蛋白质组学方法识别RKIP作为鼻咽癌的转移抑制蛋白
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼻咽癌(nasopharyngeal carcinoma,NPC)是我国南方地区(广东、广西、湖南、福建、江西)常见的恶性肿瘤,其发病率和死亡率均居世界首位,是一种中国特色癌,严重危害国人的生命和健康。NPC几乎均为低分化鳞癌和未分化癌,恶性程度高,易早期发生颈部淋巴结和远处转移,而且NPC放疗后局部残灶复发、远处转移亦是制约其疗效和预后的瓶颈。因此,转移是NPC患者死亡的主要原因,但NPC转移的分子机制至今仍然不清楚,发现NPC转移相关分子对于揭示NPC转移机制、指导NPC治疗、改善NPC预后具有十分重要的作用。
     高通量的组学技术是发现肿瘤相关分子的重要手段。如cDNA芯片分析NPC的基因表达谱已发现一些与NPC发病有关的异常表达基因。蛋白质是细胞的功能分子,因此,蛋白质组学技术在识别肿瘤发生发展相关蛋白质、发现肿瘤分子标志物和治疗靶标方面具有独特的优势。
     为筛选NPC发病相关的蛋白质,本研究开展了如下3个方面的研究工作:
     1、NPC组织与癌旁正常鼻咽上皮组织(adjacent normal nasopharyngealepithelial tissue,ANNET)的差异蛋白质组学研究:以10例配对的NPC组织和ANNET为样本,采用二维凝胶电泳(two-dimensional gelelectrophoresis,2-DE)技术分离组织的总蛋白质,图像分析识别NPC组织和ANNET差异表达的蛋白质点,基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)和电喷雾电离-四极杆-串联质谱(ESI-Q-TOF MS/MS)鉴定差异表达的蛋白质。结果共鉴定了21个差异蛋白质,其中Raf激酶抑制蛋白(Raf kinase inhibitor protein,RKIP)等9个蛋白质在NPC组织中的表达水平显著低于ANNET。
     2、NPC组织与正常鼻咽上皮组织(normal nasopharyngeal epithelialtissue,NNET)的差异磷酸化蛋白质组学研究:以10例NPC组织和10例NNET为样本,采用2-DE分离组织的总蛋白质,蛋白质转膜后与抗酪氨酸磷酸化抗体进行2D Western blotting分析,图像分析识别差异磷酸化蛋白质点,ESI-Q-TOF MS/MS鉴定差异酪氨酸磷酸化蛋白质,采用NetPhos软件预测蛋白质的酪氨酸磷酸化位点,采用1-D Westernblotting对差异磷酸化蛋白质RKIP进行验证。结果共鉴定了13个差异酪氨酸磷酸化蛋白质,其中RKIP等6个蛋白质在NPC组织中的磷酸化水平显著低于NNET。
     3、RKIP在NPC转移中的作用和机制研究:为探讨RKIP在NPC转移中的作用和机制,采用Western blotting检测RKIP在不同转移潜能的5-8F和6-10B NPC细胞中的表达水平;采用免疫组化方法检察RKIP在石蜡包埋NPC组织、NNET及颈淋巴结转移NPC组织(lymphnode metastaticNPC,LMNPC)中的表达水平;采用脂质体转染方法将正义、反义RKIP表达质粒及其相应空白载体分别转染5-8F和6-10B细胞,建立相应的稳定转染细胞系,分析RKIP表达水平改变对NPC细胞体外侵袭能力以及Raf-1/MEK/ERK和NF-κB信号通路活性的影响。结果显示:RKIP在高转移5-8F细胞中的表达水平低于非转移6-10B细胞、在NPC组织中的表达水平低于NNET、在LMNPC中表达缺失。上调RKIP表达能抑制5-8F细胞的体外侵袭能力,而下调RKIP表达能增强6-10B细胞的体外侵袭能力;上调RKIP表达能降低5-8F细胞Raf-1/MEK/ERK和NF-κB信号通路活性,而下调RKIP表达能增强6-10B细胞Raf-1/MEK/ERK和NF-κB信号通路活性。
     研究结果表明,RKIP可能是NPC的转移抑制蛋白,RKIP表达下调/缺失可能通过活化化Raf-1/MEK/ERK和NF-κB信号通路促进NPC转移,本研究初步揭示了RKIP在NPC侵袭和转移中的作用和机制,为RKIP作为防治NPC转移的靶标提供了实验依据。
Nasopharyngeal carcinoma(NPC) is one of the most common malignant tumors in southern China,with an incidence rate ranging from 20 to 50/100,000,and it poses one of the most serious public health problems in southern China.Early metastasis is one of distinctive characteristics of NPC and the main cause of death for NPC patients. Although numerous efforts have been made to reveal the molecular mechanism of NPC metastasis,it remains poorly understood. Identification of NPC metastasis-related molecules will be helpful for diagnosis and treatment of NPC,and may provide new insights into its metastasis.
     High throughput omics technologies such as microarrays and proteomics offer the potential ability to find alterations previously unidentified in cancer.Analyses for gene expression profiles of NPC have been reported using a cDNA array,found the genes with aberrant expressions possibly contributed to pathogenesis of NPC.Because the functional molecules in cells are proteins,proteome analysis is believed to have an advantage over cDNA microarray for clinical use.Proteomics has introduced a new approach to cancer research which aims at identifying differential expression proteins associated with the development and progression of cancer,providing new opportunities to uncover biomarkers and therapeutic targets for cancer.
     To screen for NPC associated proteins,we carried out the following 3 parts of research in this study.
     1.Differential proteome study of NPC and adjacent non-cancerous nasopharyngeal epithelial tissue(ANNET).2-DE was performed to separate the total proteins from 10 paired NPC and ANNET,image analysis was used to fine the differential protein spots between the two types of tissues,and both MALDI-TOF-MS and ESI-Q-TOF MS/MS were performed to identify the differential proteins.As a result,21 differential proteins were identified.Among them,nine proteins including Raf kinase inhibitor protein(RKIP) were significantly downregulated in NPC as compared ANNET.
     2.Differential phosphoproteome study of NPC and non-cancerous nasopharyngeal epithelial tissue(NNET).2-DE was used to separate the total proteins from 10 NPC and 10 NNET.After transferring the proteins to PVDF membranes,2-D Western blotting was did to find the differential tyrosine-phosphorylated proteins between the two types of tissues by using monoclonal anti-phosphotyrosine antibody,and ESI-Q-TOF MS/MS was performed to identify the differential tyrosine-phosphorylated proteins.And then NetPhos software was used to predict the tyrosin-phosphorylation sites of the identified proteins,and 1-D Western blotting was did to verify the differential tyrosine-phosphorylated protein RKIP.As a result,13 differential tyrosine-phosphorylated proteins were identified,and tyrosine-phosphorylated levels of six proteins including RKIP were significantly downregulated in NPC as compared NNET.
     3.Study on the roles and mechanisms of RKIP in NPC metastasis.To explore the roles and mechanisms of RKIP in NPC metastasis,Western blotting analysis and immunohistochemistry was respectively used to detect RKIP expression in 5-8F and 6-10B NPC cell lines with the different metastatic potentials,and in NNET,primary NPC and NPC metastasis.Furthermore,high metastatic 5-8F with low RKIP expression and non-metastatic 6-10B with high RKIP expression were stably transfected with plasmids that expressed sense and antisense RKIP cDNA, respectively,or with empty vector.The effects of RKIP expression on in vitro cell invasion,and the activity of Raf-1/MEK/ERK and NF-κB signaling pathway were analyzed in the transfected cells.The results showed that RKIP was significantly downregulated in 5-8F compared with 6-10B,in NPC compared with NNET,and not detectable in NPC metastasis.Overexpressed RKIP in 5-8F could decrease its in vitro cell invasion,whereas downregulated RKIP in 6-10B could increased its in vitro cell invasion.RKIP negatively regulated Raf-1/MEK/ERK and NF-κB signaling pathway in NPC cells,and activation of the two signaling pathways by RKIP downregulation increased in vitro invasion of NPC cells.
     Taken together,our results suggest that RKIP may be a NPC metastasis suppressor,and decreased RKIP expression is associated with the increased invasive capability of NPC cells possibly through the activation of Raf-1/MEK/ERK and NF-κB signaling pathway.
引文
[1] Ho JH. An epidemiologic and clinical study of nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys, 1978; 4(3-4): 182-98
    [2] Lee AW, Poon YF, Foo W, et al. Retrospective analysis of 5037 patients with nasopharyngeal carcinoma treated during 1976-1985: overall survival and patterns of failure. Int J Radiat Oncol Biol Phys, 1992; 23(2): 261-70
    [3] Keller ET, Fu Z, Brennan M. The role of Raf kinase inhibitor protein (RKIP) in health and disease. Biochem Pharmacol, 2004; 68(6): 1049-53
    [4] Trakul N, Rosner MR. Modulation of the MAP kinase signaling cascade by Raf kinase inhibitory protein. Cell Res, 2005; 15(1):19-23
    [5] Bernier I, Jolles P. Purification and characterization of a basic 23 kDa cytosolic protein from bovine brain. Biochim Biophys Acta, 1984; 790(2): 174-81
    [6] Yeung K, Seitz T, Li S, et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature, 1999; 401(6749):173-7
    [7] Frayne J, McMillen A, Love S, et al. Expression of phosphatidylethanolamine-binding protein in the male reproductive tract: immunolocalisation and expression in prepubertal and adult rat testes and epididymides. Mol Reprod Dev, 1998; 49(4):454-60
    [8] Ojika K, Katada E, Tohdoh N, et al. Demonstration of deacetylated hippocampal cholinergic neurostimulating peptide and its precursor protein in rat tissues. Brain Res, 1995; 701(1/2):19-27
    [9] Granovsky AE, Rosner MR. Raf kinase inhibitory protein: a signal transduction modulator and metastasis suppressor Cell Res. 2008; 18(4):452-7
    [10] Yeung K, Janosch P, McFerran B, et al. Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the raf kinase inhibitor protein. Mol Cell Biol, 2000; 20(9):3079-85
    [11] Yeung KC, Rose DW, Dhillon AS, et al. Raf kinase inhibitor protein interacts with NF-kappaB-inducing kinase and TAK1 and inhibits NF-kappaB activation.Mol Cell Biol, 2001; 21(21):7207~17
    [12]Lefkowitz RJ, Pitcher J, Krueger K, et al. Mechanisms of b-adrenergic receptor desensitization and resensitization. Adv Pharmacol, 1998; 42, 416-20
    [13]Lorenz K, Lohse MJ, Quitterer U. Protein kinase C switches the Raf kinase inhibitor from Raf-1 to GRK-2. Nature, 2003; 426 (6966): 574-9
    [14]Goel R, Baldassare JJ. Killing two birds with one RKIP. Trends Endocrinol Metab,2004;15(3):91-2
    [15] Keller ET. Metastasis suppressor genes: a role for raf kinase inhibitor protein (RKIP). Anti-cancer Drugs, 2004;15(7):663-9
    [16]Fu Z, Smith PC, Zhang L, et al. Effects of raf kinase inhibitor protein expression on suppression of prostate cancer metastasis. J Natl Cancer Inst, 2003;95(12):839-41
    [17] Keller ET, Fu Z, Brennan M. The biology of a prostate cancer metastasis suppressor protein: Raf kinase inhibitor protein. J Cell Biochem, 2005;94(2):273-8
    [18]Schuierer MM, Bataille F, Hagan S, et al. Reduction in Raf kinase inhibitor protein expression is associated with increased Ras-extracellular signal-regulated kinase signaling in melanoma cell lines. Cancer Res, 2004; 64(15):5186-92
    [19] Hagan S, Al-Mulla F, Mallon E, et al. Reduction of Raf-1 kinase inhibitor protein expression correlates with breast cancer metastasis. Clin Cancer Res, 2005;11(20):7392-7
    [20]Minoo P, Zlobec I, Baker K, et al. Loss of raf-1 kinase inhibitor protein expression is associated with tumor progression and metastasis in colorectal cancer. Am J Clin Pathol, 2007;1 27(5):820-7
    [21]Fu Z, Kitagawa Y, Shen R, et al. Metastasis suppressor gene Raf kinase inhibitor protein (RKIP) is a novel prognostic marker in prostate cancer. Prostate, 2006;66(3):248-56
    [22] Lee HC, Tian B, Sedivy JM, et al. Loss of Raf kinase inhibitor protein promotes cell proliferation and migration of human hepatoma cells. Gastroenterology, 2006;131(4):1208-17
    [23] Al-Mulla F, Hagan S, Behbehani Al, et al. Raf kinase inhibitor protein expression in a survival analysis of colorectal cancer patients. J Clin Oncol, 2006;24(36):5672-9
    [24] Mc Henry KT, Montesano R, Zhu S, et al. Raf kinase inhibitor protein positively regulates cell-substratum adhesion while negatively regulating cell-cell adhesion. J Cell Biochem, 2008;103(3):972-85
    [25]Eves EM,Shapiro P,Naik K,et al.Raf kinase inhibitory protein regulates aurora B kinase and the spindle checkpoint.Mol Cell,2006;23:561-74
    [26]Al-Mulla F,Hagan S,Al-Ali W,et al.Raf kinase inhibitor protein:mechanism of loss of expression and association with genomic instability.J Clin Pathol,2008;61(4):524-9
    [27]Yoshida BA,Sokoloff MM,Welch DR,et al.Metastasis suppressor genes:a review and perspective on an emerging field.J Natl Cancer Inst,2000;92(21):1717-30
    [28]Keller ET,Fu Z,Brennan M,et al.The role of Rafkinase inhibitor protein(RKIP)in health and disease.Biochem Pharmacol,2004,68(6):1049-1053
    [29]Yeung K,Seitz T,Li S,et al.Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP.Nature,1999,401(6749):173-177
    [30]Keller ET,Fu Z,Brennan M,et al.The biology of a prostate cancer metastasis suppressor protein:Raf kinase inhibitor protein.J Cell Biochem,2005,94(2):273-278
    [31]Fu Z,Smith PC,Zhang L,et al.Effects of raf kinase inhibitor protein expression on suppression of prostate cancer metastasis.J Natl Cancer Inst,2003,95(12):839-841
    [32]Hagan S,Al-Mulla F,Mallon E,et al.Reduction of Raf-1 kinase inhibitor protein expression correlates with breast cancer metastasis.Clin Cancer Res,2005,11(20):7392-7397
    [33]Schuierer MM,Bataille F,Hagan S,et al.Reduction in Raf kinase inhibitor protein expression is associated with increased Ras-extracellular signal-regulated kinase signaling in melanoma cell lines.Cancer Res,2004,64(15):5186-5192
    [34]Fu Z,Kitagawa Y,Shen R,et al.Metastasis suppressor gene Raf kinase inhibitor protein(RKIP) is a novel prognostic marker in prostate cancer.Prostate,2006,66(3):248-256
    [35]王树森,管忠震,向燕群,等。鼻咽癌组织中EGFR和p-ERK蛋白表达的检测及意义。中华肿瘤杂志,2006;28(1):28-31
    [36]Thomburg NJ,Pathmanathan R,Raab-Traub N.Activation of nuclear factor-kappaB p50 homodimer/Bcl-3 complexes in nasopharyngeal carcinoma.Cancer Res,2003;63(23):8293-301
    [37]Farrell PJ.Signal transduction from the Epstein-Barr vires LMP-1 transforming protein.Trends Microbiol,1998;6(5):175-7
    [38]Roberts ML,Cooper NR.Activation of a ras-MAPK-dependent pathway by Epstein-Barr virus latent membrane protein 1 is essential for cellular transformation.Virology,1998;240(1):93-9
    [39]Ren Q,Sato H,Murono S,Furukawa M,et al.Epstein-Barr virus(EBV) latent membrane protein 1 induces interleukin-8 through the nuclear factor-kappa B signaling pathway in EBV-infected nasopharyngeal carcinoma cell line.Laryngoscope,2004;114(5):855-9
    [40]Yoshizaki T,Horikawa T,Qing-Chun R,et al.Induction of interleukin-8 by Epstein-Barr virus latent membrane protein-1 and its correlation to angiogenesis in nasopharyngeal carcinoma.Clin Cancer Res,2001;7(7):1946-51
    [41]Yoshizaki T.Promotion of metastasis in nasopharyngeal carcinoma by Epstein-Barr virus latent membrane protein-1.Histol Histopathol,2002;17(3):845-50
    [1]Bemier I,Tresca JP,Jolles P,et al.Ligand-binding studies with a 23 kDa protein purified from bovine brain cytosol.Biochim Biophys Acta,1986,871(1):19-23
    [2]Frayne J,Ingram C,Love S,et al.Localisation of phosphatidylethanolamine -binding protein in the brain and other tissues of the rat.Cell Tissue Res,1999,298(3):415-423
    [3]Wang X,Li N,Liu B,et al.A Novel Human Phosphatidylethanolamine-binding Protein Resists Tumor Necrosis Factor α-induced Apoptosis by Inhibiting Mitogen-activated Protein Kinase Pathway Activation and Phosphatidylethanolamine Externalization.J Biol Chem,2004,279(44):45855-45864
    [4]Hickox DM,Gibbs G,Morrison JR,et al.Identification of a Novel Testis-Specific Member of the Phosphatidylethanolamine Binding Protein Family, pebp-2. Biol Reprod, 2002, 67: 917-927
    [5] Theroux S, Pereira M, Casten KS, et al. Raf kinase inhibitory protein knockout mice: Expression in the brain and olfaction deficit. Brain Res Bull, 2007,71(6):559-567
    [6] Zhang Y, Wang X, Xiang Z, et al. Hierarchical Management of Service Accountability in Service Oriented Architectures. Int J Mol Med, 2007, 19:55-64
    [7] Rautureau G, Jouvensal L, Decoville M, et al. Cloning, high yield over-expression, purification, and characterization of CGI 8594, a new PEBP/RKIP family member from Drosophila melanogaster. Protein Expr Purif,2006, 48(1): 90-97
    [8] Gems D, Ferguson CJ, Robertson BD, et al. An abundant, trans-spliced mRNA from Toxocara cam's infective larvae encodes a 26-kDa protein with homology to phosphatidylethanolamine-binding proteins. J Biol Chem, 1995, 270(31):18517-18522
    [9] Erttmann KD, Gallin MY. Onchocerca volvulus: identification of cDNAs encoding a putative phosphatidyl-ethanolamine-binding protein and a putative partially processed mRNA precursor. Gene, 1996,174(2): 203-207
    [10] Trottein F, Cowman AF. The primary structure of a putative phosphatidylethanolamine-binding protein from Plasmodium falciparum. Mol Biochem Parasitol, 1995, 70(1): 235-239
    [11] Bradley D, Carpenter R, Copsey L, et al. Control of inflorescence architecture in Antirrhinum. Nature, 1996, 379: 791-797
    [12] Ohshima S, Murata M, Sakamoto W, et al. Cloning and molecular analysis of the Arabidopsis gene Terminal Flower 1. Mol Gen Genet, 1997, 254(2):186-194
    [13] Pnueli L, Gutfinger T, Hareven D, et al. Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering.Plant Cell, 2001, 13(12): 2687-2702
    [14] Hengst U, Albrecht H, Hess D, et al. The phosphatidylethanolamine-binding protein is the prototype of a novel family of serine protease inhibitors. J Biol Chem, 2001, 276(1): 535-540
    [15] Ojika K, Mitake S, Tohdoh N, et al. Hippocampal cholinergic neurostimulating peptides (HCNP). Prog Neurobiol, 2000,60(1): 37-83
    [16] Ojika K, Katada E, Tohdoh N, et al. Demonstration of deacetylated hippocampal cholinergic neurostimulating peptide and its precursor protein in rat tissues.Brain Res, 1995, 701(1): 19-27
    [17] Tohdoh N, Tojo S, Agui H, et al. Sequence homology of rat and human HCNP precursor proteins, bovine phosphatidylethanolamine-binding protein and rat 23-kDa protein associated with the opioid-binding protein. Mol Brain Res, 1995,30(2): 381-384
    [18] Goumon Y, Angelone T, Schoentgen F, et al. The Hippocampal Cholinergic Neurostimulating Peptide, the N-terminal Fragment of the Secreted Phosphatidylethanolamine-binding Protein, Possesses a New Biological Activity on Cardiac Physiology. J Biol Chem, 2004, 279(13): 13054-13064
    [19] Angelone T, Goumon Y, Cerra MC, et al. The Emerging Cardioinhibitory Role of the Hippocampal Cholinergic Neurostimulating Peptide. J Pharmacol Exp Ther, 2006, 318: 336-344
    [20] Banfield MJ, Barker JJ, Perry AC, et al. Function from structure? The crystal structure of human phosphatidylethanolamine-binding protein suggests a role in membrane signal transduction. Structure, 1998, 6(10): 1245-1254
    [21] Serre L, Pereira de Jesus K, Zelwer C, et al. Crystal structures of YBHB and YBCL from Escherichia coli, two bacterial homologues to a Raf kinase inhibitor protein. J Mol Biol, 2001, 310(3): 617-634
    [22] Serre L, Vallee B, Bureaud N, et al. Crystal structure of the phosphatidylethanolamine-binding protein from bovine brain: a novel structural class of phospholipid-binding proteins. Structure, 1998, 6(10): 1255-1265
    [23] Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature, 2001,410: 37-40
    [24] Pearson G, Robinson F, Beers T, et al. Mitogen-Activated Protein (MAP) Kinase Pathways: Regulation and Physiological Functions. Endocr Rev, 2001, 22(2):153-183.
    [25] Kondoh K, Torii S, Nishida E. Control of MAP kinase signaling to the nucleus.Chromosoma, 2005, 114(2):86-91
    [26] Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J, 2000, 351: 289-305
    [27] King AJ, Sun H, Diaz B, et al. The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature, 1998, 396(6707):180-183
    [28] Morrison DK, Heidecker G, Rapp UR, et al. Identification of the major phosphorylation sites of the Raf-1 kinase. J Biol Chem, 1993,268(23): 17309-17316
    [29] Yip-Schneider MT, Miao W, Lin A, et al. Regulation of the Raf-1 kinase domain by phosphorylation and 14-3-3 association. Biochem J, 2000,351:151-159
    [30] Hagan S, Garcia R, Dhillon A, et al. Raf Kinase Inhibitor Protein Regulation of Raf and MAPK SignalingMethods Enzymol, 2005, 407: 248-259
    [31] Yeung K, Seitz T, Li P, et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature, 1999,401(6749): 173-177
    [32] Eves EM, Shapiro P, Naik K, et al. Raf Kinase Inhibitory Protein Regulates Aurora B Kinase and the Spindle Checkpoint. Mol Cell, 2006,23(4): 561-574
    [33] Yeung KC, Rose DW, Dhillon AS, et al. Raf Kinase Inhibitor Protein Interacts with NF-κB-Inducing Kinase and TAK1 and Inhibits NF-κB Activation. Mol Cell Biol, 2001, 21(21): 7207-7217
    [34] Mercurio F, Zhu H, Murray BW, et al. IKK-1 and IKK-2: Cytokine-Activated Iκ B Kinases Essential for NF-κB Activation. Science, 1997,278(5339): 860-866
    [35] Kroslak T, Koch T, Kahl E, et al. Human Phosphatidylethanolamine-binding Protein Facilitates Heterotrimeric G Protein-dependent Signaling. J Biol Chem,2001,276(43): 39772-39778
    [36] Lorenz K, Lohse MJ, Quitterer U. Protein kinase C switches the Raf kinase inhibitor from Raf-1 to GRK-2. Nature, 2003,426: 574-579
    [37] Corbit KC, Trakul N, Eves EM, et al. Activation of Raf-1 Signaling by Protein Kinase C through a Mechanism Involving Raf Kinase Inhibitory Protein. J Biol Chem, 2003,278(15): 13061-13068
    [38] Krupnick JG, Benovic JL. The Role of Receptor Kinases and Arrestins in G Protein-Coupled Receptor Regulation. Annu Rev Pharmacol Toxicol, 1998, 38:289-319
    [39] Gupta GP, Massague J. Cancer Metastasis: Building a Framework. Cell, 2006,127(4): 679-695
    [40] Christofori G. New signals from the invasive front. Nature, 2006, 441: 444-450
    [41] Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med, 2006,12: 895-904
    [42] Nguyen DX, Massague J. Genetic determinants of cancer metastasis. Nat Rev Genet, 2007, 8: 341-352
    [43] Fu Z, Smith PC, Zhang L, et al. Effects of Raf Kinase Inhibitor Protein Expression on Suppression of Prostate Cancer Metastasis. J Natl Cancer Inst, 2003,95(12): 878-889
    [44] Chatterjee D, Bai Y, Wang Z, et al. RKIP Sensitizes Prostate and Breast Cancer Cells to Drug-induced Apoptosis. J Biol Chem, 2004,279(17): 17515-17523
    [45] Fu Z, Kitagawa Y, Shen R, et al. Metastasis suppressor gene Raf kinase inhibitor protein (RKIP) is a novel prognostic marker in prostate cancer. Prostate, 2006,66(3): 248-256
    [46] Park S, Yeung ML, Beach S, et al. RKIP downregulates B-Raf kinase activity in melanoma cancer cells. Oncogene, 2005, 24(21): 3535-3540
    [47] Hagan S, Al-Mulla F, Mallon E, et al. Reduction of Raf-1 Kinase Inhibitor Protein Expression Correlates with Breast Cancer Metastasis Clin Cancer Res,2005,11:7392-7397
    [48] Zhang L, Fu C, Binkley C, et al. Raf kinase inhibitory protein inhibits β-cell proliferationSurgery, 2004, 136(3): 708-715
    [49] Minoo P, Zlobec I, Baker K, et al. Loss of raf-1 kinase inhibitor protein expression is associated with tumor progression and metastasis in colorectal cancer. Am J Clin Pathol, 2007, 127(5): 820-827
    [50] Lee HC, Tian B, Sedivy JM, et al. Loss of Raf Kinase Inhibitor Protein Promotes Cell Proliferation and Migration of Human Hepatoma Cells. Gastroenterology, 2006, 131(4): 1208-1217
    [51] Helbig G, Christopherson KW, Bhat-Nakshatri P, et al. NF-K B Promotes Breast Cancer Cell Migration and Metastasis by Inducing the Expression of the Chemokine Receptor CXCR4. J Biol Chem, 2003, 278(24): 21631-21638
    [52] Zhu S, Mc Henry KT, Lane WS, et al. A Chemical Inhibitor Reveals the Role of Raf Kinase Inhibitor Protein in Cell Migration. Chem Biol, 2005, 12(9):981-991
    [53] Hebert LE, Scherr PA, Bienias JL, et al. Alzheimer Disease in the US Population. Arch Neurol, 2003, 60(8): 1119-1122
    [54] Hardy J. Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci,1997, 20(4): 154-159
    [55] Cruts M, Van Broeckhoven C. Molecular genetics of Alzheimer's disease. Ann Med, 1998, 30(6): 560-565
    [56] Sherrington R, Rogaev El, Liang Y, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature, 1995, 375:754-760
    [57] Levy-Lahad E, Wasco W, Poorkaj P, et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science, 1995,269(5226): 973-977
    [58] Tanzi RE, Bertram L. New Frontiers in Alzheimer's Disease Genetics. Neuron,2001, 32(2): 181-184
    [59] Frisoni GB, Trabucchi M. Clinical rationale of genetic testing in dementia. J Neurol Neurosurg Psychiatry, 1997, 62(3): 217-221
    [60] Strittmatter WJ, Weisgraber KH, Huang DY, et al. Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci, 1993, 90(17):8098-8102
    [61] Saunders AM, Strittmatter WJ, Schmechel D, et al. Association of apolipoprotein E allele s4 with late-onset familial and sporadic Alzheimer's disease. Neurology, 1993,43(8): 1467-1472
    [62] Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science,1993, 261(5123): 921-923
    [63] Maki M, Matsukawa N, Yuasa H, et al. Decreased expression of hippocampal cholinergic neurostimulating peptide precursor protein mRNA in the hippocampus in Alzheimer disease. J Neuropathol Exp Neurol, 2002, 61(2):176-185
    [64] Ojika K, Mitake S, Kamiya T, et al. Two different molecules, NGF and free-HCNP, stimulate cholinergic activity in septal nuclei in vitro in a different manner. Dev Brain Res, 1994, 79(1): 1-9
    [65] Bartus RT, Dean RL, Beer B, et al. The cholinergic hypothesis of geriatric memory dysfunction. Science, 1982, 217(): 408-414
    [66] George AJ, Holsinger RM, Mclean CA, et al. Decreased phosphatidylethanolamine binding protein expression correlates with Aβ accumulation in the Tg2576 mouse model of Alzheimer's disease. Neurobiol Aging, 2006, 27(4): 614-623
    [67] Solomon GS, Petrie WM, Hart JR, et al. Olfactory dysfunction discriminates Alzheimer's dementia from major depression. J Neuropsychiatry Clin Neurosci,1998,10(1): 64-67
    [68] Dulac C, Axel R. A novel family of genes encoding putative pheromone receptors in mammals. Cell, 1995, 83(2): 195-206
    [69] Ryba NJ, Tirindelli R. A new multigene family of putative pheromone receptors. Neuron, 1997,19(2):371-379
    [70] Del Punta K, Leinders-Zufall T, Rodriguez I, et al. Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature, 2002,419(6902): 70-74
    [71] Young JM, Trask BJ. The sense of smell: Genomics of vertebrate odorant receptors. Hum Mol Genet, 2002,11(10): 1153-1160
    [72] Matsunami H, Buck LB. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell, 1997, 90(4): 775-784
    [73] Filipek S, Teller DC, Palczewski K, et al. The crystallographic model of rhodopsin and its use in studies of other G protein-coupled receptors. Annu Rev Biophys Biomol Struck, 2003, 32: 375-397
    [74] Saunders PTK, Mckinnell C, Millar MR, et al. Phosphatidylethanolamine binding protein is an abundant secretory product of haploid testicular germ cells in the rat. Molec Cell Endocrinol, 1995, 107(2): 221-230
    [75] Moffit JS, Boekelheide K, Sedivy JM, et al. Mice Lacking Raf Kinase Inhibitor Protein-1 (RKIP-1) Have Altered Sperm Capacitation and Reduced Reproduction Rates With a Normal Response to Testicular Injury. J Androl,2007, 28(6): 883-890
    [76] Koehler JK. Lectins as probes of the spermatozoon surface. Arch Androl, 1981,6(3): 197-217
    [77] Nikolopoulou M, Soucek DA, Vary JC. Changes in the lipid content of boar sperm plasma membranes during epididymal maturation. Biochim Biophys Acta,1985, 815(3): 486-498
    [78] Myles DG, Primakoff P. Localized surface antigens of guinea pig sperm migrate to new regions prior to fertilization. J Cell Biol, 1984, 99(5): 1634-1641
    [79] Jones R, Shalgi R, Hoyland J, et al. Topographical rearrangement of a plasma membrane antigen during capacitation of rat spermatozoa in vitro. Dev Biol,1990,139(2): 349-362
    [80] Frayne J, Mcmillen A, Love S, et al. Expression of phosphatidylethanolamine- binding protein in the male reproductive tract: Immunolocalisation and expression in prepubertal and adult rat testes and epididymides. Mol Reprod Dev, 1998,49(4): 454-460
    [81] Jones R, Brown CR. Hot corrosion of Co---Cr---Al---Y by molten sulfate-vanadate deposits. Biochem J, 1987, 87: 353-360
    [82] Jones R, Hall L. A 23 kDa protein from rat sperm plasma membranes shows sequence similarity and phospholipid binding properties to a bovine brain cytosolic protein. Biochim Biophys Acta, 1991,1080(1): 78-82
    [83] Perry AC, Hall L, Bell AE, et al. Pagetoid spread of intratubular germ cell neoplasia into rete testis: A morphologic and histochemical study of 100 orchiectomy specimens with invasive germ cell tumors. Biochem J, 1994,25(3):235-239
    [84] Klysik J, Theroux SJ, Sedivy JM, et al. Signaling crossroads: The function of Raf kinase inhibitory protein in cancer, the central nervous system and reproduction. Cellular signalling, 2008, 20(1): 1-9
    [85] Nixon B, Maclntyre DA, Mitchell LA, et al. The identification of mouse sperm-surface-associated proteins and characterization of their ability to act as decapacitation factors. Biol Reprod, 2006, 74(2): 275-287

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700