农杆菌介导DREB和otsA基因转化库拉索芦荟的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芦荟是一种新资源食品,具有药用价值、美容功效和食品营养价值。但芦荟抗旱不抗寒,不利于芦荟的大规模种植。而食用芦荟品种味苦、味感差,也制约芦荟食品产业的发展。为提高芦荟的抗寒性和改善芦荟食品的口感,本文采用农杆菌介导法将分别来自水稻和小麦的OsDREB和TaDREB基因转入芦荟,并对两种转基因芦荟,以及先期实验室转海藻糖-6-磷酸合成酶基因otsA芦荟,进行了抗逆性、海藻糖含量、多糖含量以及凝胶过滤工艺和化妆品应用等方面的研究。
     1.三亲杂交法将含有水稻OsDREB的表达载体PBT导入农杆菌EHA105,通过农杆菌介导浸染库拉索芦荟(Aloe vera. L)幼叶外植体,获得98棵芦荟抗性植株,PCR、低温处理并进行电导率检测,表明转化成功。
     2.利用带有小麦TaDREB基因的表达载体pBIR1,农杆菌介导转化库拉索芦荟,共筛选出58株生长良好的抗性植株。PCR检测转化率为0.22%。4℃低温处理两周,-20℃冷冻30min,发现对照植株发生严重冻害,而转基因植株生长良好,抗低温特性明显提高。对低温胁迫下培养14d的转TaDREB基因植株SOD、POD同工酶谱进行分析,表明低温胁迫下转基因植株SOD、POD活性均呈先降后升的趋势,转基因芦荟提高了体内的保护性酶活性。利用电导率法检测,转基因植株电导率平均值为0.462;明显低于对照0.685。表明转小麦TaDREB基因芦荟的抗寒性明显得到提高。
     3.以转Ta DREB和Os DREB基因芦荟为材料,研究盐胁迫下转基因芦荟的多聚胺表达情况和净光合速率(Pn)、气孔导度(Gs),胞间CO2浓度(Ci)、叶绿素荧光特性(Fv/Fm),结果表明转基因芦荟的耐盐性比对照芦荟高,多聚胺在烟株缓解盐胁中可能是起了重要作用。转基因库拉索芦荟叶片在盐胁迫下的光抑制程度较小。
     4.利用1-甲基咪唑、氯化羟胺、乙酸酐将海藻糖衍生化,气相色谱法对同一种糖衍生物进行分析,特征峰保留时间误差在3s内,能将D-葡萄糖、乳糖、蔗糖和海藻糖进行分离。海藻糖在3.697×10-9~28.661×10-9g范围内相关系数为0.9986。利用此方法研究不同年份(3年和5年)和半年生转otsA基因芦荟的海藻糖含量进行了测定,分别为6.905×10-7、1.103×10-6和1.614×10-6g/g,半年生otsA芦荟凝胶中海藻糖含量含量明显提高。进一步研究表明转基因芦荟叶片对皮肤表现出更优异的保湿和抗衰老功效。
     5.以3年生转基因的库拉索芦荟凝胶为材料,冷处理法醇沉提取粗多糖,经IR鉴定,粗多糖为含有乙酰化β-D-吡喃甘露聚糖的混合物,质谱测定分子量测定范围在12900D和13100D。纯化后半精品经DE AE Sephadex A-25分级分离,得到中性糖和酸性糖。用Sepharose CL-6B凝胶分离中性糖,得到多糖A1和A2。用IR、MS、GC对其进行鉴定和表征分析,结果表明,中性糖为多甘露糖型的多糖。
     6.为了更好的利用库拉索芦荟,对其凝胶汁过滤工艺和其在洁肤露、乳液和眼胶中的应用进行了研究,并对所研制的几种化妆品的功效性和安全性进行了评价。得到了凝胶过滤的最佳稳定工艺和以库拉索芦荟为主要功效成分的化妆品。
Aloe is a new resource of food with medicinal value, beauty efficacy and food nutritional value. As drought-resistant, but not cold-resistant, Aloe is not conducive to large-scale cultivation. The bitter tastes and poor flavor also constrain the development of Aloe food industry. To enhance the cold tolerance of Aloe vera.L and improve the food taste, The OsDREB and TaDREB gene from rice and wheat separately were transfered into Aloe vera.L mediated by Agrobacterium, and some researches in improve the Aloe vera.L resistance, trehalose, polysaccharide content and Aloe gel filtration techniques and its cosmetic applications for the two transgenic aloe, and preliminary laboratory Aloe vera.L with transfered trehalose-6-phosphate synthase gene otsA.
     (1) The expression vector PBT containing the rice OsDREB gene were transferred into Agrobacterium EHA105 strain by three pro-hybridization, the aimed gene were transferred into Aloe vera. L young leaf explants mediated by Agrobacterium,98 resistant OsDREB gene plants were obtained by a series of screening protocol, and PCR, cold process treatment and conductivity detection results indicated that the OsDREB gene improved Aloe vera. L cold resistance.
     (2) In this experiment, the wheat genes TaDREB in plasmid pBIR1 were transferred into Aloe vera. L young leaf explants through Agrobacterium-mediated, A total of 58 selected resistant plants that grown well were obtained by a by a series of screening protocol. The transformation rate is about 0.22% by PCR detecting. The results that the transgenic plants were growing well while the control got serious damaged after two weeks of cold treatment at 4℃,-20℃freezing treatment for 30min indicated that the TaDREB significantly increased Aloe vera. L resistance to low temperature. The isoenzyme of SOD, POD in transgenic plants which were treated by low temperature stress during 14days were analysised and the results showed that SOD, POD activity both expressed a trend of rising after an initial drop, and its indicated the transgenic aloe increased its protective activity in vivo. The average conductivity of the transgenic plants was 0.462 which is significantly lower than the 0.685 in control and it showed that Aloe vera. L with transferred of wheat TaDREB gene had improved cold resistance obviously.
     (3) Polyamine(PA)content, net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO_2 concentration (Ci)and maximum photochemical efficiency of PSII(Fv/Fm) of transgenic and control Aloe vera.L were studied separately and the results indicated that the tolerance to the salt treatment(200mmol/L NaCl) of the transgenic Aloe are better than the control. PA maybe play an important role during the response to the salt treatment。Under salt stress, Pn, Gs and Fv/Fm all decreased with the salt treating time in both the wild type Aloe and the transgenic Aloe. However, the level of Fv/Fm decreased less in the transgenic Aloe compared with that in the wild type Aloe. And the result indicated that the injury of PS II is less in transgenic Aloe.
     (4) In this experiment, D-glucose, lactose, sucrose and trehalose was separately derivated the by 1-methylimidazole, hydroxylamine chloride, acetic anhydride continuously, the retention time of characteristic peak of each of them is within 3 s by using gas chromatography as a means of quantitative analysis, this indicated that this method could differentiate D-glucose, lactose, sucrose and trehalose distinctly. The correlation coefficient of Trehalose is 0.9986 within the detection volume of 3.697~10~(-9)~28.661~10~(-9) g. The content of trehalose in the Aloe.vera L of 3 years,5 years old and the transgenic of trehalose synthase gene(otsA)Aloe.vera L of 6 months old was 6.905~10~(-7),1.103~10~(-6) and 1.614~10~(-6) (g/g) respectively. The results indicated that Aloe of six months transgenic of otsA gene Aloe.vera L., had significantly increased the contents of trehalose. Further studies on the leaf from transgenic Aloe.vera L showed that the transgenic aloe showed superior moisturizing and anti-aging effect on skin.
     (5) Using the transgenic of otsA gene Aloe.vera L., of 3 years old as experimental materials, polysaccharide were extracted by cold processing method of alcohol precipitation and it was a mixture containing acetylatedβ-D-pyran mannan identified by IR and molecular weight range was between 12900D and 13100D detected by mass spectrometry. The preliminary purified polysaccharide chromatographic fractionation was carried out by DEAE Sephadex A-25, and neutral sugars and acidic sugars were fractioned, then neutral sugar chromatographic fractionation was carried out by Sepharose CL-6B, and A1 and A2 were fractioned. The results of identification and characterization analysis of these polysaccharides by IR, MS, GC showed that neutral sugars were the type of mannose polysaccharide.
     (6) In order to make better and large use of Aloe.vera L., the juice of its gel filtration process and the gel from Aloe.vera L application in cleansers, lotions and eye glue were studied, and efficacy and safety of the developed several cosmetics were evaluated. And the more optimizing and stable gel filtration process and cosmetics with Aloe vera L., as the main effectiveness ingredient were developed respectively.
引文
[1]李爱英.芦荟[J].福建热作科技,1987,(3):25~26
    [2]王洁,沈国兴.芦荟的研究概况[J].中药材,1987,(4):45~48
    [3]冯桂强,顾晓红,王玉英.芦荟的栽培与繁殖[J]_植物杂志,1999,(1):27~28
    [4]冯凯,刘云,寇德军,等.库拉索芦荟组织培养及快繁技术的研究[J].农业与技术,2000,20(1):39~41
    [5]袁阿兴,康书华,覃凌,等.斑纹芦荟的化学成分研究[J].中草药,1994,25(7):339
    [6]袁阿兴.斑纹芦荟中异芦荟苦素的分子结构[J].中国中药杂志,1993,18(10):609
    [7]倪同汉.芦荟化学成分的研究[J].中国民族民间医药杂志,1999,30(2):71~77
    [8]肖志艳,陈迪华,斯建勇,等.库拉索芦荟化学成分的研究[J].药学学报,2000,35(2):120~123
    [9]段辉国,卿东红,胡蓉.芦荟的化学成分及其功效[J].内江师范学院学报,2004,19(6):66~73
    [10]古奈·盖尔史特.万能芦荟的近况[M].北京:中国农业出版社,1996
    [11]李锦馨,冯梅.芦荟的药用功效及其开发利用[J].宁夏农学院学报,1999,20(4):75~79
    [12]刘志洋.农杆菌介导的几丁质酶基因转化唐菖蒲的研究[D].东北农业大学,2005
    [13]翁频,陈亮,陈睦传,等.农杆菌介导牧草蔗42遗传转化体系的建立[J].厦门大学学报(自然科学版),2002,41(5):536~540
    [14]吴震威,卞疆,钱和.芦荟研发现状及展望[J].江苏食品与发酵,2006,(3):22~24
    [15]李天东,罗英,韩文君.芦荟的药理作用及其应用研究进展[J].中国现代医学杂志,2007,17(23):2881~2886
    [16]邓军文.芦荟的化学成分及其药理作用[J].佛山科学技术学院学报(自然科学版),2000,18(2):76~80
    [17]宫红梅,柳艳艳.芦荟外用巧治轻度烧烫伤[J].现代中西医结合杂志,2004,13(15):2043~2044
    [18]龚苏晓.芦荟药理作用研究的新进展[J].国外医学.中医中药分册,2001,23(3):153~154
    [19]田兵,华跃进,马小琼,等.芦荟抗菌作用与蒽醌化合物的关系[J].中国中药杂志,2003,28(11):1034~1037
    [20]崔桅,付强,李侠,等.库拉索芦荟抑制内毒素作用的实验研究[J].天津药学,2002,14(2):38~40
    [21]周永.芦荟抗肿瘤作用的研究进展[J].国外医学.卫生学分册,2001,28(3):133~136
    [22]Grimaudo S, Tolomeo M, Gancitano R A, et al. Effects of highly purified anthraquinoid compounds from Aloe vera on sensitive and multidrug resistant leukemia cells[J]. Oncology Reports,1997, (4): 341~343
    [23]路铭,陈琼华.中药大黄的生化学研究ⅩⅩⅨ.蒽醌衍生物对小鼠P388白血病的抑制作用[J]. 中国药科大学学报,1989,20(3):155~157
    [24]Inahata K, Nakasaki T. Mutagenesis inhibitors[Z]. JP:1995
    [25]Pecere T, Gazzola M V, Mucignat C, et al. Aloe-emodin is a new type of anticancer agent with selective activity against neuroectodermal tumors[J]. Cancer Research,2000,60(11):2800~2804
    [26]胡云,杨方美,胡秋辉,等.芦荟生物活性成分及功能研究新进展[J].食品科学,2003,24(6):158~161
    [27]熊佑清.芦荟[M].北京:中国农业出版社,2002
    [28]林昇清,林健,黄宏南,等.芦荟的功效成份与保健作用的研究[J].海峡预防医学杂志,2000,6(4):38-39
    [29]黄祖荫.芦荟临床应用与保健美容[M].广州:广东科学技术出版社,2001
    [30]李文亭,师海波,陈学力,等.芦荟药理研究新进展[J].特产研究,1998,(3):53~56
    [31]王林丽,徐梦雪.芦荟药理作用及临床研究进展[J].中国药业,2003,12(8):70~71
    [32]曾榕兵,孙波.芦荟保健功效简介及饮品的研制[J].食品科技,2000,(1):46~47
    [33]张佳星,何聪芬,叶兴国,等.农杆菌介导的单子叶植物转基因研究进展[J].生物技术通报,2007,(2):23~26
    [34]王关林,方宏筠.植物基因工程原理与技术[M].北京:科学出版社,1998
    [35]蒋兴邮,邵启全.致瘤农杆菌对作物的致瘤效应[J].中国农业科学,1984,(6):72~77
    [36]Ma D Q, Yanofsky M F, Gordon M P, et al. Characterization of Agrobacterium tumefaciens strains isolated from grapevine tumors in China[J]. Appl Environ Microbiol,1987,53(6):1338~1343
    [37]Yanofsky M, Montoya A, Knauf V, et al. Limited-host-range plasmid of Agrobacterium tumefaciens: molecular and genetic analyses of transferred DNA[J]. J Bacteriol,1985,163(1):341~348
    [38]Rorsch A, Schilperoort R A.,何国顺.根癌农杆菌质粒:植物遗传工程可能的载体[J].遗传工程,1981,(2):23~26
    [39]Nester E W,朱群.根癌农杆菌转化植物的细胞学及分子生物学概论[J].遗传,1989,11(5):40~42
    [40]任永霞,季静,王罡,等.植物遗传转化方法概述[J].河北北方学院学报(自然科学版),2005,21(6):38~42
    [41]谢志兵,钟晓红,董静洲.农杆菌属介导的植物细胞遗传转化研究现状[J].生物技术通讯,2006,17(1):10l~104
    [42]贾士荣.T-DNA转移机理[J].植物生理学通讯,1994,30(4):306~311
    [43]夏英武,吴殿星,舒庆尧.农杆菌T-DNA介导的植物转基因的分子机制[J].生物学杂志,1994,6(5):7~12
    [44]陈章良.植物基因与分子操作[M].北京:北京大学出版社,1995
    [45]陈璋.外源DNA直接导入稻麦的研究进展[J].福建稻麦科技,1992,(2):46~49
    [46]曾骥,黄真池,刘媛,等.植物细菌诱导型表达载体的构建[J].湛江师范学院学报,2006,27(6):71~74
    [47]李宝健,欧阳学智,许耀.应用农杆菌Ti质粒系统将外源基因转入籼稻细胞研究[J].中国科学B辑,1990,20(2):144~149
    [48]余淑文.植物生理与分子生物学[M].北京:科学出版社,1992
    [49]黄益洪,周淼平,叶兴国,等.农杆菌介导法获得小麦转基因植株的研究[J].作物学报,2002,28(4):510~515
    [50]尹中朝,李宝健,施骏,等.存在水稻中新型农杆菌毒性区基因的信号分子[J].科学通报,1995,40(12):1126~1128
    [51]马德钦,赵家英,游积峰.广宿主Ti质粒virA毒力基因对窄宿主根癌农杆菌MI3-2菌株宿主范围的扩展作用[J]_植物病理学报,1994,24(1):32~37
    [52]Chilton M D, Saiki R K, Yadav N, et al. T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA fraction of crown gall tumor cells[J]. Proc Natl Acad Sci USA,1980,77(7):4060~4064
    [53]Mcpherson J C, Nester E W, Gordon M P. Proteins encoded by Agrobacterium tumefaciens Ti plasmid DNA (T-DNA) in crown gall tumors[J]. Proc Natl Acad Sci USA,1980,77(5):2666~2670
    [54]Ooms G, Hooykaas P J, Moolenaar G, et al. Grown gall plant tumors of abnormal morphology, induced by Agrobacterium tumefaciens carrying mutated octopine Ti plasmids; analysis of T-DNA functions[J]. Gene,1981,14(1-2):33~50
    [55]Potykus I. Gene transfer to Plants:assessment of published approaches and results[J]. Annu Rev Plant Physiol,1991,42:205~225
    [56]曾庆平.T-DNA迁移与整合的分子机制[J].生命的化学,1988,(3):14~18
    [57]Buchholz W G, Thomashow M F. Host range encoded by the Agrobacterium tumefaciens tumor-inducing plasmid pTiAg63 can be expanded by modification of its T-DNA oncogene complement[J]. J Bacteriol,1984,160(1):327~332
    [58]Hoekema A, Pater BS De, Fellinger AJ, et al. The limited host range of an Agrobacterium tumefaciens strain extended by a cytokinin gene from a wide host range T-region[J]. EMBO J,1984,3(13): 3043~3047
    [59]Bolton G W, Nester E W, Gordon M P. Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence[J]. Science,1986,232(4753):983~985
    [60]Stachel S, Messens E, Montagu M V, et al. Identification of the signal molecules produced by wounded plat cells that activate T-DNA transfer in Agrobacterium tumefaciens[J]. Nature,1985, 318(6047):624~629
    [61]Stachel S E, Nester E W, Zambryski P C. A plant cell factor induces Agrobacterium tumefaciens vir gene expression[J]. Proc Natl Acad Sci USA,1986,83(2):379~383
    [62]许耀,贾敬芬,郑国铝.酚类化合物促进根癌农杆菌对植物离体外植体的高效转化[J].科学通报,1988,33(22):1745~1748
    [63]李淑萍.农杆菌T-DNA导入植物基因组的分子机理[J].河南农业科学,2005,(4):16~2l
    [64]李淑萍,康洁.农杆菌Ti质粒的改造及其衍生的质粒载体[J].生物学通报,2006,41(5):19~20
    [65]张坤,王继刚,李玉花.农杆菌侵染过程中的Vir蛋白[J].生物技术通讯,2007,18(4):715~718
    [66]许东晖,李宝健,刘煜,等.对根癌农杆菌vir区基因具诱导作用的水稻信号分子的分离和确定[J].中国科学C辑,1996,26(6):535~541
    [67]贺晨霞,夏光敏.农杆菌介导单子叶植物基因转化研究进展[J].植物学通报,1999,16(5):567~573
    [68]梁雪莲,孙毅,郭平毅,等.农杆菌介导转化小麦幼胚获得抗除草剂再生植株[J].植物生理与分子生物学学报,2003,29(6):501~506
    [69]林丽明,张春嵋,谢荔岩,等.农杆菌介导的水稻草矮病毒NS6基因的转化[J].福建农林大学学报(自然科学版),2003,32(3):288~291
    [70]项友斌,梁竹青,高明尉,等.农杆菌介导的苏云金杆菌抗虫基因cryIA(b)和cryIA(c)在水稻中的遗传转化及蛋白表达[J].生物工程学报,1999,15(4):494~500
    [71]Vijayachandra K, Palanichelvam V K, Veluthambi K. Rice scutellum induces agrobacterium tumefaciens vir genes and T-strand generation[J]. Plant Molecular Biology,1995,29(1):125~133
    [72]Aldemita R R, Hodges T K. Agrobacterium tumefaciens-mediated transformation of japonica and indicarice varieties[J]. Planta,1996,199(4):612~617
    [73]Rasul N M, Ali K M, Islam R, et al. Transformation of an indica rice cultivar Binnatoa with Agrobacterium tumefaciens[J]. Plant Tissue Cult,1997,7(2):71~80
    [74]刘巧泉,张景六,王宗阳,等.根癌农杆菌介导的水稻高效转化系统的建立[J].植物生理学报,l998,24(3):259~271
    [75]Hernalsteens J P, Thia-Toong L, Schell J, et al. An agrobacterium transformed cell culture from the monocot asparagus officinalis[J]. EMBO J,1984,3(13):3039~3042
    [76]Gould J, Devey M, Hasegawa O, et al. Transformation of zea mays L. using agrobacterium tumefaciens and the shoot apex[J]. Plant Physiol,1991,95(2):426~434
    [77]Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA[J]. Plant J,1994,6(2):271~282
    [78]Ishida Y, Saito H, Ohta S, et al. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens[J]. Nat Biotechnol,1996,14(6):745~750
    [79]Cheng M, Fry J E, Pang S, et al. Genetic transformation of wheat mediated by agrobacterium tumefaciens[J]. Plant Physiol,1997,115(3):971~980
    [80]Tingay S, McElroy D, Kalla R, et al. Agrobacterium tumefaciens-mediated barley transformation[J]. Plant J,1997,11(6):1369~1376
    [81]Chai B F, Liang A H, Wang W, et al. Agrobacterium-mediated transformation of Kentucky bluegrass[J]. Acta Botanica Sinica,2003,45(8):966~973
    [82]Potrykus I. Gene transfer to plants:assessment and perspectives [J]. Physiologia Plantarum,1990,79(1): 125~134
    [83]Hooykaas-Van Slogteren G M S, Hooykaas P J J, Schilperoort R. A. Expression of Ti plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens[J]. Nature,1984,311:763~764
    [84]朱群,白永延,唐惕,等.Ti质粒T区基因4的分离及其在高等植物中的表达[J].实验生物学报,1986,19(4):415~425
    [85]陈思学,李洪泉.农杆菌介导的单子叶植物遗传转化研究进展[J].生物技术,1993,3(3):1~5
    [86]路铁刚,孙敬三.根癌农杆菌转化单子叶植物研究概况[J].中国生物工程杂志,1990,10(3):4~8
    [87]虞剑平,蒋兴邮,邵启全.Ti质粒基因在单子叶植物石蒜和金针菜中的表达[J].遗传学报,1989,16(3):174~177
    [88]邓万银,邵启全.酚类化合物能促进致瘤农杆菌对单子叶植物鸭跖草的转化[J].科学通报,l989,34(10):776~779
    [89]李宝平,苏仙荣,李文彬,等.兔防御素NP-1基因转化百合的研究[J].山西师范大学学报(自然科学版),1999,13(1):49~52
    [90]Liu J, Liu X M, Qin Y Z, et al. Genetic transformation mediated by Ri T-DNA and the Accumulation of Diosgenin of Dioscrea zigiberensis G.H.Wright[J]. Nat Prod Res Develop,2005,17(1):59~64
    [91]邓万银,林晓影,邵启全.致瘤农杆菌能够转化大麦和小麦[J].中国科学B辑,1989,19(2):17l~176
    [92]李瑶,沈大棱,潘小舟,等.农杆菌转化水稻系统的研究[J].科学通报,1994,39(10):953~955
    [93]刘庆法,唐克轩,叶建明,等.农杆菌介导的小麦遗传转化条件的研究[J].复旦学报(自然科学版),1998,37(4):569~572
    [94]叶兴国,Shirley S,徐惠君,等.小麦农杆菌介导转基因植株的稳定获得和检测[J].中国农业科学,2001,34(5):465~468
    [95]刘巧泉,张景六,王宗阳,等.根癌农杆菌介导的水稻高效转化系统的建立[J].植物生理学报,1998,24(3):259~271
    [96]Xia G M, Li Z Y, He C X, et al. Transgenic plant regeneration from wheat (Triticum aestivumL.) mediated by agrobacterium tumefaciens[J]. Acta Phytophysiologica Sinica,1999,25(1):22~28
    [97]Ye X, Al-Babili S, Kloti A, et al. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm[J]. Science,2000,287(5451):303~305
    [98]王自章,张树珍,杨本鹏,等.甘蔗根癌农杆菌介导转化海藻糖合酶基因获得抗渗透胁迫能力增强植株[J].中国农业科学,2003,36(2):140~146
    [99]徐淑平,卫志明,黄健秋,等.根癌农杆菌介导B.t.基因和CpTI基因对花椰菜的转化[J].植物生理与分子生物学学报,2002,28(3):193~199
    [100]周惠萍,吴毅歆,辻元人,等.农杆菌介导的稻瘟病菌致病突变菌株的筛选[J].植物病理学报,2009,39(2):160~167
    [101]王奇丽,何近刚,陈彦龙,等.农杆菌介导多年生黑麦草转化体系的建立[J].中国农业科技导报,2009,11(2):119~123
    [102]郭霞,李莉,张毅,等.根癌农杆菌介导Bt基因转化水稻的研究[J].生物学杂志,2009,26(2):21-23
    [103]黄昭奋.芦荟的起源、分布、生物学特性及其它[J].热带作物科技,1987,(6):22~26
    [104]张喜,张佐玉.影响我国芦荟栽培的主要生态因素研究[J].贵州林业科技,2000,28(4):14~21.
    [105]孙朝霞.奇花神药话芦荟[J].植物杂志,1999,(1):12-13
    [106]张佐玉,张喜.几项主要生态指标对贵州种植芦荟的影响[J].贵州林业科技,1999,27(4):34~42
    [107]邓新华.中国芦荟资源的利用与保护[J].植物资源与环境,1999,8(2):26~30
    [108]华海清,强咏.芦荟的国内外应用概况及开发应用前景[J].南京中医药大学学报(自然科学版),l993,9(4):57~59
    [109]黄卓忠,潘颖南,苏宾,等.芦荟的应用概况及开发应用前景[J].广西农业科学,1999,(2):108~110
    [110]胡尚嘉,李丽晶,胡林春.芦荟的国内外应用进展[J].北华大学学报(自然科学版),1998,18(2):77~78
    [111]李文亭.芦荟研究新进展(续)[J].深圳中西医结合杂志,1998,8(02):46~48
    [112]李文亭,苗艳波,师海波,等.芦荟研究新进展[J].深圳中西医结合杂志,1998,8(1):4l~43
    [113]芦荟的栽培管理技术(一)[J].农民科技培训,2002,(11):18~19
    [114]芦荟的栽培管理技术(二)[J].农民科技培训,2002,(12):18~19
    [115]吕琳,何聪芬,刘家熙,等.芦荟的生物学特性研究进展[J].中国农学通报,2004,20(6):89~94
    [1I6]张镜清.芦荟[J].生物学通报,1999,34(11):44~45
    [117]张如莲,曾永忠,陈红兵.芦荟的药用价值及其在海南的发展前景[J].华南热带农业大学学报,1999,5(4):14~17
    [118]芦荟的生物学特性(一)[J].安徽农业,1999,(6):11
    [119]丘昭琪,何和明.海南岛翠叶芦荟生态生物学特性及花粉活性酶类含量[J].中国野生植物资源,2002,21(2):48~49
    [120]吴光,何和明.药用粉源植物-海南大叶芦荟(一)生物学开花特性及花粉活性酶类含量[J].中国野生植物资源,2001,20(2):43~44
    [121]郝继伟,王连翠.芦荟日光温室高效栽培技术[J].西北园艺,2002,(5):35~36
    [122]李桂兰.栽培芦荟应注意的几个问题[J].山西农业,2002,(8):50
    [123]齐绍武.我国芦荟的主要栽培品种及栽培方式[J].湖南农业科学,2000,(6):38~39
    [124]吴毅歆,谢庆华.几种影响库拉索芦荟芽器官发生和植株再生的因素[J].西南农业学报,2002,15(1):90~92
    [125]许正强.高效日光温室芦荟栽培技术[J].甘肃农业科技,2002,(1):25~26
    [126]费永俊,胡莉莉,张玲慧,等.几种芦荟萌蘖比较及上农大叶生物量配置[J].中国野生植物资源,2002,21(1):49~50
    [127]刘联,刘玲,刘兆普,等.南方海涂海水灌溉库拉索芦荟的实验研究[J].自然资源学报,2003,18(5):589~594
    [128]谢庆华,吴毅歆.几种影响库拉索芦荟器官增殖和根形成的因素[J].林业科技通讯,2001,(11):15~17
    [129]田庚元,冯宇澄.多糖类免疫调节剂的研究和应用[J].化学进展,1994,6(2):114~124
    [130]徐祖健.糖品化学简明讲座第六讲多糖[J].中国甜菜糖业,1989,(4):1~10
    [131]周静.近年来国内植物多糖生物活性研究进展[J].中草药,1994,25(1):40~44
    [132]王俊玲,冉延涛,宗志敏,等.芦荟多糖的研究进展[J].基层中药杂志,2002,16(4):53~55
    [133]林新华,陈俊,陈伟,等.芦荟多糖的分离提取与含量测定[J].福建医科大学学报,2003,37(2):214-216
    [134]王俊玲,倪中海,宗志敏,等.芦荟多糖的初步分析[J].中国生化药物杂志,2002,23(6):293~294
    [135]戴秀玉,程苹,周坚,等.海藻糖的生理功能、分子生物学研究及应用前景[J].微生物学通报,1995,22(2):102~104
    [136]黄平.奇妙的双糖-海藻糖[J].生命的化学,1995,15(4):26~28
    [137]李群,袁勤生.海藻糖的性质及应用[J].中国生化药物杂志,1995,16(5):231-233
    [138]刘传斌,谢健,苗蔚荣,等.海藻糖的性质及其广阔应用前景[J].中国微生态学杂志,1998,l0(6):377~379
    [139]罗明典.微生物生产海藻糖及其应用前景[J].微生物学通报,1996,23(4):252~254
    [140]张树珍.海藻糖的研究进展及其应用前景[J].华南热带农业大学学报,2000,6(3):22~29
    [141]周青峰.海藻糖在食品加工上的应用[J].中国食品工业,1996,3(2):22~23
    [142]何聪芬,冯婷,赵华,等.芦荟凝胶中海藻糖的提取与检测[J].天然产物研究与开发,2005,17(3):346~348
    [143]Seki M, Narusaka M, Abe H, et al. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray[J]. Plant Cell,2001,13(1): 61~72
    [144]陈军,沈建,夏志华.加工工艺对芦荟汁液稳定性的影响[J].食品科学,2003,24(3):70-72
    [145]Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters[J]. Trends Plant Sci,2005,10(2):88~94
    [146]陈金焕,夏新莉,尹伟伦.植物DREB转录因子及其转基因研究进展[J].分子植物育种,2007,5(6(S)):29~35
    [147]Jaglo K R, Kleff S, Amundsen K L, et al. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species[J]. Plant Physiol,2001,127(3):910~917
    [148]Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. Plant Cell,1995,7(2):173~182
    [149]Romero C, Belles J M, Vaya J L, et al. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants:pleiotropic phenotypes include drought tolerance[J]. Planta,1997, 201(3):293~297
    [150]Tang M, Lu S, Jing Y, et al. Isolation and identification of a cold-inducible gene encoding a putative DRE-binding transcription factor from Festuca arundinacea[J]. Plant Physiol Biochem,2005,43(3): 233~239
    [151]Jaglo-Ottosen K R, Gilmour S J, Zarka D G, et al. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance[J]. Science,1998,280(5360):104~106
    [152]Maruyama K, Sakuma Y, Kasuga M, et al. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems[J]. Plant J,2004, 38(6):982~993
    [153]Cao Z F, Li J, Chen F, et al. Effect of two conserved amino acid residues on DREB1A function[J]. Biochemistry (Mosc),2001,66(6):623~627
    [154]Gilmour S J, Sebolt A M, Salazar M P, et al. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation[J]. Plant Physiol, 2000,124(4):1854~1865
    [155]Shen Y G, Zhang W K, Yan D Q, et al. Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis[J]. Theor Appl Genet,2003,107(1):155~161
    [156]Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science,2000,290(5499):2105~2110
    [157]Baker S S, Wilhelm K S, Thomashow M F. The 5'-region of Arabidopsis thaliana corl5a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression[J]. Plant Mol Biol,1994,24(5):701~713
    [158]Lwasaki T, Kiyosue T, K Y. The dehydration-inducible Rd17 (Cor47) gene and its promoter region in Arabidopsis thaliana[J]. Plant Physiology,1997,115:1287
    [159]Sakuma Y, Liu Q, Dubouzet J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression[J]. Biochem Biophys Res Commun,2002,290(3):998~1009
    [160]Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress[J]. Plant Cell,1994,6(2):251~264
    [161]Fowler S, Thomashow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway[J]. Plant Cell,2002,14(8):1675~1690
    [162]Benedict C, Skinner J S, Meng R, et al. The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in populus spp[J]. Plant Cell Environ,2006, 29(7):1259~1272
    [163]Sakuma Y, Maruyama K, Osakabe Y, et al. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression[J]. Plant Cell,2006,18(5):1292~1309
    [164]Chinnusamy V, Ohta M, Kanrar S, et al. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes Dev,2003,17(8):1043~1054
    [165]Novillo F, Alonso J M, Ecker J R, et al. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis[J]. Proc Natl Acad Sci USA,2004,101(11):3985~3990
    [166]Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J]. Nat Biotechnol,1999,17(3):287~291
    [167]Shen Y G, Zhang W K, He S J, et al. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress[J]. Theor Appl Genet, 2003,106(5):923~930
    [168]Nakashima K, Yanaguchi-Shinozaki K. Molecular studies in stress-respinsive gene expression in Arabidopsis and improvement of stress to lerance in crop plants by regulon biotechnology[J]. Jpn Agr Res Q,2005,39(4):221~229
    [169]Chen M, Wang Q Y, Cheng X G, et al. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants[J]. Biochem Biophys Res Commun, 2007,353(2):299~305
    [170]Nwaka S, Holzer H. Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae[J]. Prog Nucleic Acid Res Mol Biol,1998,58:197~237
    [171]张红缨,刘洋,张今.海藻糖的生物合成和相关酶的特性[J].微生物学通报,1998,25(4):236~238
    [172]Koh S, Kim J, Shin H J, et al. Mechanistic study of the intramolecular conversion of maltose to trehalose by Thermus caldophilus GK24 trehalose synthase[J]. Carbohydr Res,2003,338(12): 1339~1343
    [173]Chen Y S, Lee G C, Shaw J F. Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from picrophilus torridus in Escherichia coli[J]. J Agric Food Chem, 2006,54(19):7098~7104
    [174]Kaasen I, Falkenberg P, Styrvold O B, et al. Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli:evidence that transcription is activated by katF (AppR)[J]. J Bacteriol,1992,174(3):889~898
    [175]Kaasen I, Mcdougall J, Strom A R. Analysis of the otsBA operon for osmoregulatory trehalose synthesis in Escherichia coli and homology of the OtsA and OtsB proteins to the yeast trehalose-6-phosphate synthase/phosphatase complex[J]. Gene,1994,145(1):9~15
    [176]Vuorio O E, Kalkkinen N, Londesborough J. Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast saccharomyces cerevisiae[J]. Eur J Biochem, 1993,216(3):849~861
    [177]De V C, Hottiger T, Dominguez J, et al. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant[J]. Eur J Biochem, 1994,219(1-2):179~186
    [178]Kishor P, Hong Z, Miao G H, et al. Overexpression of [delta]-pyrroline-5-carboxylate synthetase Increases proline production and confers Osmotolerance in transgenic Plants[J]. Plant Physiol,1995, 108(4):1387~1394
    [179]Liang Z, Ma D, Tang L, et al. Expression of the spinach betaine aldehyde dehydrogenase (BADH) gene in transgenic tobacco plants[J]. Chin J Biotechnol,1997,13(3):153~159
    [180]Holmstrom K O, Mantyla E, Welin B, et al. Drought tolerance in tobacco[J]. Nature,1996,379: 683~684
    [181]Goddijn O J, Verwoerd T C, Voogd E, et al. Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants[J]. Plant Physiol,1997,113(1):181~190
    [182]王忆琴,戴秀玉,王韫恂,等.大肠杆菌otsA基因的克隆和表达[J].微生物学报,2000,40(5): 470~474
    [183]赵恢武,陈杨坚,胡鸢雷,等.干旱诱导性启动子驱动的海藻糖-6-磷酸合酶基因载体的构建及转基因烟草的耐旱性[J].植物学报,2000,42(6):616~619
    [184]Yeo E T, Kwon H B, Han S E, et al. Genetic engineering of drought resistant potato plants by introduction of the trehalose-6-phosphate synthase (TPS1) gene from Saccharomyces cerevisiae[J]. Mol Cells,2000,10(3):263~268
    [185]Garg A K, Kim J K, Owens T G, et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses[J]. Proc Natl Acad Sci USA,2002,99(25):15898~15903
    [186]陈杰,张佳星,叶兴国,等.农杆菌介导法将海藻糖合成酶基因转入芦荟的研究[J].作物学报,2007,33(6):968~972
    [187]刘强,赵南明,Yamaguch-Shinozaki K,等.DREB转录因子在提高植物抗逆性中的作用[J].科学通报,2000,45(01):11~16
    [188]魏群.分子生物学实验指导(第二版)[M].北京:高等教育出版社,2007
    [189]李素文.细胞生物学实验指导[M].北京:高等教育出版社,2001
    [190]周根余,丁洪峰,施望敏,等.芦荟的无性快速繁殖[J].园艺学报,1999,26(6):410~411
    [191]He C, Zhang J, Chen J, et al. Genetic transformation of aloe barbadensis miller by agrobacterium tumefaciens[J]. J Genet Genomics,2007,34(12):1053~1060
    [192]Omran R G. Peroxide levels and the activities of catalase, peroxidase, and Indoleacetic acid oxidase during and after chilling cucumber seedlings[J]. Plant Physiol,1980,65(2):407~408
    [193]胡磊,郭蓓,王乐,等.分析植物组织中海藻糖的气质联用及毛细管气相色谱法[J].植物生理学通讯,2004,40(4):474~478
    [194]Davis R H, Parker W L, Samson R T, et al. The isolation of an active inhibitory system from an extract of aloe vera[J]. J Am Podiatr Med Assoc,1991,81(5):258~261
    [195]董银卯,诸淑琴.芦荟保健与美容[M].上海:上海科学普及出版社,200l
    [196]陈杰,张佳星,叶兴国,等.农杆菌介导法将海藻糖合成酶基因转入芦荟的研究[J].作物学报,2007,33(6):968~972
    [197]兰社益.芦荟工业原料生产技术研究[J].广州食品工业科技,2004,20(4):162~163
    [198]刘云宏,董铁有,张仲欣.芦荟凝胶汁加工方法研究[J].食品研究与开发,2005,26(4):13~17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700