锌基半导体纳米材料的控制生长与改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料形貌和性能的可控成为新阶段研究的主旋律。本文以ZnO和ZnS纳米材料为研究对象,发展了简便、节能、快速、易于大规模化生产的燃烧法来制备镁或镉掺杂的氧化锌纳米材料,并通过掺杂离子的引入来控制ZnO材料的生长和调节其光学性能。主要成果如下:
     1、通过低温燃烧的方法来制备(ZnCd)O,发现Cd在原材料中的加入能够影响产物的形貌,主要生成半卷曲的带状产物。Cd的溶入能够使晶格发生一定程度的畸变而使得E_2~(high)非极性拉曼模式蓝移。5%的Cd掺杂样品600℃退火后由于固溶Cd浓度较高,从而形成一个更深的能级而发出大约600nm的橙红色发射。1000℃退火后,由于Cd的脱溶析出而生成立方CdO相,而使得得带边发射变成双峰发射,可见光区变成与CdO有关的525nm发射占统治地位。无论Cd的含量及退火温度的变化,其带边发光峰没有出现特别明显的红移,这为其以后进一步在紫外发光二极管,紫外激光器方面的应用研究打下基础。
     2、通过低温燃烧的方法来制备(ZnMg)O,发现随着Mg在原材料中的加入能够形成卷曲的片状产物。Mg含量较高时会生成宽带隙的Zn掺杂的MgO包裹在Mg掺杂的ZnO外面,而使得发射大大增强。由于带隙紫外发射与绿色发射比例随激发强度的增加而增加,意味着与缺陷有关的绿色发射可能来自近带边的浅施主能级到带双电荷的氧空位跃迁。另外Mg掺杂能够使ZnO带隙发射峰明显的蓝移,特别是高Mg含量时,不仅能调节带隙,而且更能形成量子限域效应而使得带边发射增强。
     3、采用简单的无催化剂热蒸发的方法,在水平管式炉中成功地合成二氧化硅均匀包裹硫化锌纳米球结构。通过TEM发现其芯部主要为空心结构,且芯部还存在没被完全还原分解掉的ZnS纳米颗粒或纳米棒,从而导致样品存在460nm的ZnS缺陷光发射。而且这种非晶结构里含有大量的单质微晶硅,从而导致很强的橙红色发射。
For the research on nanomaterials,controlled morphology and modulated performance are attracting extensive interest.The cadmium or magnesium-doped zinc oxide nano--materials prepared by a simple,energy-saving and fast low-temperature combustion method.The introduction of the dopants into ZnO hosts can control the growth and modulate its optical properties.The results will offer a significant help for nanophotonic device applications based on ZnO materials in the future.The main results are as follows:
     1.The curled(ZnCd)O ribbons were prepared by a low-temperature combustion approach.The lattice distortion,originating from the introduction of Cd into ZnO, makes the non-polar E_2~(high) Raman scattering mode blueshift.Due to the formation of a deeper level,an orange emission appears at about 600nm in 5%Cd doped-ZnO annealed at 600℃.As the 5%Cd-doped sample annealed at 1000℃,Cd can precipitate from the host and form Zn-doped CdO,resulting into two band edge emission and a predominant green emission of 525nm related to CdO band edge emission Regardless of the Cd content and the annealing temperature,the UV emission does not exhibit obvious redshift.
     2.The curled(ZnMg)O sheets were also prepared by a low-temperature combustion approach.As Mg concentration increases,it can precipitate and form Zn-doped MgO with a broader band gap,wrapped Mg-doped ZnO outside.Thus,the near-band-edge emission of Mg-doped ZnO is enhanced greatly due to quantum confinement effect.The emission intensity ratio of the NBE to green increases with increase the excitation power density,indicating that the green emission could originate from the transition from a shallow donor level to Vo~~(++).The high concentration Mg can leads to a significant blueshift of ZnO NBE emission due to alloy effects.
     3.Silica coated zinc sulfide nanospheres are successfully synthesized by a simple thermal evaporation method in the tube furnace.The core is mainly a hollow structure by the analysis of TEM.In the nanosphere cores,however,there exsit some ZnS naoparties and nanorods which were not decomposed,resulting into an existence of 460nm light-emitting from ZnS defects.Due to the existence of smaller amorphous Si,a strong orange emission exists in photoluminescence,originating from the band edge emission of Si.
引文
[1]陈春燕,刘永刚,Ⅱ-Ⅵ半导体纳米材料研究进展[J].广东化工,2006,33:71-74.
    [2]C.B.Murry,C.R.Kagan,M.Q.Bawendi.Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices[J].Science,1995,270:1335-133.
    [3]V.L.Colvin,M.C.Schlamp,A.P.Alivisatos,Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,Nature,370:354-357.
    [4]C.Heske,U.Winkler,H.Neureiter,et al.Preparation and termination of well-defined CdTe(100) and Cd(Zn)Te(100)surfaces[J].Appl.phys.Lett.1997,70:1022-1024.
    [5]M.Brust,R.Etchenique,E.J.Cairo,et al.The self-assembly of gold and SCd nanoparticle multilayer structures studied by quartz crystal microgravimetry[J].Chem.Commun.1996:1949-1950.
    [6]张立德,牟季美.纳米材料和纳米结构[M].科学出版社,2001,1-525.
    [7]L.E.Brus,A simple model for the ionization potential of small semiconductor old crystallites[J].J.Chem.Phys,1984,80:4403-4407.
    [8]M.Ohtaki,K.Oda,K.Eguchi,et al.Preparation of nanosized CdS particles using decomposition of P_2S_5 in a non-aqueous solvent[J].Chem.Commun.1996:1209-1210.
    [9]E.Hanamura,Very large optical nonlinearity of semiconductor microcrystallites[J].Phys.Rev.B,1988,37:1273-1279.
    [10]O.Dulub,L.A.Boatner,U.Diebold.STM study of the geometric and electronic structure of ZnO(0001)-O,(10-10),and(11-20) surfaces[J].Surf.Sci,2002,519:201-217.
    [11]B.Meyer,D.Marx,Density-functional study of the structure and stability of ZnO surfaces[J].Phys.Rev.B,2003,67:305-403.
    [12]J.O.Song,K.K.Kim,S.J.Park,et al.Highly Low Resistance and Transparent Ni/ZnO Ohmic Contacts to P-type GaN[J].Appl.Phys.Lett.2003,83:479-481.
    [13]叶志镇,陈汉鸿,刘榕,张昊翔,赵炳辉.直流磁控溅射ZnO薄膜的结构和室温PL谱[J].半导体学报,2001,8:32-34.
    [14]W.I.Park,Y.H.Jun,S.W.Jung,et al.Ecitonic Emissions Observred in ZnO single Crystal Nanorods[J].Appl.Phys.Lett.2003,82:964-966.
    [15]V.A.L.Roy,A.B.Djiurisic,W.K.Chan,Luminescent and structural properties of ZnO nanorods prepared under different conditions[J].Appl.Phys.Lett,2003,83:141-143.
    [16]范东华.ZnO纳米结构的制备、表征及其光学性质研究[D].上海交通大学,2008.
    [17]D.C.Look,J.W.Hemsky,J.R.Sizelove.Residual Native Shallow Donor in ZnO[J].Phys.Rev.Lett.1999,82:2552-2555.
    [18]S.Y.Myong,S.J.Baik,C.H.Lee.Growth condition dependence of morphology and electric properties of ZnO films on sapphire substrates prepared by molecular beam epitaxy[J].Jpn.J.Appl.Phys.1997,Part 236:L1078.
    [19] B. M. Ataev, A. M. Bagamadova, A. M. Djabrailov. Highly conductive and transparent Ga-doped epitaxial ZnO films on sapphire by CVD[J]. Thin Solid Films, 1995, 260:19-20.
    [20] T. Yamamoto. Codoping for the fabrication of p-type ZnO[J]. Thin Solid Films, 2002, 420:100-106.
    [21] M. Joseph, H. Tabata, T. Kawai. p-Type Electrical Conduction in ZnO Thin Films by Ga and N Codoping[J]. Jpn. J. Appl. Phys,1999, 38:L1205-L1207.
    [22] Z. Z. Ye, F. Z. Ge, J. G. Lu. XPS study of nitrogen-implanted ZnO thin films obtained by DC-Magnetron reactive plasma[J]. J. Cryst.Growth, 2004, 265, 127.
    [23] A. Ohtomo, M. Kawasaki, T. Koida. MgxZnl - xO as a II-VI widegap semiconductor alloy[J]. Appl. Phys. Lett, 1998, 72:2466-2468.
    [24] T. Gruber, C. Kirchner, R. Kling. ZnMgO epilayers and ZnO-ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region[J]. Appl. Phys. Lett, 2004, 84:5359-5361.
    [25] T. Makino, Y. Segawa, M. Kawasaki. Band gap engineering based on Mg_xZn_(1-x)O and Cd_yZn_(1-y) ternary alloy films[J]. Appl. Phys. Lett. 2001, 78:1237-1239.
    [26] O. Vigil, L. Vaillant, F. Cruz, G. Santana. Spray pyrolysis deposition of cadmium-zinc oxide thin films[J]. Thin Solid Films, 2000, 361/362:53-55.
    [27] D. W. Ma, Z. Z. Ye, L. L. Chen. Dependence of structural and optical properties of Zn_(1-x)Ce_xO films on the Cd composition[J]. Phys. Status Solidi A, 2004,201:2929.
    
    [28] P. X. Gao, Y. Ding, Z. L. Wang. Crystallographic orientation-aligned ZnO nanorods grown by atin catalyst[J]. Nano Lett. 2003, 3:1315-1320.
    [29] P. X. Gao, C. S. Lao, W. L. Hughes, Z. L. Wang. Three-dimensional interconnected nanowire networks of ZnO[J]. Chem. Phys. Lett,2005, 408:174-178.
    [30] Z. W. Pan, Z. R. Dai, and Z. L. Wang. Nanobelts of semiconducting oxides[J]. Science, 2001,291:1947-1949.
    [31] P. X. Gao, Y. Ding, W. J. Mai, et al. Conversion of zinc oxide nanobelts into supperlattice-structureed nanohelices[J]. Science, 2005, 309:1700-1704.
    [32] W. L. Hughes, Z. L. Wang. Controlled synthesis and manipulation of ZnO nanorings and nanobows[J]. Appl. Phys. Lett, 2005, 86:04316.
    [33] P. X. Gao, Z. L. Wang. Nanopropeller arrays of zinc oxide[J]. Appl. Phys. Lett, 2004, 83:2883-2885.
    [34] B. Meyer, D. Marx. Density-functional study of the structure and stability of ZnO surfaces[J]. Phys. Rev. B, 2003,67:035403.
    [35] Z. L. Wang, J. H. Song. Piezoelectric nanogenerators based on Zinc Oxide nanowire arrays[J]. Science, 2005, 309:1700-1704.
    [36] W. L. Hughes, Z. L. Wang. Nanobelts as nanocantilevers[J]. Appl. Phys. Lett, 2003, 82:2886-2888.
    [37] H. Q. Yan, R. R. He, J. Johnson, et al. Dendritic nanowire ultraviolet laser array[J]. J. Am. Chem. Soc,2003, 125:4728-4729.
    [38]P.D.Yang.Semiconductor nanowire array[J].Proc of SPIE,2002,48:222-224.
    [39]R.T.Lv,C.B.Cao,et al.Synthesis and characterization of ZnS nanowires by AOT micelle-template inducing reation[J].Mater.Res.Bull,2004,39:1517-1524.
    [40]H.J.Yuan,S.S.Xie et al.Formation of ZnS namostructure by a simple way of thermal evaporation[J].J.Cryst.Growth,2003,258:225-231.
    [41]J.H.Zhan,et al.Polymer-Cntrolled Growth of CdS Nanowires[J].Adv.Mater,2000,12:1348-1351.
    [42]Q.S.Wu,et al.Micelle template inducing synthesis of winding ZnS nanowires[J].Inorg.Chem.Commun,2002,5:671-673.
    [43]金炎,金曹,蒋雪茵等.两种发光中心掺杂的ZnS纳米微晶研究[J].无机材料学报,1998,13:225-229.
    [44]刘昌辉,孙聆东,廖春生等.ZnS:Cu水溶胶的光致发光研究[J].发光学报,1999,20:243-246.
    [45]李振钢,王向军,熊光楠.聚氧化乙烯介质中的掺杂硫化锌纳米晶的制备及光学性质[J].发光学报,1997,18:326-328.
    [46]李丹,刘俊业,孟继武等.掺杂Cu~(2+)的ZnS纳米超微粒的荧光衰减[J].发光学报,1998,19:85-88.
    [47]朱文清;张步新;赵伟明等.SiO_2气凝胶中ZnS:Mn纳米微晶的发光性质[J].光学学报,2001,21:215-217.
    [48]衣立新,侯延冰,王晓峰等.ZnS:Ag和ZnS:Cu的薄膜电致发光特性[J].光电子激光,2000 11:570-575.
    [49]A.A.Bolnad,A.Meijerink,Lmuinescence quantum efficiency of nanocrystalline ZnS:Mn~(2+)Surface passivation and Mn~(2+) concentration[J].J.Phys.Chem.B,2001,105:10197-10202.
    [50]李凤生,杨毅.纳米/微米复合技术及应用[M].国防工业出版社,2002,P96-97
    [51]X.D.Wang,C.J.Sunnner,Z.L.Wang.Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays[J].Nano Lett.,2004,4:423-426.
    [52]Q.W.Chen,Y.T.Qian,H.Qian,et al.Preparation and characterization of iron(Ⅲ) oxide (alpha-Fe_2O_3) thin films hydrothermally[J].Mater.Res.Bull,1995,30:601.
    [53]苏宜,谢毅,陈乾旺等.纳米ZnS、CdS水热合成及其表征[J].应用化学,1996,13:56.
    [54]Y.Zhang,N.Raman,J.K.Bailey,et al.Quantum confinement in controlled-pore films[J].J.Phys.Chem.B,1992,96:9098.
    [55]Y.Yang,H.Huang,S.Liu,et al.Preparation,characterization and electroluminescence of ZnS nanocrystals in a polymer matrix[J].J.Mater.Chem,1997,7:131.
    [56]T.Guiton,C.L.Czekaj,C.G.Pantano.Organometallic Sol/Gel Chemistry of Metal Sulfides[J].J.Non-Cryst Solid,1990,121:1-3.
    [57]S.W.Haggata,X.Li,D.J.Cole-Hamilton,et al.Synthesis and characterization of Ⅱ-Ⅵsemiconductor nanoparticulates by the reaction of a metal alkyl polymer adduct with hydrogen sulfide[J].J.Mater.Chem,1996,6:1771.
    [58]程永亮,宋武林,谢长生.燃烧法制备氧化物纳米材料的研究进展[J].材料导报,2003.17:70-72.
    [59]D.Denzler,M.Olschwski,K.Sattler.Luminescence studies of localized gap states in colloidal ZnS nanocrystals.[J].J.Appl.Phys,1998,84:2841-2845.
    [60]张光寅,蓝国祥.晶格振动光谱学[M].高等教育出版社,1991.
    [61]A.Kaschner,U.Haboeck,M.Strassburg,et al.Nitrogen-related local vibrational modes in ZnO:N[J].Appl.Phys.Lett,2002,80:1909-1911.
    [62]J.Zuo,C.Y.Xu,L.H.Zhang,et al.Sb-induced size effects in ZnO nanocrystallites[J].J.Raman Spectrosc,2001,32:979-981.
    [63]T.C.Damen,S.P.S.Porto,B.Tell.Raman Effect in Zinc Oxide[J].Phys.Rev,1966,142:570-574.
    [64]L.Abello,B.Bochu,A.Gaskov.Structural Characterization of Nanocrystalline SnO_2 by X-Ray and Raman Spectroscopy[J].J.Solid State Chem.1998,135:78-85.
    [65]J.M.Calleja,M.Cardona.Resonant Raman scattering in ZnO[J].Phys.Rev.B,1977,16:3753-3761.
    [66]M.Rajalakshmi,A.K.Arora,B.S.Bendre,S.Mahamuni.Optical phonon confinement in zinc oxide nanoparticles[J].J.Appl.Phys,2000,87:2445-2448.
    [67]T.Kozawa,T.Kachi,H.Kano,et al.Raman scattering from LO phonon-plasmon coupled modes in gallium nitride[J].J.Appl.Phys,1994,75:1098-1101.
    [68]P.Perlin,J.Camassel,W.Knap,et al.Appl.Phys.Lett,1995,67:2524-2526.
    [69]H.Harima,H.Sakashita,and S.Nakashima.Raman microprobe measurement of under-damped LO-phonon-plasmon coupled mode in n-type GaN Mater[J].Sci.Forum,1998,264-2:1363-1366.
    [70]F.Bertram,S.Giemsch,D.Forster,et al.Investigation of longitudinal-optical phonon-plasmon coupled modes in highly conducting bulk GaN[J].Appl.Phys.Lett,2006,88:061915.
    [71]R.Cingolani,K.Ploog.Frequency and density dependent radiative recombination processin Ⅲ-Ⅴ semiconductor quantum-wells and supperlattices[J].Adv.Phys,1991,40:535-623.
    [72]W.Park,B.K.Wagner,G.Russell,et al.Thin SiO_2 coating on ZnS phosphors for improved low-voltage cathodoluminescence properties[J].J.Mater.Res,2000,11:2288-2291.
    [73]J.Mu,D.Y.Gu,Z.Z.Xu.Effect of annealing on the structural and optical properties of non-coated and silica-coated ZnS:Mn nanoparticles[J].Mater.Res Bull,2005,40:2198-2204.
    [74]Y.Zhang,Y.D.Li.Synthesis and characterization of monodisperse doped ZnS nanospheres with enhanced thermal stability[J].J.Phys.Chem.B,2004,108:17805-17811.
    [75]H.Yang,J.Z.Zhao,L.Z.Song,et al.Photoluminescent properties of ZnS:Mn nanocrystals prepared in inhomogeneous system[J].Mater.Lett,003,57:2287-2291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700