Mg-Gd-Y-Zr合金净化熔剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土元素具有改善合金的铸造性能,细化合金组织,提高合金的力学性能及耐腐蚀性能等作用。上海交通大学轻合金国家工程中心现已开发出了一系列具有高强、耐热、耐蚀等性能的含稀土镁合金,如GW系列、NZK系列镁合金,大大拓展了镁合金的应用领域。当前,含稀土镁合金的净化问题已成为制约其推广应用的关键瓶颈之一,原因在于现有熔剂的主体成分MgCl2会与稀土元素发生反应,不仅导致昂贵稀土的大量损耗,而且影响合金成分与性能的稳定。而不含MgCl2的熔剂去除夹杂物的能力较差,净化效果不够理想。因此,开发稀土镁合金专用高效净化熔剂是一个亟待解决的关键问题。
     本文针对新型高强耐热Mg-Gd-Y稀土镁合金的净化难题,开展了该合金专用净化熔剂的研究,并开发出了JDY和JDGd系列专用熔剂。借助力学性能试验机、光学显微镜(OM)、金相图像分析仪、带能谱分析(EDAX)的扫描电子显微镜(SEM)、X射线衍射仪(XRD)、电感耦合等离子直读光谱仪(ICP)、电化学测试系统等分析手段,研究了JDY和JDGd系列熔剂对GW103K稀土镁合金组织形貌、杂质含量、相组成、稀土元素损耗量、力学性能、耐腐蚀性能以及铸造流动性等的影响规律;采用差热分析仪(DTA)等分析手段研究了稀土氯化物添加剂对熔剂工艺性能与工作性能的影响规律。此外还分析了稀土元素损耗的机制。主要研究成果如下:
     1)含有一定量的氯化稀土的新型熔剂,能够显著去除镁熔体中的非金属夹杂物,使总夹杂含量的体积分数从0.81%下降到0.33%;在总夹杂体积分数相同的情况下,使粒径尺寸大于10μm的夹杂物含量从26.49%下降到14.42%;但熔剂中氯化稀土量超过一定程度后(如含量超过8%),使用过程中熔剂易于结团难以分散,不仅降低了净化效果,而且会增加熔剂夹杂。
     2)采用质量占合金质量2~3%的JDY系列熔剂净化处理后,合金中Y元素的损耗率随着熔剂中YCl3含量的增加而减小,且在熔剂中YCl3含量超过7.5%后,Y损耗率降低不再明显,基本维持在11.2%左右。相同条件下,采用JDGd系列熔剂净化处理后,合金中Gd的损耗率随着熔剂中GdCl3含量的增加而降低,且在熔剂中GdCl3含量超过7.5%后,损耗率降低不再明显,基本维持在4.4%左右。
     3)经JDY和JDGd系列熔剂精炼后,由于合金中稀土元素损耗的降低以及合金中夹杂的减少,合金的力学性能、耐腐蚀性能和铸造流动性得到较大提高,当YCl3添加量达到2.5%时,合金试样的力学性能σb和δ分别达到最大值228.25MPa和5.26%,其试样腐蚀速率降低到最低的0.452mg·cm-2·d-1,而流动性(在金属模具温度是150℃的情况下浇注)试样的长度达到121cm;当GdCl3添加量达到2.5%时,合金试样的力学性能σb和δ分别达到最大值225.63MPa和5.12%,其试样腐蚀速率降低到最低的0.513mg·cm-2·d-1,而流动性试样的长度达到122cm;但是添加过多的YCl3/GdCl3 (如添加量超过熔剂质量的8%),易使熔剂聚结成团,不仅降低熔剂的铺展性,而且导致合金中出现熔剂夹杂,反而降低了力学性能、耐腐蚀性能及铸造流动性。
     4)通过熔剂成分优化、物化性能测试以及熔剂制备及精炼工艺优化等试验,验证了新型熔剂JDRJ+ YCl3既能有效降低稀土损耗,又可以起到良好的净化效果,是一种优于现有的JDMJ和RJ-6的稀土镁合金专用净化熔剂。
Rare earth compounds are able to purify alloy melt, refine alloy structure, improve casting ability, mechanical properties, corrosion resistance and so on. A series of RE magnesium alloys with the high performance have been developed, such as GW series and NZK series, which is greatly helpful to expand magnesium application field.
     However, RE magnesium alloy can not be purified by present fluxes, because rare earth can react with MgCl2 in the fluxes which lead to mass loss of rare earth compound, and the effect of the flux without MgCl2 can not reach the expected level. Therefore, new kinds of fluxes suitable for RE magnesium alloy refining need to be developed as soon as possible.
     According to the purifying problems of the Mg-Gd-Y alloy, the present study researched on developing new fluxes JDY and JDGd. Also, the study has investigated the effects of the new fluxes JDY and JDGd on the impurity content, microstructure, phase, loss of RE compound, mechanical properties, corrosion resistance and casting fluidity of RE magnesium alloy GW103K by experimental methods such as inductively coupled plasma analyzer(ICP), optical microscopy(OM), image analysis apparatus with a Leco image analysis software, scanning electron microscopy(SEM) with energy dispersive X-ray analyses (EDAX), X-ray diffractometer (XRD), electrochemical measuring system.The main research results are as followed:
     1) The new fluxes containing some chloridize rare earth can greatly remove the impurities, and reduce the content of impurities larger than 10μm from 26.49% to 14.42%. However, when the chloridize rare earth is excessive, the flux will be inclined to become conglomeration, which will lead to flux impurities in the alloy melt.
     2) The Y losses of alloys which are purified by the new fluxes JDY decrease as the YCl3 content increases, when the addition of YCl3 is 7.5wt%, the loss of Y will keep steady in some 11.2wt%; The Gd losses of alloys which are purified by the new fluxes JDGd decreas as the GdCl3 content increases, when the addition of GdCl3 is 7.5wt%, the loss of Y will keep steady in some 4.4wt%.
     3) After refined by the fluxes JDY和JDGd,mechanical properties, corrosion resistance and casting fluidity of RE magnesium alloy are improved greatly. When the addition of YCl3 is 2.5%, the alloy examples’mechanical propertiesσb andδreach to the highest 228.25MPa and 5.26%, and the corrosion rate decreases to the lowest 0.452mg·cm-2·d-1 , and the casting fluidity longth is the longest 121cm; When the addition of GdCl3 is 2.5%, the alloy examples’mechanical propertiesσb andδreach to the highest 225.63MPa and 5.12%, and the corrosion rate decreases to the lowest 0.513mg·cm-2·d-1 , and the casting fluidity longth is the longest 122cm.
     4) According to the experiments of flux composition optimization, physical and chemical properties testing and refining draft optimization, the research results show that the new complex fluxes JDRJ+2.5%YCl3/GdCl3 can not only greatly reduce the loss of Y and Gd, but also purify the alloy melt effectively, which is better than the present fluxes RJ-6 and JDMJ.
引文
[1] Hajo Dieringa, Jan Bohlen, Norbert Hort. Advances in Manufacturing Processes for Magnesium Alloys[A]. Magnesium Technology 2007. Proceedings of TMS Meeting,edited by Randy S.Bearls. TMS 2007 [C] : 3-8.
    [2] S. Schumann. The paths and strategies for increased magnesium applications in vehicles [C]. Materials Science Forum,2005,(488-489): 1-8 .
    [3] Yo Kojima, Shigeharu Kamado. Fundamental magnesium researches in Japan[C]. Materials Science Forum,2005,(488-489):9-16.
    [4] Kojima Y.,Platform science and technology for advanced magnesium alloys,MaterialsScience Forum,2000,350-351,3-18.
    [5]师昌绪,李恒德,王淀佐等,加速我国金属镁工业发展的建议,材料导报,2001,15(4):5-6.
    [6] Achim Wendt, Konrad Weiss, Arye Ben-Dov, et al. Magnesium castings in aeronautics applications–special requirements, Magnesium Technology 2005, Edited by N.R. Neelameggham, H.I. Kaplan, and B.R. Powell, T M S (The Minerals, Metals & Materials Society), 2005, pp. 269-273
    [7]杨素媛,张丽娟,张堡垒.稀土镁合金的研究现状及应用[J].稀土,2008,29(4):81-86.
    [8]余琨,黎文献,王日初等,变形镁合金的研究、开发及应用,中国有色金属学报,2003,13(2),277-288.
    [9] Grobner J, Schmid-Fetzer R. Selection of promising quaternary candidates from Mg-Mn-Sc(Gd,Y,Zr) for development of creep-resistant magnesium alloys[J]. Journal of Alloys and Compounds, 2001, 320:296-301.
    [10] Buch F V, Mordike B L, Pisch A,et al. Developmentof Mg-Mn-Sc alloys[J]. Mater Sci Eng A, 1999, A263:1-7.
    [11]邹永良,李华基,薛寒松,等.混合稀土对ZMS镁合金熔炼起燃温度的影响[J].重庆大学学报(自然科学版), 2003,26(5):33-36.
    [12] Fan J F, Yang G C, Cbeng S L, et a1. Surface oxidation behavior of Mg-Y-Ce alloys at high temperature[J].Metallurgical and Materials Transactions A,2005,36(1):235-239.
    [13]何上明,曾小勤,丁文江.高强度耐热镁合金及其制备方法:中国,200510025251.6[P]. 2005-10-05.
    [14] Suzuki M, Kimura J, Koike J, et a1. Strengthening effect of Zn in heat resistant Mg-Y-Zn solid solution alloys[J]. Scripta Materialia, 2003, 48: 997-1002.
    [15] He S M, Zeng X Q, Peng L M, et al. Precipitation in a Mg-10Gd-3Y-0.42Zr(wt%) alloy during isothermal ageing at 250℃[J]. Journal of Alloys and Compounds, 2006, 421:309-313.
    [16]任凤章,刘平,田保红,等.变形镁合金研究现状[J].金属热处理, 2005, 30(C00): 205-210.
    [17] Wei L Y, Dunlop G L, Westengen H. Development of microstructure in cast Mg-Al-Rare Earth alloys. Materials Science and Technology, 1996, 12(9): 741-750
    [18]沈远香,张秀蓉,罗明文.高性能稀土镁合金的研发现状及应用[J].四川兵工学报, 2008(5):114-116.
    [19]陈刚,等.高性能镁合金的特种制备技术[J].轻合金加工技术,2003,6(31):40.
    [20] Sato H, Suzuki M, Maruyamak et a1. Creep strength of binary magnesium alloy upto0.6Tm. Engineering Materials Vols, 2002, l71-174: 601-608
    [21]韩英芬,刘建睿,沈淑娟,等.镁合金中的非金属夹杂物及其净化方法[J].铸造技术, 2006 (6) : 613-616.
    [22] Per Bakke, Ketil Pettersen, Sigrid Guldberg. The impact ofmetal cleanliness on mechanical p roperties of die cast magnesium AM50 [J]. Magnesium Alloys and TheirApp lications, 2000: 739-745.
    [23] He S.M, Zeng X.Q, Peng L.M, et al. Precipitation in a Mg–10Gd–3Y–0.4Zr (wt.%) alloy during isothermal ageing at 250℃. Journal of Alloys and Compounds 421 (2006) 309–313
    [24] He S.M, Zeng X.Q, Peng L.M, et al. Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5Zr alloy. Journal of Alloys and Compounds 427 (2007) 316–323
    [25] Inoue M, Iwai M, Matuzawa K, et al. Effect of impurities on corrosion behavior of pure magnesium in salt water environment[J]. J Jpn Institute of Light Metals, 1998, 48(6):257
    [26]疏达.电磁分离铝熔体中非金属夹杂物的理论研究[D].上海交通大学,2000.
    [27] Per Barke ,Jean Alain laulin , Andale provost. Consistency of Inclusions in Pure Magnesium [J]. Light Metals,1997,1019~1026
    [28] HU Henry , LUO Alan . Inclusions in Molten Magnesium and potention Assessment Techniques [J]. JOM ,1996 ,(10):47~51
    [29] WE alloys in aerospace and high performance cars. Foundry Trade J, 2000, 2:13
    [30]韩英芬,刘建睿,沈淑娟,黄卫东.镁合金中的非金属夹杂物及其净化方法[J].铸造技术,2006,(7):613~616.
    [31]翟春泉,丁文江,徐小平,邓祖威,余滋璋.新型无公害镁合金熔剂的研制[J].特种铸造及有色合金,2002,284~286.
    [32] Rokhlin L.L Magnesium alloys containing rare-earth metals. London and New York, Taylor and Francis, 2003
    [33] Chang J.W, Guo X.W, He S.M, et al.. Investigation of the corrosion for Mg-xGd-3Y-0.4Zr (x=6,8,10,12 wt%) alloys in a peak-aged condition. Corrosion Science 50 (2008) 166-177
    [34] Hongtao Gao, Guohua Wu, Wenj iang Ding, et a1. Study on Fe reduction in AZ9l melt by B2O3[J]. Materials Science and Engineering A, 2004. 368(1-2):311-317.
    [35] Hongtao Gao, Guohua Wu, Wenjiang Ding, et al. Effects of purification fluxes containing boride on AZ91 alloy[J]. Materials Science Forum, 2005, 488-489:25-30.
    [36] Gao Hongtao, Wu Guohua, Ding Wenjiang, et al. Recycling of magnesium alloy AZ91 scrap by a B2O3 containing fluxes[J]. Journal of Materials Science, 2004,39(21):6449-6456.
    [37]吴国华,丁文江,曾小勤,等.镁合金锆化合物除硅熔剂及其生产方法[P]. CN03141550.4. 2004- 02- 25
    [38]徐日瑶,诸天柏.结晶镁精炼熔剂的研究(I)-熔剂的种类与性质、熔剂除杂质机理的分析,轻金属,1994(6): 38-42.
    [39] Mordike B.L. Creep-resistant magnesium alloys. Materials Science and Engineering. 2002, A324: 103–112
    [40] Kamado S, Iwasawa S, Ohuchi K et al. Aging Hardening Characteristics and High Temperature Strength of Mg-Gd and Mg-Tb alloys. Journal of Japan Institute of Light Metals, 1992, 42(12): 727-733
    [41]翟春泉,徐小平,邓祖威等.新型镁合金熔剂及其性能测定[J].热加工工艺, 1996(6):39-40.
    [42] HAN J W, KIM D J,YOU B D,ENGH T A. Effect of gas bubbling and impeller agitation on degassing kinetics during magnesium alloy (AZ91D) melt recycling-water model approach[J]. Materials Science Forum, 2003, 439:192~199.
    [43]梁慧强.铝熔体净化工艺的研究[D ].长沙:中南大学,2005.
    [44]胡中朝,张二林,曾松岩.旋转喷吹水模拟镁合金熔体除气[J].铸造,2008(9):902~905.
    [45] Kamado S, Kojima Y, Ninomiya R et al. Aging Characteristics and High Temperature Tensile Properties of Magnesium Alloys Containing Heavy Rare Earth Elements, In: G.W. Lorimer(Ed.), Proceedings of the 3rd International Magnesium Conference, Manchester, UK, 1996; Institute of Materials, 1997: 327-342.
    [46]许四祥,吴树森,高培青.工艺参数对镁合金熔液除气精炼的影响[J].中国有色金属学报,2009(2):217~221.
    [47] Rokhlin L.L, Dobatkina T.V, Nikitina N.I. Constitution and properties of the ternary magnesium alloys containing two rare-earth metals of different subgroups. Materials Science Forum, 2003, 419-422, 291-296
    [48]孙明,吴国华,王玮,丁文江.镁合金纯净化研究现状与展望[J].材料导报,2008,(4):88~92.
    [49] Chen, F.,Huang, X.,Wang, Y.,Zhang, Y.,Hu, Z. Investigation on foam ceramic filter to remove inclusions in revert alloy [J]. Material Letters, 1998: 372-376.
    [50]曹大力,周静一,尹国利,等.铸造用泡沫陶瓷过滤器[J].铸造,2005(3):292~295.
    [51] Mordike B.L. Development of highly creep resistant magnesium alloys.J.Mater. Process. Technol, 2001, 117: 391-394
    [52] Nabarro F.R.N. The statistical problem of hardening. J. Less Common Met. 1972, 28(2): 257-276
    [53] Honma T, Ohkubo T, Hono K, et al. Chemistry of nanoscale precipitates in Mg-2.1Gd-0.6Y-0.2Zr(at.﹪) alloy investigated by the atom probe technique. Materials Science and Engineering A, 2005, 395: 301-306
    [54]魏兵,唐一林,祝建勋,张科峰,朱能山,龙礼贤.铸造用金属液过滤器及其应用[J].铸造技术,2008(8):1127~1131.
    [55] Orowan E. Symp. on Internal Stress in Metals and Alloys, Session III Discussion. London: Institute of Metals, 1948, p. 451
    [56] CUI Jian-zhong. Solidification of A1 alloys under electromagnetic field[J]. Trans. Nonferrous Met. Soc. China.2003(6):473~483.
    [57] XU Guang-ming, BAO Wei-ping, CUI Jian-zhong. Microstructure and segregation of magnesium alloy solidified under magnetostatic field[J]. Trans. Nonferrous Met. Soc. China, 2004(4):316~320.
    [58] Leenov D,Kolin A Theory of electromagnetophoresis I:magnetohydmdynamic forces experienced by spherical and symmetrically oriented cylindrical particles[J].J Chem Phys. 1954,22(4):683~688.
    [59] Marly P, Alemany A Theoretical and experimental aspects of electromagnetic. separation metallurgical applications of magnetohydrodynamics[A]. Proceedings of Symposium o r the international and applied mechanics (IUTAM)[C]. Cambridge, 1982, 245~259.
    [60]郭庆涛,金俊泽,李廷举.高频磁场电磁净化体积力模型建立[J].稀有金属材料与工程, 2007(5):849~852.
    [61] Apps P.J, Karimzadeh H, King J.F, et al. Phase Compositions in Magnesium-Rare Earth Alloys Containing Yttrium, Gadolinium or Dysprosium. Scripta Materialia, 2003, 48: 75-481
    [62]郭庆涛,金俊泽,李廷举.高频磁场电磁净化试验研究及净化时间的计算[J].铸造, 2005(7):670~673.
    [63] Drits M.E, Rokhlin L.L, Nikitina N.I. State diagram of the Mg-Y-Gd system in the range rich in magnesium . Izv. Akad. Nauk SSSR, Met. 1983, 5: 215-219(in Russian)
    [64]苏允海,刘政军.电磁搅拌对压铸镁合金组织性能的影响[J].铸造, 2007(12):1273~1276.
    [65] Peng Q.M, Wu Y.M, Fang D.Q, et al. Microstructures and properties of Mg–7Gd alloy containing Y. Journal of Alloys and Compounds 430 (2007) 252–256
    [66] Matucha K H. Structure and Properties of Nonferrous Alloys[M] . New York : VCH Press , 1996.
    [67] Gao Y, Wang Q.D, Gu J.H, et al. Behavior of Mg-15Gd-5Y-0.5Zr alloy during solution heat treatment from 500 to 540℃. Materials Science and Engineering A 459 (2007) 117-123
    [68] Wang W, Wu G.H, Wang Q.D, et al. Gd contents, mechanical and corrosion properties of Mg-10Gd-3Y-0.5Zr alloy purified by fluxes containing GdCl3 additions. Materials Science and Engineering: A 507 (2009) 207-214
    [69]冯科研,含稀土和含稀土氧化物精炼剂对再生镁合金精炼效果的影响研究,[硕士论文],吉林,吉林大学,2006.
    [70]吴国华,翟春泉,卢晨,等.镁合金稀土化合物熔剂及其生产方法[P]. CN03128916.9. 2003-12-10. [71 ]肖阳,张新明,陈健美,等.高强耐热Mg-9Gd-4Y-0.6Zr合金的性能[J].中南大学学报(自然科学版) ,2006,37 (5) :850.
    [1]陆树荪,有色铸造合金及熔炼,北京,1983,194
    [2]翟春泉,丁文江,徐小平,邓祖威,余滋璋.新型镁合金熔剂及其性能测定[J].热加工工艺, 1996, 39~40.
    [1]郭旭涛,李培杰,熊玉华,刘树勋,曾大本.稀土在铝、镁合金中的应用[J].材料工程, 2004(8):60~64.
    [2]齐伟光,赵宝荣,许小忠,刘常明.钇对AZ91D镁合金组织和力学性能的影响[J].兵器材料科学与工程,2007(2):52~55.
    [3]张诗昌,魏伯康,陈渭臣.钇及混合稀土对AZ91D镁合金流动性与凝固组织的影响[J].铸造,2004(2):118~121.
    [4]郑伟超,李培杰,郭旭涛,曾大本.添加混合稀土对纯镁及其合金中元素含量的影响[J].特种铸造及有色合金,2005(5):270~272.
    [5]王渠东,吕宜振,曾小勤.稀土在铸造镁合金中的应用[J].特种铸造及有色合金,1999(1):40-43.
    [6] Ferro R, Saccone A, Borzone G, Rare earth metals in light alloGds, Journal of AlloGd and Compounds, 1995, 220(1-2), 161-166.
    [7]中国机械工程学会铸造专业分会,铸造手册-铸造非铁合金,北京,机械工业出版社,1999.
    [1]翟春泉,曾小勤,丁文江等.镁合金的开发与应用[J].机械工程材料,2001,25(1):6-10。
    [2]翟春泉,丁文江,徐小平,邓祖威,余滋璋.新型无公害镁合金熔剂的研制[J].特种铸造及有色合金, 1997(4):48-50.
    [1]张诗昌,段汉桥,蔡启舟.镁合金熔炼工艺及发展现状.特种铸造及有色合金[J],2000(6):51-54.
    [2]高洪涛,吴国华,樊昱,等.CeCl3对含Ce镁合金精炼过程中Ce损耗量的影响[J].中国有色金属学报,2005(12):6-12.
    [3]梁英教,车荫昌,刘小霞,等.无机物热力学数据手册[M].沈阳:东北大学出版社,2002.
    [4]何尚明. Mg-Gd-Y-Zr(-Ca)合金的微观组织演变、性能和断裂行为研究[D].上海交通大学材料科学与工程学院,2008
    [5] Higashitani K, Yamauchi K, Matsuno Y and et al, Turbulent coagulation of particles in viscous fluid, J. Chemical Engineering Japan, 1983,234(16),299-305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700