. Patel, U. V. Chudasama, P. A. Ganeshpure. Metal(IV) phosphates as solid acid catalysts for selective cyclodehydration of 1,n-diols. Green Chemistry, 2001, (3): 143-145.
    132. S. M. Patel, U. V. Chudasama, P. A. Ganeshpure. Cyclodehydration of 1,4-butanediol catalyzed by metal(IV) phosphates. React. Kinet. Catal. Lett., 2002, 76(2): 317-325.
    133. R. A. W. Johnstone, J. Y. Liu, D. Whittaker. Mechanism of cyclohexanl dehydration of catalysed by zirconium phosphate. J. Chem. Soc., Perkin Trans., 1998, (2): 1287-1288.
    134. M. C. Cruz Costa, L. F. Hodson, R. A. W Johnstone, J. Y. Liu, D. Whittaker. The mechanism of gas-phase dehydration of cyclohexanol and the methylcyclohexanols catalysed by zirconium phosphate and zirconium phosphite. J. Mol. Catal. A Chem., 1999, 142(3): 349-360.
    135. R. A. W. Johnstone, J. Y. Liu, D. Whittaker. Mechanism of heterogeneous gas phase dehydration of 1-methylcyclohexanol catalysed by metal(IV) phosphates. J. Mol. Catal. A Chem., 2001,174 (1-2): 159-168.
    136. F. A. H. Al-Qallaf, R. A. W. Johnstone, J. Y. Liu, L. Lu, D. Whittaker. Metal(IV) phosphate catalysed retro-Prins reaction involving an oxetane intermediate. J. Chem. Soc., Perkin Trans. 2, 1999: 1421-1423.
    137. J. M. Mérida-Robles, P. Olivera-Pastor, A. Jiménez-López, E. Rodríguez-Castellón. Preparation and properties of fluorinated alumina-pillared α-zirconium phosphate materials. J. Phys. Chem., 1996, 100 (35): 14726-14735.
    138. 吴毓敏, 徐金锁, 唐颐, 高滋. 氧化锆层柱磷酸锆的制备及性能. 化学学报, 1998, 56: 1099-1105.
    139. J. B. Xiao, J. S. Xu, Y. M. Wu, Z. Gao. Preparation and properties of zirconia-pillared zirconium phosphate and phenylphosphonate. Appl. Catal., 1999, 181(2): 313-322.
    140. F. Benvenuti, C. Carlini, P. Patrono, A. M. Raspolli Galletti, G.. Sbrana, M. A. Massucci, P. Galli. Heterogeneous zirconium and titanium catalysts for the selective synthesis of 5-hydroxymethyl-2-furaldehyde from carbohydrates. Appl. Catal., 2000, 193(1-2): 147-153.
    141. 傅相锴, 罗必奎, 雷庆英. 磺化苯膦酸锆催化反应研究. 应用化学, 1991, 8(5): 6-9.
    142. 罗必奎, 傅相锴. 磺化甲苯膦酸锆的制备及催化反应研究. 离子交换与吸附, 1995, 11(2): 162-166.
    143. K. Segawa, N. Kihara, H. Yamamoto. Catalyst design of two-dimensional zirconium phosphonates. J. Mol. Catal., 1992, 74(1-3): 213-221.
    144. 肖进兵, 徐金锁, 唐颐, 高滋. 氧化硅柱撑磺化磷酸-苯膦酸锆的合成及性能. 高等学校化学学报, 1999, 20(8): 1259-1261.
    145 Y. Sui, X. K. Fu, R. Q. Zeng, X. B. Ma. Preparation, characterization and application of a new type of ion exchanger and solid acid zirconium sulfonated oligo-polystyrenylphosphonate-phosphate supported on ZrO2. J. Mol. Catal. A Chem., 2004, 217(1-2): 133-138.
    146. Y. Kamiya, S. Sakata, Y. Yoshinaga et al. Zirconium phosphate with a high surface area as a water-tolerant solid acid. Catal. Lett., 2004, 94(1-2): 45-47.
    147. S. M.Patel, U. V. Chudasama, P. A. Ganeshpure. Ketalization of ketones with diols catalyzed by metal(IV) phosphates as solid acid catalysts. J. Mol. Catal. A Chem., 2003, 194(1-2): 267-271.
    148. D. Fildes, V. Caignaert, D. Villemin, P. Jaffrès. Potassium exchanged zirconium hydrogen phosphate Zr(O3POK)2: as heterogeneous basic catalyst for knoevenagel reaction without solvent. Green Chemistry, 2001, (3): 52-56.
    149. R. Q. Zeng, X. K. Fu, C. B. Gong, Y. Sui, X. B. Ma, X. B. Yang. Preparation and catalytic property of the solid base supported on the mixed zirconium phosphate phosphonate forknoevenagel condensation. J. Mol. Catal. A: Chem., 2005, 229 (1-2): 1-5.
    150. M. Curini, F. Montanari, O. Rosati, E. Lioy, R. Margarita. Layered zirconium phosphate and phosphonate as heterogeneous catalyst in the preparation of pyrroles. Tetrahedron Lett., 2003, 44(20): 3923-3925.
    151. P. Maireles-Torres, P. Olivera-Pastor, E. R. Castellón, A. Jiménez López, A. A. G. Tomlinson. Formation of polypyrrole chains in alumina and chromia-pillared layered phosphates. J. Incl. Phenom. Macro. Chem., 1992, 14(3-4): 327-337.
    152. T. C. Chang, W. Y. Shen, S. Y. Ho. Oxidative polymerization of aniline in zirconium phosphate sulfophenylphosphonate. Micropro. Mater., 1995, 4(5): 335-343.
    153. J. C. Amicangelo, G. L. Rosenthal, W. R. Leenstra. Molecular modeling of interlayer catalytic sites for aniline polymerization in a zirconium mixed phosphonate phosphate. Chem. Mater., 2003, 15: 390-394.
    154. J. B. Xiao, J. S. Xu, Z. Gao. Selective oxidation on chromia-pillared zirconium phosphate and phenylphosphonate. Catal. Lett., 1999, 57: 37-42.
    155. M. E. Nino, S. A. Giraldo, E. A. Páez-Mozo. Olefin oxidation with dioxygen catalyzed by porphyrins and phthalocyanines intercalated into α-zirconium phosphate. J. Mol. Catal. A: Chem., 2001, 175(2): 139-151.
    156. A. Monaci, A. La Ginestra. Heterogeneous photocatalytic oxidation of naphthalenes on zirconium and germanium phosphates. J. Photochem. Photobiol. A: Chem., 1996, 93(1): 65-69.
    157. B. Brack, D. W. Gammon E V Steen. Synthesis of resorcinol from meta-phenylenediamine in the presence of phosphate catalysts. Micropor. Mesopro. Mat., 2000, 41: 149-159.
    158. G. O. Rocha, R. A. W. Johnstone, B. F. Hemming, P. J. C. Pires, J. P. Sankey. Rates of formation of peroxyacetic acid from hydrogen peroxide and acetic acid in the presence of metal(IV) phosphates. J. Mol. Catal. A Chem., 2002, 186(1-2): 127-133.
    159. G. M. S. R. O. Rocha, R. A. W. Johnstone, M. G. P. M. S. Neves. Catalytic effects of metal(IV) phosphates on the oxidation of phenol and 2-naphthol. J. Mol. Catal. A Chem., 2002, 187(1): 95-104.
    160. H. Nakayama, A. Hayashi, T. Eguchi, et al. Adsorption of formaldehyde by polyamine-intercalated α-zirconium phosphates. Solid State Sci., 2002, 4(8): 1067-1070.
    161. S. Cho, S. T. Nguyen, J. T. Hupp. Manganese porphyrin multilayer films assembled on ITOelectrodes via zirconium phosphonate chemistry: chemical and electrochemical catalytic oxidation activity. Topics in Catalysis, 2005, 34(1-4): 101-107.
    162. K. Parida, D. P. Das. Photo-oxidation of 4-nitrophenol in aqueous suspensions, catalysed by titania intercalated zirconium phosphate (ZrP) and titanium phosphate (TiP). J. Photochem. Photobiol. A: Chem., 2004, 163(3): 561-567.
    163. D. P. Das, K. Parida, B. R. De. Photo-oxidation of phenol over titania pillared zirconium phosphate and titanium phosphat. J. Mol. Catal. A Chem., 2005, 240(1/2):1-6.
    164. F. D. Munteanu, N. Mano, A. Kuhn, L. Gorton. NADH electrooxidation using carbon paste electrodes modified with nitro-fluorenone derivatives immobilized on zirconium phosphate. J. Electroanal. Chem., 2004, 564: 167-178.
    165. C. I. Ladiu, I. C. Popescu, L. Gorton. Electrocatalytic oxidation of NADH at carbon paste electrodes with meldola blue adsorded on zirconium phosphates: effect of Ca2+ and polyethyleneimine. J. Solid State Electrochem., 2005, (9): 296-303.
    166. M. Loukah, G. Coudurier, J. C. Vedrine, M. Ziyad. Oxidative dehydrogenation of ethane on V- and Cr-based phosphate catalysts. Micropor. Mater., 1995, 4(5): 345-358.
    167. J. C. Vedrine. Partial oxidation reactions on phosphate-based catalysts. Topics in Catalysis, 2000, (11/12): 147-152.
    168. B. Solsona, J. M. López-Nieto, M. Alcántara-Rodríguez, E. Rodríguez-Castellón, A. Jiménez-López. Oxidative dehydrogenation of ethane on Cr, mixed Al/Cr and mixed Ga/Cr oxide pillared zirconium phosphate materials. J. Mol. Catal. A Chem., 2000, 153(1-2): 199-207.
    169. F. J. Pérez-Reina, E. Rodríguez-Castellón, A. Jiménez-López. Dehydrogenation of propane over chromia-pillared zirconium phosphate catalysts. Langmuir, 1999, 15 (24): 8421-8428.
    170. A. Jiménez-López, E. Rodríguez-Castellón, J. Santamaría-González, P. Braos-García, E. Felici, F. Marmottini. Insertion of porous chromia in γ-zirconium phosphate and its catalytic performance in the oxidative dehydrogenation of propane. Langmuir, 2000, 16 (7): 3317-3321.
    171. I. Marcu, I. Sandulescu, J. M. Millet. Oxidehydrogenation of n-butane over tetravalent metal phosphates based catalysts. Appl. Catal., 2002, 227(1-2): 309-320.
    172. L. Szirtes, K. Matusek. Oxidative dehydrogenation of ethylbenzene using various zirconium phosphates as catalyst. React. Kinet. Catal. Lett., 2000, 69(1): 63-71.
    173. G. Alberti, S. Cavalaglio, F. Marmottini, K. Matusek, J. Megyeri, L. Szirtes. Preparation of acomposite γ-zirconium phosphate-silica with large specific surface and its first characterisation as acid catalyst. Appl. Catal., 2001,218(1-2): 219-228.
    174. 赫南, 唐颐, 王文瀚, 华伟明, 乐英红, 高滋. 大比表面负载氧化铁的氧化硅层柱磷酸锆制备和催化性能研究. 化学学报, 2000, 58(10): 1259-1263.
    175. 傅相锴, 何佑秋, 马学兵, 刘昌华, 温淑英. 带络合基团的混合磷酸-膦酸锆载体的研制. 催化学报, 1996, 17(3): 260-262.
    176. 傅相锴, 马学兵, 温淑英, 刘昌华. 结晶度对ZGDMP-Pd催化剂加氢活性的影响. 物理化学学报, 1996, 12(12): 1079-1083.
    177. 傅相锴, 马学兵, 刘昌华, 何佑秋. 甘氨酸-N,N-双亚甲基膦酸锆-钯催化剂的催化加氢性能. 应用化学, 1997, 14(1): 74-76.
    178. 傅相锴, 马学兵, 温淑英. 亚磷酸氢锆/聚乙烯吡咯烷酮/钯催化剂的催化加氢性能. 应用化学, 1998, 15(1): 17-21.
    179. 罗中杰, 马学兵, 龚成斌, 傅相锴. 胍乙基-双腈乙基胺乙基及胺乙基-膦酸锆-钯催化剂的催化加氢性能. 应用化学, 1999, 16(1): 11-15.
    180. 龚成斌, 马学兵, 傅相锴, 罗中杰. 含膦、氮配体的混合膦酸锆-钯催化剂的研制. 分子催化, 1999, 13(5): 327-333.
    181. X. B. Ma, X. K. Fu. Synthesis of the novel layered amorphous and crystalline zirconium phosphate–phosphonates Zr(HPO4)[O3PCH2N(CH2CH2)2O]·nH2O, Zr(HPO4)[O3PCH2N(CH2CO2H)2]·nH2O, zirconium phosphonates Zr[(O3PCH2)NCH2CO2H]·nH2O and the catalytic activities of their palladium complexes in hydrogenation. J. Mol. Catal. A Chem., 2004, 208(1/2): 129-133.
    182. P. D. Knight, I. Munslow, P. N. O’Shaughnessy, P. Scott. Zirconium catalysed enantioselective hydroamination/cyclisation. Chem. Commun., 2004, (7): 894-895.
    183. P. Giannoccaro, M. Gargano, A. Fanizzi, C. Ferragina, A. Leoci, M. Aresta. Hydrodechlorination of polychlorobenzenes and polychlorinated aliphatic compounds under mild conditions by Pd and Rh ions or their complexes intercalated in γ-zirconium phosphate. J. Mol. Catal. A Chem., 2005, 227(1-2): 133-140.
    184. X. Z. Tang, N. Yao, M. E. Thompson. Synthesis and study of zirconium viologen-phosphonate compounds on a polymer surfactant template and their use in photocatalytic production of hydrogen. Supramolecular Science, 1997, (4): 35-42.
    185. F. J. Pérez-Reina, E. Rodríguez-Castellón, A. Jiménez-López. Chromia-pillared α-zirconium phosphate materials as catalysts for thiophene hydrodesulfurization. Langmuir, 1999, 15(6): 2047-2054.
    186. R. Hernández-Huesca, P. Braos-García, J. Mérida-Robles, P. Maireles-Torres, E. Rodríguez-Castellón, A Jiménez-López. Cobalt-based alumina pillared zirconium phosphate catalysts for the selective catalytic reduction of NO by propane. Chemosphere, 2002, 48(4): 467-474.
    187. D. P. Das, K. Parida, B. R. De. Photocatalytic reduction of hexavalent chromium in aqueous solution over titania pillared zirconium phosphate and titanium phosphate under solar radiation. J. Mol. Catal. A Chem., 2006, 245(1-2): 217-224.
    188. 陈 文 山 , 傅 相 锴 , 马 学 兵 , 李 龙 芹 , 陈 静 蓉 . 新 型 负 载 配 位 催 化 剂ZBDPPEDAEPATiO2Pd 催化羰化反应研究. 分子催化, 2001,15(6): 447-450.
    189. 陈文山, 傅相锴, 王强, 马学兵. 新型负载络合配体 BDPPEDAEPA-TiO2/ZrO2 及其钯催化剂的制备和表征. 西南师范大学学报(自), 2005, 30(3): 500-504.
    190. 杜以波, 张广积, 孙鹏, D G Evans, 段雪, 王作新. α-磷酸锆层柱材料的制备、表征及其催化羰基化性能. 催化学报, 1999, 20(2): 145-149.
    191. P. Giannoccaro, M. Aresta, S. Doronzo, C. Ferragina. Phenylacetylene carbonylation catalysed by Pd(II) and Rh(III) intercalated in zirconium phosphates. Appl. Organometal. Chem., 2000, 14(10): 581-589.
    192. M. Curini, F. Epifano, M. C. Marcotullio, O. Rosati, U. Costantino. Zirconium sulfophenyl phosphonate as heterogeneous catalyst in tetrahydropyranylation of alcohols and phenols. Tetrahedron Lett., 1998, 39: 8159-8162.
    193. M. Curini, F Epifano, M. C. Marcotullio, O. Rosati, M. Nocchetti. Preparation and deprotection of 1,1-diacetates (acylals) using zirconium sulfophenyl phosphonate as heterogeneous catalyst. Tetrahedron Lett., 2002, 43: 2709-2711.
    194. M. Curini, F. Epifano, S. Chimichi, F. Montanari, M. Nocchetti, O. Rosati. Potassium exchanged layered zirconium phosphate as catalyst in the preparation of 4H-chromenes. Tetrahedron Lett., 2005, 46(20): 3497-3499.
    195. S Bischoff, A K?ckritz, M Kant. Immobilization of rhodium catalysts in biphasic systems and in layered structures using phosphonated phosphines. Topics in Catalysis, 2000, (13):327-334.
    196. S. Rojas, S. Murica-Mascarós, P. Terreros, J. L. G. Fierro. Rhodium thiolate hydroformylation complexes tethered to delamellated γ-zirconium phosphate. New J. Chem., 2001, 25: 1430-1437.
    197. H. L. Ngo, A. G. Hu, W. B. Lin. Molecular building block approaches to chiral porous zirconium phosphonate for asymmetric catalysis. J. Mol. Catal. A Chem., 2004, 215: 177-186.
    198. 傅相锴, 罗必奎. 新型三相催化剂-磷酸盐固载季铵盐 ZPDBBC. 科学通报, 1992, 37(7): 672-672.
    199. X. K. Fu, S. Y. Wen. Preparation of zirconium (benzyldiethylaminomethylphosphonate chloride) and PTC reaction. Synth. Commun., 1995, 25(16): 2435-2442.
    200. 傅相锴, 温淑英, 亢为. 二丁胺甲基膦酸锆的苄基季胺化合物及其相转移催化作用. 应用化学, 1995, 12(2): 20-23.
    201. 罗必奎, 傅相锴, 雷庆英. α-磷酸氢锆-氯化铁复合物的制备和催化反应研究. 离子交换与吸附, 1993, 9(2): 124-128.
    202. 傅相锴, 亢为, 温淑英, 邓传跃. 无定形(磷酸氢-二苯基次膦酸)锆-氯化铁复合物催化烷基化反应. 应用化学, 1995, 12(6): 47-49.
    203. M. C. C. Costa, R. A. W. Johnstone, D. Whittaker. Properties of polymeric zirconium phosphates as Friedel-Crafts catalysts. J. Mol. Catal. A Chem., 1995, 103(3): 155-162.
    204. M. B. Gawande, S. S. Deshpande, S. U. Sonavane, R. V. Jayaram. A novel sol-gel synthesized catalyst for Friedel-Crafts benzoylation reaction under solvent-free conditions. J. Mol. Catal. A Chem., 2005, 241 (1/2): 151-155.
    205. D. P. Das, K. Parida. Liquid phase bromination of phenol over titania pillared zirconium phosphate and titanium phosphate. Catal. Commun., 2006, 7(2): 68-72.
    206. C. Dume, J. Kervennal, S. Hub, W. F. H?lderich. Synthesis of dimethylethylamine from ethylamine and methanol over phosphate catalysts. Appl. Catal., 1999, 180(1-2): 421-433.
    207. C .Dume, W. F. H?lderich. Amination of 1-octanol. Appl. Catal., 1999,183(1): 167-176.
    208. M. C. C. Costa, R. A. W. Johnstone, D. Whittaker. Catalysis of terpene rearrangements by zirconium phosphates and zirconium organo-substituted phosphonates. J. Mol. Catal. A Chem., 1998, 129(1): 79-89.
    209. S. N. Pavlova, V. A. Sadykov, G. V. Zabolotnaya, D. I. Kochubey, R. I. Maximovskaya, V. I.Zaikovskii, V. V. Kriventsov, S. V. Tsybulya, E. B. Burgina, A. M. Volodin, M. V. Chaikina, N. N. Kuznetsova, V. V. Lunin, D. Agrawal, R. Roy. The novel acid catalysts-framework zirconium phosphates: the bulk and surface structure. J. Mol. Catal. A Chem., 2000, 158 (1): 319-323.
    210. W. Z. Li, C. G. Qin, C. S. Lv, L. S. Li, J. S. Chen. Eu3+ and lysine co-intercalated α-zirconium phosphate and its catalytic activity for copolymerization of propylene oxide and CO. Catal. Lett., 2004, 94(1-2): 95-102.
    211. S. Beck, A. R. Brough, M. Bochmann. α-Zirconium phosphonates as new supports for metallocene catalysts. J. Mol. Catal. A Chem., 2004, 220: 275-284.
    212. G. Alberti, U. Costantino, S. Allulli, N. Tomsssini. Crystalline Zr(R-PO3)2 and Zr(R-OPO3)2 compounds: a new class of materials having layered structure of the zirconium phosphate type. J. Inorg. Nucl. Chem., 1978, 40: 1113-1117.
    213. G Alberti, U. Costantino. Derivatives of α-zirconium phosphate. J. Inorg. Nucl. Chem., 1978, 40: 113-119.
    214. M. B.Dines, P. M. Di Giacomo: Derivetized lameller phosphates and phosphonetes of M(IV) ions. lnorg Chem.,1981, 20: 92-97.
    215. G. Alberti, U. Costantino, F. Marmottini, R. Vivani, P. Zappelli, Zirconium phosphite(3,3’,5,5’-Tetramethyl-biphenyl)diphosphonate, a Microporous, layered, Inorganic -Organic Polymer, Angew. Chem. Int. Ed. Engl., 1993, 32: 1357.
    216. G. Alberti, F. Marmottini, S. Murcia-Mascarosand, R. Vivani, P. Zappelli, Preparationand preliminary characterization of a covalently pillared zirconium phosphate-diphosphonate with interlayer microporosity, Angew. Chem. Int. Ed. Engl., 1994,33: 1594.
    217. U. Costantino, M. Nocchetti, F. Marmottini, et al. Amino acid derivatives of layered zirconium phosphates α-zirconium l-(+)-serinephosphate and zirconium serinephosphate phosphates. Eur. J. Inorg. Chem.,1998, 1447-1452.
    218. M. Horiguchi, M. Kandatsu. Isolation of 2-aminoethylphosphonic acid from ramen protozoa. Nature, 1959, 182(12): 901-904.
    219. E. K. Baylis, C. D. Campbell, J. G. Dingwall. 1-aminoalkylphosphonous acids, Part 1: isosteres of the protein aminoacids. J. Chem. Soc. Perkin Trans., 1984(12): 2845-2847.
    220. L. Maier. Process for the production of methylam inomethylphosphonic and its salts. U K P, 2 006 215, 1979.
    221. W. Dedek, M. Partsch, R. Grahl. Metabolism of 32P-aminophon(trakephon), a new defoliant and siccant in plants. Biochem. Physio. Pflanz, 1978, 173 (1): 70-74.
    222. W. Hoyle, R. Vogel. Agent and process for influencing plant growth. Eur. Pat., 10067, 1980.
    223. K. Hemmi, H. Takeno, M. Hashimoto, T. Kamiya. Studies on phosphonic acid antibiotics Ⅳ : synthesis and antibacterial activity of analogs of 3-(N-acetyl-N-hydroxyamino)propylphosphonic acid (FR-900098). Chem. Pharm. Bull., 1982, 30(1): 111-113.
    224. E. Gruszeck, M. Soroka, P. Mastalerz. Phosphonic analogs of α-methylaspartic and α-methylglutamic acids. Pol. J. Chem., 1974, 53(11): 2327-2329.
    224. K. D. Berlin, R. T. Claunch, E. T. Gaudy. α-aminoarylmethylphosphonic acids and diethyl α-aminoarylmethylphosphonate hydrochlorides, aluminum-amalgam reduction of oximes of diethyl aroylphosphonates. J. Org. Chem., 1968, 33(8): 3090-3093.
    226. K. D. Collins, G. R. Stark. A spartate transcarbamylase, interaction with the transition state analog N-(phosphonacetyl)-L-aspartate. J. Biol. Chem., 1971, 246(21): 6599-6602.
    227. A. B. Paul, B. K. Willam. Phosphinic acid dipeptide analogs: potent, slow-binding inhibitors of aspartic peptidases. J. Am. Chem. Soc., 1984, 106(15): 4282-4284.
    228. M. Soroka, P. Mastalerz. The synthesis of phosphonic and phosphinic analogs of aspartic acid and asparagine. Rocz. Chem.,1976, 50(4): 661-663.
    229. E. W. Petrillo, E. R. Spitzmiller. Synthesis of 2-phosphonopyrrolidine and its substitution for proline in an inhibitor of angiotensin-converting enzyme. Tetrahedron Lett., 1979, 19(51): 4929-4931.
    230. J. Kowalik, D. W. Sawka, T. Gowiak. Synthesis, molecular structure and absolute configuration of an optically active (1-amino-2-phenylethyl)phosphonic acid monohydrate. J. Chem. Soc. Chem. Commun., 1984, (7): 446-448.
    231. 陈茹玉, 刘纶祖. 有机磷化学研究. 北京: 高等教育出版社. 2000.2.
    232. S. Scialla, I. V. Masott. Peroxygen bleaching compositions comprising peroxygen bleach and ATMP, suitable for use as a pretreater for fabrics. USP 6 099 587, 2000.
    233. K. P. Davis, A. C. Smith, D. R. E. Walker, et al. Phosphino derivatives. USP 6 071 434, 2000.
    234. B. K. Failon, R. G. Gabriel. Method for controlling scale using synergistic phosphonate blends. USP 6 063 290, 2000.
    235. C. E. Mckenna, B. A. Kashemirov. Preparation and use of alpha-(hydroxyimino) phosphonoacetic acids. USP 5 948 931, 2000.
    236. M. Kurt, R. Riyad. The direct synthesis of α-aminomethylphosphonic acids Mannich-type reactions with orthophosphorous acid. J. Org. Chem., 1966, 31(5): 1063-1067.
    237. 钟宏. 烷胺双甲基磷酸的合成与性能研究. 有色金属,1994, 5: 32-36.
    238. H. E. Kaiz, G. Scheller, T. M. Putvinski, et al.. Polar orientation of dyes in robust multilayers by zirconium phosphate-phosphonate interlayers. Science, 1991, 1485-1487.
    239. A. Clearfield,D. S. Thakur. Zirconium and titanium phosphate as catalysts. A Review. Appl. Cat., 1986, 26: 1-10.
    240. A. Clearfield, Z. Wang. Organically pillared microporous zirconium phosphonates. J. Chem. Soc. Dalton Trans., 2002, 15: 2937-2947.
    241. H. J. Sue, K. T. Gam, N. Bestaoui, N. Spurr, A. Clearfield. Epoxy nanocomposites based on the synthetic α-zirconium phosphate layer structure. Chem. Mater., 2004,16(2): 242-249.
    242. E. Brunet, M. J. de la Mata, O. Juanes, J. C. Rodríguez-Ubis. Sensitized luminescence of lanthanides within the walls of polyethylenoxa-pillared γ-zirconium phosphate. Chem. Mater., 2004, 16(8): 1517 -1522.
    243. W. H. J. Hogarth, J. C. D. da Costa, J. Drennan, G. Q. (Max) Lu. Proton conductivity of mesoporous sol–gel zirconium phosphates for fuel cell applications. J. Mater. Chem., 2005, 15: 754-758.
    244. G. Alberti, M. Casciola, E. D'Alessandro, M. Pica. Preparation and proton conductivity of composite ionomeric membranes obtained from gels of amorphous zirconium phosphate sulfophenylenphosphonates in organic solvents. J. Mater. Chem. 2004, 14: 1910-1914.
    245. G. Alberti. Comprehensive supramolecular chemistry. New York: Pergamon Press, 1996: 151-187.
    246. A. Clearfield. Progress in inorganic chemistry. New York: John Wiley & Sons, 1998: 371-510.
    247. 杨刚,侯文华,郭宪吉,颜其洁,陈懿,陈静. 无机层状纳米复合材料与聚苯胺的复合研究. 无机化学, 2003, 19 (6): 561-568.
    248. 陈耀祖. 有机分析. 北京: 高等教育出版社, 1981, 600.
    249. H. Pines, J. A. Vesely, V. N. Ipatieff. Migration of double bonds in olefinic and diolefinic hydrocarbons catalyzed by sodium. dehydrogenation of d-limonene to p-cymene. J. Am. Chem. Soc., 1955, 77(2): 347-348.
    250. 田部浩三, 御袁生诚, 小野嘉夫 等著. 郑禄彬 等译. 新固体酸和碱及其催化作用, 北京: 化学工业出版社, 1992, 1.
    251. H. Hattori. Heterogeneous basic catalysis. Chem. Rev., 1995, 95: 537-558.
    252. H. Hattori. Solid base catalysts: generation of basic sites and application to organic synthesis. Appl. Catal., A, 2001, 222: 247-259.
    253. 蒋绍亮, 章福祥, 关乃佳. 固体碱催化剂在催化反应中的应用进展. 石油化工, 2006, 35 (1): 1-10.
    254. K. Tanabe,W. F. Holderich. Industrial application of solid acid base catalysts, Appl. Catal., A, 1999, 181: 399-434.
    255. 魏彤, 王谋华, 魏伟 等. 固体碱催化剂. 化学通报, 2002, (9): 594-600.
    256. Y. Ono. Solid base catalysts for the synthesis of fine chemicals. J. Catal., 2003, 216:
    406-415.
    257. 李向召, 江琦. 固体碱催化剂研究进展. 天然气化工, 2005, 30: 42-53.
    258. 金饮汉, 戴树珊, 黄卡玛. 微波化学. 北京: 科学出版社, 1999, 1, 147.
    259. 王静, 姜凤超. 微波有机合成反应的新进展. 有机化学, 2002, 22 (3): 212-219.
    260. F. Toda. Solid state organic chemistry: efficient reactions, remarkable yields, and stereoselectivity. Acc. Chem. Res., 1995, 28 (12): 480-486.
    261. K.Tanaka, F. Toda. Solvent-free organic synthesis. Chem. Rev., 2000, 100 (3): 1025-1074.
    262. G. W. V. Cave, C. L. Raston, J. L. Scott. Recent advances in solventless organic reactions: towards benign synthesis with remarkable versatility. Chem.Commun., 2001, (21): 2159-2169.
    263. 田部浩三, 御袁生诚, 小野嘉夫 等著. 郑禄彬 等译. 新固体酸和碱及其催化作用, 北京: 化学工业出版社, 1992, 14-25.
    264. S. Balalaie, N. Neemati. Ammonium acetate-basic alumina catalyzed knoevenagel condensation under miciowave irradiation under solvent-free condition. Synth. Commun., 2000, 30: 869-875.
    265. E. Obrador , M. Castro , J. Tamariz, et al. Knoevenagel condensation in heterogeneousphase catalyezed by IR radiation and tonssil actisil . Synth. Commun., 1998, 28: 4649-4663.
    266. S. Wang, Z. Ren, W. Cao, W. Tong. Synth. Commun., The knoevenagel condensation of aromatic aldehydes with malononitrile or ethyl cyanoacetate in the presence of CTMAB in water 2001, 31 (5): 673-677.
    267. A. K. Mitre, A. De, N. Karchaudhuri. Solvent-free microwave enhanced Knoevenangel condensation of ethyl cyanoacetate with aldehydes. Synth. Commun., 1999, 29 (16): 2731-2739.
    268. T. S. Jin , J. J. Guo, H. M. Liu, et al. Sythesis of ethyl α-cyanocinnamates catayzed by Al2O3- OK solid base. Synth. Commun., 2003, 33 (5):1121-1124.
    269. 戴桂元, 史达清, 周龙虎. 氟化钾催化下的克脑文格尔反应. 化学试剂, 1996, 18 (1): 39-40.
    270. 周少林,徐利文,夏春谷,等. Suzuki偶联反应的最新研究进展. 有机化学, 2004, 24(12): 1501-1512.
    271. R. Narayanan, M. A. El-Sayed. Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by pvp-palladium nanoparticles. J. Am. Chem. Soc., 2003, 125(27): 8340-8347.
    272. R. Narayanan, M. A. El-Sayed. Carbon-supported spherical palladium nanoparticles as potential recyclable catalysts for the Suzuki reaction. J. Catal.,2005,234: 348-355.
    273. J. H. Li, X. Ch. Hu, Y. X. Xie. Polymer-supported DABCO–palladium complex as a stable and reusable catalyst for room temperature Suzuki–Miyaura cross-couplings of aryl bromides. Tetrahedron Lett.,2006,47: 9239-9243.
    274. T. F. Kuznetsova, S. I. Eremenko, G. S. Lemeshonok. Effect of preparation conditions on the structure of zirconium phosphate. Russ. J. Appl. Chem., 1999, 72: 1718-1721.
    275. Hattori, A. Ishiguro, Y. Murakami. Acidity of crystalline zirconium phosphate. Inorg. Nucl. Chem., 1978, 40(6): 1107.
    276. A. Clearfield, B. D. Robert. Pillaring of layered zirconium and titanium phosphate. Inorg. Chem., 1988, 27: 3237-3240.
    277. 陈耀祖. 有机分析. 北京: 高等教育出版社, 1981, 608.
    278. 金饮汉, 戴树珊, 黄卡玛. 微波化学. 北京: 科学出版社, 1999, 147.
    279. 薛永强, 王志忠, 张 蓉. 现代有机化学合成方法与技术. 北京: 化学工业出版社, 2003, 277-299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700