基于丝素蛋白/壳聚糖的肝组织工程支架材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丝素蛋白和壳聚糖均为天然生物材料,原料易得,生物相容性好。但丝素蛋白支架成型困难,抗凝血性较差;壳聚糖支架则降解较快,在水溶液里难以稳定存在。本研究将丝素蛋白与壳聚糖复合,希望通过强烈的氢键作用,改善其理化性能,开发出适合于肝组织工程领域的丝素蛋白/壳聚糖复合支架材料。
     丝素蛋白冷冻干燥后易自发形成层片状结构。通过控制温度、浓度、搅拌时间等参数,用冷冻干燥的方法首次成功获得了均质三维多孔的丝素蛋白/壳聚糖支架材料。壳聚糖可以促进丝素蛋白由无规卷曲/α-螺旋向β-折叠的转变,壳聚糖的含量越高,这种转变越明显。对丝素蛋白支架的层片状结构向丝素蛋白/壳聚糖支架的三维多孔结构的转变,提出了丝素蛋白与壳聚糖的自组装模型。
     为了考察丝素蛋白/壳聚糖支架的降解性和在水溶液中的稳定性,进行了为期8周的体外降解实验。该支架可以在长达6周的降解时间里保持多孔网络结构,降解速率相对平稳,降解液pH值接近中性,且支架的溶胀性保持稳定。
     丝素蛋白/壳聚糖支架的细胞相容性和组织相容性良好。该支架能促进HepG2细胞和原代肝细胞的存活和黏附,可以为细胞提供一个开放的生长环境,促进细胞向支架内部生长,并保证足够的营养和气体交换。支架植入大鼠皮下和大网膜4周的结果表明,其组织相容性较好,仅引起轻微的炎症反应,且体内降解速率适当,在植入4周后仍能保持多孔结构。
     在温和的环境下,将肝素引入到丝素蛋白/壳聚糖溶液里,成功制备了含有肝素的丝素蛋白/壳聚糖支架。该支架保持了多孔结构,具有很好的亲水性和力学性能,而且没有细胞毒性。肝素的加入使得丝素蛋白/壳聚糖支架的抗凝血性显著增强,成为可以长期保持肝素活性的有效的肝素缓释系统。
Both silk fibroin (SF) and chitosan (CS) are natural biomaterials with good biocompatibility and abundant resource. It is difficult to prepare pure SF scaffold with porous structure, and the anticoagulant property of SF is poor. Meanwhile, pure CS scaffold degradates relatively quickly, and is not stable in aqueous solution. In this study, aiming to improve the physicochemical properties, we prepared the blend of SF and CS as a water-stable scaffold through intense hydrogen bonding, which may be suitable for liver tissue engineering.
     After freeze-drying, pure SF scaffold demonstrated sheet-like structure. Through controlling the temperature, concentration and mixing time, three-dimensional homogeneous porous silk fibroin/chitosan (SFCS) scaffolds were successfully prepared by freeze-drying method. Adding of CS promoted the conformation transition of SF from a random coil/α-helix to aβ-sheet structure. Furthermore, higher content of CS promoted the formation of moreβ-sheet structure. A model about the self-assembly of SF and CS into three-dimensional porous structure has been proposed.
     To test the degradation and water-stable properties, in vitro degradation behaviors of SFCS scaffolds have been systematically investigated up to 8 weeks. SFCS scaffolds could maintain its porous structure till 6 weeks of degradation, the degradation rate was relatively stable, the pH value of degradation solution fluctuated in a narrow range near neutrality, and the swelling properties kept steady. SFCS scaffolds demonstrated good cytocompatibility and histocompatibility.
     SFCS scaffolds could promote the survival and attachment of HepG2 (human hepatoma cell line) cells and primary hepatocytes. They could provide an open-environment to cells with sufficient nutrition and gas exchange and promote their ingrowth. The in vivo implantation of porous SFCS scaffolds into subcutaneous tissue and omentum of SD rats resulted in slight inflammation and moderate degradation rate. SFCS scaffolds could maintain porous structure after 4 weeks of implantation.
     Heparin was added into SFCS scaffolds under mild conditions. SFCS scaffolds containing heparin maintained porous structure, good hydrophilicity and mechanical properties, moreover, they were not cytotoxic. Adding of heparin leads the SFCS scaffold to be blood compatible and an effective heparin delivering system for liver tissue engineering.
引文
[1] Mutimer D. Review article: hepatitis B and liver transplantation. Alimentary Pharmacology & Therapeutics, 2006, 23(8): 1031-1041.
    [2] Tome S, Wells J T, Said A, et al. Quality of life after liver transplantation. A systematic review. Journal of Hepatology, 2008, 48(4): 567-577.
    [3] Fiegel H C, Kaufmann P M, Bruns H, et al. Hepatic tissue engineering: from transplantation to customized cell-based liver directed therapies from the laboratory. Journal of Cellular and Molecular Medicine, 2008, 12(1): 56-66.
    [4] Chan C, Berthiaume F, Nath B D, et al. Hepatic tissue engineering for adjunct and temporary liver support: Critical technologies. Liver Transplantation, 2004, 10(11): 1331-1342.
    [5] Kulig K M, Vacanti J R. Hepatic tissue engineering. Transplant Immunology, 2004, 12(3-4): 303-310.
    [6] Yannas I V, Burke J F. Design of an Artificial Skin .1. Basic Design Principles. Journal of Biomedical Materials Research, 1980, 14(1): 65-81.
    [7] Li G Y, Zhou P, Shao Z Z, et al. The natural silk spinning process - A nucleation-dependent aggregation mechanism? European Journal of Biochemistry, 2001, 268(24): 6600-6606.
    [8] Langer R, Vacanti J P. Tissue Engineering. Science, 1993, 260(5110): 920-926.
    [9] Temenoff J S, Mikos A G. Review: tissue engineering for regeneration of articular cartilage. Biomaterials, 2000, 21(5): 431-440.
    [10] Hutmacher D W. Scaffold design and fabrication technologies for engineering tissues - state of the art and future perspectives. Journal of Biomaterials Science-Polymer Edition, 2001, 12(1): 107-124.
    [11] Griffith L G, Naughton G. Tissue engineering - Current challenges and expanding opportunities. Science, 2002, 295(5557): 1009.
    [12] Hench L L, Wilson J. Surface-Active Biomaterials. Science, 1984, 226(4675): 630-636.
    [13] Stock U A, Vacanti J P. Tissue engineering: Current state and prospects. Annual Review of Medicine, 2001, 52: 443-451.
    [14] Service R F. Tissue engineers build new bone. Science, 2000, 289(5484): 1498-1500.
    [15] Powers M J, Domansky K, Kaazempur-Mofrad M R, et al. A microfabricated array bioreactor for perfused 3D liver culture. Biotechnology and Bioengineering, 2002, 78(3): 257-269.
    [16] Gupta S, Malhi H, and Gorla G R. Re-engineering the liver with natural biomaterials. Yonsei Medical Journal, 2000, 41(6): 814-824.
    [17] Davis M W, Vacanti J P. Toward development of an implantable tissue engineered liver. Biomaterials, 1996, 17(3): 365-372.
    [18] Velde A A T, Ladiges N C J J, Flendrig L M, et al. Functional-Activity of Isolated Pig Hepatocytes Attached to Different Extracellular-Matrix Substrates - Implication for Application of Pig Hepatocytes in a Bioartificial Liver. Journal of Hepatology, 1995, 23(2): 184-192.
    [19] Kaihara S, Borenstein J, Koka R, et al. Silicon micromachining to tissue engineer branched vascular channels for liver fabrication. Tissue Engineering, 2000, 6(2): 105-117.
    [20] Kim S S, Sundback C A, Kaihara S, et al. Dynamic seeding and in vitro culture of hepatocytes in a flow perfusion system. Tissue Engineering, 2000, 6(1): 39-44.
    [21] Rouwkema J, Rivron N C, and van Blitterswijk C A. Vascularization in tissue engineering. Trends in Biotechnology, 2008, 26(8): 434-441.
    [22] Terada S, Sato M, Sevy A, et al. Tissue engineering in the twenty-first century. Yonsei Medical Journal, 2000, 41(6): 685-691.
    [23] Mooney D J, Sano K, Kaufmann P M, et al. Long-term engraftment of hepatocytes transplanted on biodegradable polymer sponges. Journal of Biomedical Materials Research, 1997, 37(3): 413-420.
    [24] Harada K, Mitaka T, Miyamoto S, et al. Rapid formation of hepatic organoid in collagen sponge by rat small hepatocytes and hepatic nonparenchymal cells. Journal of Hepatology, 2003, 39(5): 716-723.
    [25] Ranucci C S, Kumar A, Batra S P, et al. Control of hepatocyte function on collagen foams: sizing matrix pores toward selective induction of 2-D and 3-D cellular morphogenesis. Biomaterials, 2000, 21(8): 783-793.
    [26] Dvir-Ginzberg M, Gamlieli-Bonshtein I, Agbaria R, et al. Liver tissue engineering within alginate scaffolds: Effects of cell-seeding density on hepatocyte viability, morphology, and function. Tissue Engineering, 2003, 9(4): 757-766.
    [27] Kawase M, Michibayashi N, Nakashima Y, et al. Application of glutaraldehyde-crosslinked chitosan as a scaffold for hepatocyte attachment. Biological & Pharmaceutical Bulletin, 1997, 20(6): 708-710.
    [28] Wang X H, Li D P, Wang W J, et al. Crosslinked collagen/chitosan matrix for artificial livers. Biomaterials, 2003, 24(19): 3213-3220.
    [29] Kaplan D, Adams W W, Farmer B, et al. Silk - Biology, Structure, Properties, and Genetics. Silk Polymers, 1994, 544: 2-16.
    [30] Vollrath F, Knight D P. Liquid crystalline spinning of spider silk. Nature, 2001, 410(6828): 541-548.
    [31] Kaplan D L, Mello C M, and Arcidiacono S, Protein based materials. 1998: Baston: Birkhauser. 103-131.
    [32] Zhao C H, Asakura T. Structure of Silk studied with NMR. Progress in Nuclear Magnetic Resonance Spectroscopy, 2001, 39(4): 301-352.
    [33] Zhou C Z, Confalonieri F, Medina N, et al. Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Research, 2000, 28(12): 2413-2419.
    [34] Marsh R E, Corey R B, and Pauling L. An investigation of the structure of silk fibroin. Biochim Biophys Acta, 1955, 16(1): 1-34.
    [35] Demura M, Minami M, Asakura T, et al. Structure of Bombyx mori silk fibroin based on solid-state NMR orientational constraints and fiber diffraction unit cell parameters. Journal of the American Chemical Society, 1998, 120(6): 1300-1308.
    [36] Fossey S A, Nemethy G, and Gibson K D. Conformational energy studies of beta-sheets of model silk fibroin peptides.Ⅰsheets of poly(Ala-Gly) chains. Biopolymers, 1991, 31(13): 1529-1541.
    [37] Lotz B, Keith H D. Crystal structure of poly(L-Ala-Gly)ⅡA model for silkⅠ. J Mol Biol, 1971, 61(1): 201-215.
    [38] Asakura T, Yamane T, Nakazawa Y, et al. Structure of Bombyx mori silk fibroin before spinning in solid state studied with wide angle x-ray scattering and C-13 cross-polarization/magic angle spinning NMR. Biopolymers, 2001, 58(5): 521-525.
    [39] Valluzzi R, Gido S P, Zhang W P, et al. Trigonal crystal structure of Bombyx mori silk incorporating a threefold helical chain conformation found at the air-water interface. Macromolecules, 1996, 29(27): 8606-8614.
    [40] Valluzzi R, Gido S P. The crystal structure of Bombyx mori silk fibroin at the air-water interface. Biopolymers, 1997, 42(6): 705-717.
    [41] Perez-Rigueiro J, Viney C, Llorca J, et al. Mechanical properties of single-brin silkworm silk. Journal of Applied Polymer Science, 2000, 75(10): 1270-1277.
    [42] Altman G H, Diaz F, Jakuba C, et al. Silk-based biomaterials. Biomaterials, 2003, 24(3): 401-416.
    [43] Dahlke H, Dociu N, and Thurau K. Thrombogenicity of different suture materials as revealed by scanning electron microscopy. J Biomed Mater Res, 1980, 14: 251-268.
    [44] Ethicon, Wound closure manual. The suture: specific suturing materials. Non-absorbable sutures. 2000: NJ: Ethicon.
    [45] Kurioka A, Yamazaki M, and Hirano H. Primary structure and possible functions of a trypsin inhibitor of Bombyx mori. European Journal of Biochemistry, 1999, 259(1-2): 120-126.
    [46] Minoura N, Tsukada M, and Nagura M. Physico-chemical properties of silk fibroin membrane as a biomaterial. Biomaterials, 1990, 11: 430-434.
    [47] Salthouse T N, Matlaga B F, and Wykoff M H. Comparative tissue response to six suture materials in rabbit cornea, sclera, and ocular muscle. Am J Ophthalmol, 1977, 84: 224-233.
    [48] Soong H K, Kenyon K R. Adverse reactions to virgin silk sutures in cataract surgery. Ophthalmology, 1984, 91: 479-483.
    [49] Peleg H, Rao U N, and Emrich L J. An experimental comparison of suture materials for tracheal and bronchial anastomoses. J Thorac Cardiovasc Surg, 1986, 34: 384-388.
    [50] Rossitch J E, Bulard D E, and Oakes W J. Delayed foreign-body reaction to silk sutures in pediatric neurosurgical patients. Childs Nerv Syst, 1987, 3: 375-378.
    [51] Lv Q, Cao C B, Zhang Y, et al. Preparation of insoluble fibroin films without methanol treatment. Journal of Applied Polymer Science, 2005, 96(6): 2168-2173.
    [52] Matsumoto K, Uejima H. Regenerated protein fibers .1. Research and development of a novel solvent for silk fibroin. Journal of Polymer Science Part a-Polymer Chemistry, 1997, 35(10): 1949-1954.
    [53] Mathur A B, Tonelli A, Rathke T, et al. The dissolution and characterization of Bombyx mori silk fibroin in calcium nitrate methanol solution and the regeneration of films. Biopolymers, 1997, 42(1): 61-74.
    [54] Minoura N, Aiba S I, Higuchi M, et al. Attachment and Growth of Fibroblast Cells on Silk Fibroin. Biochemical and Biophysical Research Communications, 1995, 208(2): 511-516.
    [55] Minoura N, Aiba S, Gotoh Y, et al. Attachment and Growth of Cultured Fibroblast Cells on Silk Protein Matrices. Journal of Biomedical Materials Research, 1995, 29(10): 1215-1221.
    [56] Inouye K, Kurokawa M, Nishikawa S, et al. Use of Bombyx mori silk fibroin as a substratum for cultivation of animal cells. Journal of Biochemical and Biophysical Methods, 1998, 37(3): 159-164.
    [57] Sofia S, McCarthy M B, Gronowicz G, et al. Functionalized silk-based biomaterials for bone formation. Journal of Biomedical Materials Research, 2001, 54(1): 139-148.
    [58] Chen J S, Altman G H, Karageorgiou V, et al. Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. Journal of Biomedical Materials Research Part A, 2003, 67A(2): 559-570.
    [59] Santin M, Motta A, Freddi G, et al. In vitro evaluation of the inflammatory potential of the silk fibroin. Journal of Biomedical Materials Research, 1999, 46(3): 382-389.
    [60] Sugihara A, Sugiura K, Morita H, et al. Promotive effects of a silk film on epidermal recovery from full-thickness skin wounds. Proceedings of the Society for Experimental Biology and Medicine, 2000, 225(1): 58-64.
    [61] Meinel L, Hofmann S, Karageorgiou V, et al. The inflammatory responses to silk films in vitro and in vivo. Biomaterials, 2005, 26(2): 147-155.
    [62] Sakabe H, Itoh H, and Miyamoto T. In vivo blood compatibility of regenerated silk fibroin. Sen-I Gakkaishi, 1989, 45: 487-490.
    [63] Petrini P, Parolari C, and Tanzi M C. Silk fibroin-polyurethane scaffolds for tissue engineering. Journal of Materials Science-Materials in Medicine, 2001, 12(10-12): 849-853.
    [64] Dal Pra I, Petrini P, Charini A, et al. Silk fibroin-coated three-dimensional polyurethane scaffolds for tissue engineering: Interactions with normal human fibroblasts. Tissue Engineering, 2003, 9(6): 1113-1121.
    [65] Wang X Y, Kim H J, Xu P, et al. Biomaterial coatings by stepwise deposition of silk fibroin. Langmuir, 2005, 21(24): 11335-11341.
    [66] Cai K Y, Yao K D, Lin S B, et al. Poly(D,L-lactic acid) surfaces modified by silk fibroin: effects on the culture of osteoblast in vitro. Biomaterials, 2002, 23(4): 1153-1160.
    [67] Cai K Y, Yao K D, Cui Y L, et al. Influence of different surface modification treatments on poly(D,L-lactic acid) with silk fibroin and their effects on the culture of osteoblast in vitro. Biomaterials, 2002, 23(7): 1603-1611.
    [68] Karageorgiou V, Meinel L, Hofmann S, et al. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. Journal of Biomedical Materials Research Part A, 2004, 71A(3): 528-537.
    [69] Jin H J, Park J, Valluzzi R, et al. Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide). Biomacromolecules, 2004, 5(3): 711-717.
    [70] Hu K, Lv Q, Cui F Z, et al. Biocompatible fibroin blended films with recombinant human-like collagen for hepatic tissue engineering. Journal of Bioactive and Compatible Polymers, 2006, 21(1): 23-37.
    [71] Kim U J, Park J Y, Li C M, et al. Structure and properties of silk hydrogels. Biomacromolecules, 2004, 5(3): 786-792.
    [72] Motta A, Migliaresi C, Faccioni F, et al. Fibroin hydrogels for biomedical applications: preparation, characterization and in vitro cell culture studies. Journal of Biomaterials Science-Polymer Edition, 2004, 15(7): 851-864.
    [73] Yoo M K, Kweon H Y, Lee K G, et al. Preparation of semi-interpenetrating polymer networks composed of silk fibroin and poloxamer macromer. International Journal of Biological Macromolecules, 2004, 34(4): 263-270.
    [74] Gil E S, Spontak R J, and Hudson S M. Effect of beta-sheet crystals on the thermal and rheological behavior of protein-based hydrogels derived from gelatin and silk fibroin. Macromolecular Bioscience, 2005, 5(8): 702-709.
    [75] Gil E S, Frankowski D J, Spontak R J, et al. Swelling behavior and morphological evolution of mixed gelatin/silk fibroin hydrogels. Biomacromolecules, 2005, 6(6): 3079-3087.
    [76] Fini M, Motta A, Torricelli P, et al. The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel. Biomaterials, 2005, 26(17): 3527-3536.
    [77] Jin H J, Chen J S, Karageorgiou V, et al. Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials, 2004, 25(6): 1039-1047.
    [78] Unger R E, Peters K, Wolf M, et al. Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of hunian endothelial cells. Biomaterials, 2004, 25(21): 5137-5146.
    [79] Dal Pra I, Freddi G, Minic J, et al. De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials. Biomaterials, 2005, 26(14): 1987-1999.
    [80] Unger R E, Wolf M, Peters K, et al. Growth of human cells on a non-woven silk fibroin net: a potential for use in tissue engineering. Biomaterials, 2004, 25(6): 1069-1075.
    [81] Wang M, Jin H J, Kaplan D L, et al. Mechanical properties of electrospun silk fibers. Macromolecules, 2004, 37(18): 6856-6864.
    [82] Kim K H, Jeong L, Park H N, et al. Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. Journal of Biotechnology, 2005, 120(3): 327-339.
    [83] Min B M, Jeong L, Nam Y S, et al. Formation of silk fibroin matrices with different texture and its cellular response to normal human keratinocytes. International Journal of Biological Macromolecules, 2004, 34(5): 281-288.
    [84] Ayutsede J, Gandhi M, Sukigara S, et al. Regeneration of Bombyx mori silk by electrospinning. Part 3: characterization of electrospun nonwoven mat. Polymer, 2005, 46(5): 1625-1634.
    [85] Chen C, Cao C B, Ma X L, et al. Preparation of non-woven mats from all-aqueous silk fibroin solution with electrospinning method. Polymer, 2006, 47(18): 6322-6327.
    [86] Meinel L, Hofmann S, Karageorgiou V, et al. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnology and Bioengineering, 2004, 88(3): 379-391.
    [87] Wang Y Z, Blasioli D J, Kim H J, et al. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials, 2006, 27(25): 4434-4442.
    [88] Wang Y Z, Kim U J, Blasioli D J, et al. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials, 2005, 26(34): 7082-7094.
    [89] Meinel L, Fajardo R, Hofmann S, et al. Silk implants for the healing of critical size bone defects. Bone, 2005, 37(5): 688-698.
    [90] Meinel L, Karageorgiou V, Fajardo R, et al. Bone tissue engineering using human mesenchymal stem cells: Effects of scaffold material and medium flow. Annals of Biomedical Engineering, 2004, 32(1): 112-122.
    [91] Kim H J, Kim U J, Vunjak-Novakovic G, et al. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Biomaterials, 2005, 26(21): 4442-4452.
    [92] Kim U J, Park J, Kim H J, et al. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials, 2005, 26(15): 2775-2785.
    [93] Meinel L, Karageorgiou V, Hofmann S, et al. Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. Journal of Biomedical Materials Research Part A, 2004, 71A(1): 25-34.
    [94] Kim H J, Kim H S, Matsumoto A, et al. Processing windows for forming silk fibroin biomaterials into a 3D porous matrix. Australian Journal of Chemistry, 2005, 58(10): 716-720.
    [95] Nazarov R, Jin H J, and Kaplan D L. Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules, 2004, 5(3): 718-726.
    [96] Tamada Y. New process to form a silk fibroin porous 3-D structure. Biomacromolecules, 2005, 6(6): 3100-3106.
    [97] Kardestuncer T, McCarthy M B, Karageorgiou V, et al. RGD-tethered silk substrate stimulates the differentiation of human tendon cells. Clinical Orthopaedics and Related Research, 2006, (448): 234-239.
    [98] Chen X, Li W J, Zhong W, et al. pH sensitivity and ion sensitivity of hydrogels based on complex-forming chitosan/silk fibroin interpenetrating polymer network. Journal of Applied Polymer Science, 1997, 65(11): 2257-2262.
    [99] Megeed Z, Cappello J, and Ghandehari H. Controlled release of plasmid DNA from a genetically engineered silk-elastinlike hydrogel. Pharmaceutical Research, 2002, 19(7): 954-959.
    [100] Haider M, Megeed Z, and Ghandehari H. Genetically engineered polymers: status and prospects for controlled release. Journal of Controlled Release, 2004, 95(1): 1-26.
    [101] Hanawa T, Watanabe A, Tsuchiya T, et al. New Oral Dosage Form for Elderly Patients - Preparation and Characterization of Silk Fibroin Gel. Chemical & Pharmaceutical Bulletin, 1995, 43(2): 284-288.
    [102] Morita Y, Tomita N, Aoki H, et al. Visco-elastic properties of cartilage tissue regenerated with fibroin sponge. Bio-Medical Materials and Engineering, 2002, 12(3): 291-298.
    [103] Morita Y, Tomita N, Aoki H, et al. Frictional properties of regenerated cartilage in vitro. Journal of Biomechanics, 2006, 39(1): 103-109.
    [104] Aoki H, Tomita N, Morita Y, et al. Culture of chondrocytes in fibroin-hydrogel sponge. Bio-Medical Materials and Engineering, 2003, 13(4): 309-316.
    [105] Wang Y Z, Kim H J, Vunjak-Novakovic G, et al. Stem cell-based tissue engineering with silk biomaterials. Biomaterials, 2006, 27(36): 6064-6082.
    [106] Kweon H Y, Um I C, and Park Y H. Structural and thermal characteristics of Antheraea pernyi silk fibron/chitosan blend film. Polymer, 2001, 42(15): 6651-6656.
    [107] Gu J W, Yang X L, and Zhu H S. Surface sulfonation of silk fibroin film by plasma treatment and in vitro antithrombogenicity study. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2002, 20(1-2): 199-202.
    [108] Furuzono T, Ishihara K, Nakabayashi N, et al. Chemical modification of silk fibroin with 2-methacryloyloxyethyl phosphorylcholine. II. Craft-polymerization onto fabric through 2-methacryloyloxyethyl isocyanate and interaction between fabric and platelets. Biomaterials, 2000, 21(4): 327-333.
    [109] Kumar M N V R. A review of chitin and chitosan applications. Reactive & Functional Polymers, 2000, 46(1): 1-27.
    [110] Yi H M, Wu L Q, Bentley W E, et al. Biofabrication with chitosan. Biomacromolecules, 2005, 6(6): 2881-2894.
    [111] Di Martino A, Sittinger M, and Risbud M V. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials, 2005, 26(30): 5983-5990.
    [112] Skotak M, Leonov A P, Larsen G, et al. Biocompatible and biodegradable ultrafine fibrillar scaffold materials for tissue engineering by facile grafting of L-lactide onto chitosan. Biomacromolecules, 2008, 9(7): 1902-1908.
    [113] Krajewska B. Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology, 2004, 35(2-3): 126-139.
    [114] Suh J K F, Matthew H W T. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 2000, 21(24): 2589-2598.
    [115] Madihally S V, Matthew H W T. Porous chitosan scaffolds for tissue engineering. Biomaterials, 1999, 20(12): 1133-1142.
    [116] VandeVord P J, Matthew H W T, DeSilva S P, et al. Evaluation of the biocompatibility of a chitosan scaffold in mice. Journal of Biomedical Materials Research, 2002, 59(3): 585-590.
    [117] Metcalfe A D, Ferguson M W J. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. Journal of the Royal Society Interface, 2007, 4(14): 413-437.
    [118] Schulz J T, Tompkins R G, and Burke J F. Artificial skin. Annual Review of Medicine, 2000, 51: 231-244.
    [119] Bell E, Ehrlich H P, Buttle D J, et al. Living Tissue Formed Invitro and Accepted as Skin-Equivalent Tissue of Full Thickness. Science, 1981, 211(4486): 1052-1054.
    [120] Ma L, Gao C Y, Mao Z W, et al. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials, 2003, 24(26): 4833-4841.
    [121] Lee S B, Jeon H W, Lee Y W, et al. Bio-artificial skin composed of gelatin and (1 -> 3), (1 -> 6)-beta-glucan. Biomaterials, 2003, 24(14): 2503-2511.
    [122] Taravel M N, Domard A. Collagen and Its Interaction with Chitosan .2. Influence of the Physicochemical Characteristics of Collagen. Biomaterials, 1995, 16(11): 865-871.
    [123] Taravel M N, Domard A. Collagen and its interactions with chitosan .3. Some biological and mechanical properties. Biomaterials, 1996, 17(4): 451-455.
    [124] Cho Y W, Cho Y N, Chung S H, et al. Water-soluble chitin as a wound healing accelerator. Biomaterials, 1999, 20(22): 2139-2145.
    [125] Ma J B, Wang H J, He B L, et al. A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetaf dermal fibroblasts. Biomaterials, 2001, 22(4): 331-336.
    [126] Ueno H, Yamada H, Tanaka I, et al. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials, 1999, 20(15): 1407-1414.
    [127] Mizuno K, Yamamura K, Yano K, et al. Effect of chitosan film containing basic fibroblast growth factor on wound healing in genetically diabetic mice. Journal of Biomedical Materials Research Part A, 2003, 64A(1): 177-181.
    [128] Howling G I, Dettmar P W, Goddard P A, et al. The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials, 2001, 22(22): 2959-2966.
    [129] Yan X L, Khor E, and Lim L Y. PEC films prepared from chitosan-alginate coacervates. Chemical & Pharmaceutical Bulletin, 2000, 48(7): 941-946.
    [130] Wang L H, Khor E, Wee A, et al. Chitosan-alginate PEC membrane as a wound dressing: Assessment of incisional wound healing. Journal of Biomedical Materials Research, 2002, 63(5): 610-618.
    [131] Zhang Y, Zhang M Q. Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. Journal of Biomedical Materials Research, 2002, 62(3): 378-386.
    [132] Zhang Y, Ni M, Zhang M Q, et al. Calcium phosphate-chitosan composite scaffolds for bone tissue engineering. Tissue Engineering, 2003, 9(2): 337-345.
    [133] Kawakami T, Antoh M, Hasegawa H, et al. Experimental-Study on Osteoconductive Properties of a Chitosan-Bonded Hydroxyapatite Self-Hardening Paste. Biomaterials, 1992, 13(11): 759-763.
    [134] Zhao F, Yin Y J, Lu W W, et al. Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials, 2002, 23(15): 3227-3234.
    [135] Ge Z G, Baguenard S, Lim L Y, et al. Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes. Biomaterials, 2004, 25(6): 1049-1058.
    [136] Leroux L, Hatim Z, Freche M, et al. Effects of various adjuvants (lactic acid, glycerol, and chitosan) on the injectability of a calcium phosphate cement. Bone, 1999, 25(2): 31-34.
    [137] Gutowska A, Jeong B, and Jasionowski M. Injectable gels for tissue engineering. Anatomical Record, 2001, 263(4): 342-349.
    [138] Xu H H K, Simon C G. Self-hardening calcium phosphate cement-mesh composite: Reinforcement, macropores, and cell response. Journal of Biomedical Materials Research Part A, 2004, 69A(2): 267-278.
    [139] Kim S B, Kim Y J, Yoon T R, et al. The characteristics of a hydroxyapatite-chitosan-PMMA bone cement. Biomaterials, 2004, 25(26): 5715-5723.
    [140] Lee J Y, Nam S H, Im S Y, et al. Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. Journal of Controlled Release, 2002, 78(1-3): 187-197.
    [141] Bumgardner J D, Wiser R, Gerard P D, et al. Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants. Journal of Biomaterials Science-Polymer Edition, 2003, 14(5): 423-438.
    [142] Grande D A, Halberstadt C, Naughton G, et al. Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. Journal of Biomedical Materials Research, 1997, 34(2): 211-220.
    [143] Kosher R A, Lash J W, and Minor R R. Environmental Enhancement of in-Vitro Chondrogenesis .4. Stimulation of Somite Chondrogenesis by Exogenous Chondromucoprotein. Developmental Biology, 1973, 35(2): 210-220.
    [144] Kosher R A, Church R L. Stimulation of Invitro Somite Chondrogenesis by Procollagen and Collagen. Nature, 1975, 258(5533): 327-330.
    [145] Lu J X, Prudhommeaux F, Meunier A, et al. Effects of chitosan on rat knee cartilages. Biomaterials, 1999, 20(20): 1937-1944.
    [146] Mattioli-Belmonte M, Gigante A, Muzzarelli R A A, et al. N,N-dicarboxymethyl chitosan as delivery agent for bone morphogenetic protein in the repair of articular cartilage. Medical & Biological Engineering & Computing, 1999, 37(1): 130-134.
    [147] Sechriest V F, Miao Y J, Niyibizi C, et al. GAG-augmented polysaccharide hydrogel: A novel biocompatible and biodegradable material to support chondrogenesis. Journal of Biomedical Materials Research, 1999, 49(4): 534-541.
    [148] Yamane S, Iwasaki N, Majima T, et al. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials, 2005, 26(6): 611-619.
    [149] Hsu S H, Whu S W, Hsieh S C, et al. Evaluation of chitosan-alginate-hyaluronate complexes modified by an RGD-containing protein as tissue-engineering scaffolds for cartilage regeneration. Artificial Organs, 2004, 28(8): 693-703.
    [150] Lee J E, Kim K E, Kwon I C, et al. Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials, 2004, 25(18): 4163-4173.
    [151] Vanbeuningen H M, Vanderkraan P M, Arntz O J, et al. Transforming Growth-Factor-Beta-1 Stimulates Articular Chondrocyte Proteoglycan Synthesis and Induces Osteophyte Formation in the Murine Knee-Joint. Laboratory Investigation, 1994, 71(2): 279-290.
    [152] Denuziere A, Ferrier D, Damour O, et al. Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes: biological properties. Biomaterials, 1998, 19(14): 1275-1285.
    [153] Morales T I. The role and content of endogenous insulin-like growth factor-binding proteins in bovine articular cartilage. Archives of Biochemistry and Biophysics, 1997, 343(2): 164-172.
    [154] Xu C, Oyajobi B O, Frazer A, et al. Effects of growth factors and interleukin-1 alpha on proteoglycan and type II collagen turnover in bovine nasal and articular chondrocyte pellet cultures. Endocrinology, 1996, 137(8): 3557-3565.
    [155] Border W A, Noble N A. Transforming Growth-Factor-Beta in Tissue Fibrosis. New England Journal of Medicine, 1994, 331(19): 1286-1292.
    [156] Hulth A, Johnell O, Miyazono K, et al. Effect of transforming growth factor-beta and platelet-derived growth factor-BB on articular cartilage in rats. Journal of Orthopaedic Research, 1996, 14(4): 547-553.
    [157] Kim S E, Park J H, Cho Y W, et al. Porous chitosan scaffold containing microspheres loaded with transforming growth factor-beta 1: Implications for cartilage tissue engineering. Journal of Controlled Release, 2003, 91(3): 365-374.
    [158] Hoemann C D, Hurtig M, Rossomacha E, et al. Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. Journal of Bone and Joint Surgery-American Volume, 2005, 87A(12): 2671-2686.
    [159] Hoemann C D, Sun J, Mckee M D, et al. Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects. Osteoarthritis and Cartilage, 2007, 15(1): 78-89.
    [160] Chevrier A, Hoemann C D, Sun J, et al. Chitosan-glycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects. Osteoarthritis and Cartilage, 2007, 15(3): 316-327.
    [161] Heath C A, Rutkowski G E. The development of bioartificial nerve grafts for peripheral-nerve regeneration. Trends in Biotechnology, 1998, 16(4): 163-168.
    [162] Ciardelli G, Chiono V. Materials for peripheral nerve regeneration. Macromolecular Bioscience, 2006, 6(1): 13-26.
    [163] Gong H P, Zhong Y H, Li J C, et al. Studies on nerve cell affinity of chitosan-derived materials. Journal of Biomedical Materials Research, 2000, 52(2): 285-295.
    [164] Yuan Y, Zhang P Y, Yang Y M, et al. The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials, 2004, 25(18): 4273-4278.
    [165] Itoh S, Yamaguchi I, Suzuki M, et al. Hydroxyapatite-coated tendon chitosan tubes with adsorbed laminin peptides facilitate nerve regeneration in vivo. Brain Research, 2003, 993(1-2): 111-123.
    [166] Matsuda A, Kobayashi H, Itoh S, et al. Immobilization of laminin peptide in molecularly aligned chitosan by covalent bonding. Biomaterials, 2005, 26(15): 2273-2279.
    [167] Kato K, Utani A, Suzuki N, et al. Identification of neurite outgrowth promoting sites on the laminin alpha 3 chain G domain. Biochemistry, 2002, 41(35): 10747-10753.
    [168] Chavez-Delgado M E, Mora-Galindo J, Gomez-Pinedo U, et al. Facial nerve-regeneration through progesterone-loaded chitosan prosthesis. A preliminary report. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2003, 67B(2): 702-711.
    [169] Cao W L, Cheng M Y, Ao Q, et al. Physical, mechanical and degradation properties, and Schwann cell affinity of cross-linked chitosan films. Journal of Biomaterials Science-Polymer Edition, 2005, 16(6): 791-807.
    [170] Cheng M Y, Gong K, Li J M, et al. Surface modification and characterization of chitosan film blended with poly-L-lysine. Journal of Biomaterials Applications, 2004, 19(1): 59-75.
    [171] Cheng M Y, Deng J U, Yang F, et al. Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions. Biomaterials, 2003, 24(17): 2871-2880.
    [172] Freier T, Montenegro R, Koh H S, et al. Chitin-based tubes for tissue engineering in the nervous system. Biomaterials, 2005, 26(22): 4624-4632.
    [173] Hoekstra R, Chamuleau R A F M. Recent developments on human cell lines for the bioartificial liver. International Journal of Artificial Organs, 2002, 25(3): 182-191.
    [174] Benzeev A, Robinson G S, Bucher N L R, et al. Cell Cell and Cell Matrix Interactions Differentially Regulate the Expression of Hepatic and Cytoskeletal Genes in Primary Cultures of Rat Hepatocytes. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(7): 2161-2165.
    [175] LeCluyse E L, Bullock P L, and Parkinson A. Strategies for restoration and maintenance of normal hepatic structure and function in long-term cultures of rat hepatocytes. Advanced Drug Delivery Reviews, 1996, 22(1-2): 133-186.
    [176] Kang I K, Moon J S, Jeon H M, et al. Morphology and metabolism of Ba-alginate encapsulated hepatocytes with galactosylated poly(allyl amine) and poly(vinyl alcohol) as extracellular matrices. Journal of Materials Science-Materials in Medicine, 2005, 16(6): 533-539.
    [177] Lindahl U, Hook M. Glycosaminoglycans and Their Binding to Biological Macromolecules. Annual Review of Biochemistry, 1978, 47: 385-417.
    [178] Li J L, Pan J L, Zhang L G, et al. Culture of primary rat hepatocytes within porous chitosan scaffolds. Journal of Biomedical Materials Research Part A, 2003, 67A(3): 938-943.
    [179] Li J L, Pan J L, Zhang L G, et al. Culture of hepatocytes on fructose-modified chitosan scaffolds. Biomaterials, 2003, 24(13): 2317-2322.
    [180] Elcin Y M, Dixit V, Lewin K, et al. Xenotransplantation of fetal porcine hepatocytes in rats using a tissue engineering approach. Artificial Organs, 1999, 23(2): 146-152.
    [181] Wang X H, Yan Y N, Lin F, et al. Preparation and characterization of a collagen/chitosan/heparin matrix for an implantable bioartificial liver. Journal of Biomaterials Science-Polymer Edition, 2005, 16(9): 1063-1080.
    [182] Adams J C. Regulation of protrusive and contractile cell-matrix contacts. Journal of Cell Science, 2002, 115(2): 257-265.
    [183] Ashwell G, Morell A G. Role of Surface Carbohydrates in Hepatic Recognition and Transport of Circulating Glycoproteins. Advances in Enzymology and Related Areas of Molecular Biology, 1974, 41: 99-128.
    [184] Ashwell G, Harford J. Carbohydrate-Specific Receptors of the Liver. Annual Review of Biochemistry, 1982, 51: 531-554.
    [185] Weigel P H. Rat Hepatocytes Bind to Synthetic Galactoside Surfaces Via a Patch of Asialoglycoprotein Receptors. Journal of Cell Biology, 1980, 87(3): 855-861.
    [186] Kobayashi A, Akaike T, Kobayashi K, et al. Enhanced Adhesion and Survival Efficiency of Liver-Cells in Culture Dishes Coated with a Lactose-Carrying Styrene Homopolymer. Makromolekulare Chemie-Rapid Communications, 1986, 7(10): 645-650.
    [187] Gutsche A T, Parsonswingerter P, Chand D, et al. N-Acetylglucosamine and Adenosine Derivatized Surfaces for Cell-Culture - 3T3 Fibroblast and Chicken Hepatocyte Response. Biotechnology and Bioengineering, 1994, 43(8): 801-809.
    [188] Park I K, Yang J, Jeong H J, et al. Galactosylated chitosan as a synthetic extracellular matrix for hepatocytes attachment. Biomaterials, 2003, 24(13): 2331-2337.
    [189] Chung T W, Lu Y F, Wang S S, et al. Growth of human endothelial cells on photochemically grafted Gly-Arg-Gly-Asp (GRGD) chitosans. Biomaterials, 2002, 23(24): 4803-4809.
    [190] Chung T W, Yang J, Akaike T, et al. Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment. Biomaterials, 2002, 23(14): 2827-2834.
    [191] Xue L, Greisler H P. Biomaterials in the development and future of vascular grafts. Journal of Vascular Surgery, 2003, 37(2): 472-480.
    [192] Chupa J M, Foster A M, Sumner S R, et al. Vascular cell responses to polysaccharide materials: in vitro and in vivo evaluations. Biomaterials, 2000, 21(22): 2315-2322.
    [193] Mori T, Irie Y, Nishimura S, et al. Endothelial cell responses to chitin and its derivatives. Journal of Biomedical Materials Research, 1998, 43(4): 469-472.
    [194] Okamoto Y, Watanabe M, Miyatake K, et al. Effects of chitin/chitosan and their oligomers/monomers on migrations of fibroblasts and vascular endothelium. Biomaterials, 2002, 23(9): 1975-1979.
    [195] Madihally S V, Flake A W, and Matthew H W T. Maintenance of CD34 expression during proliferation of CD34(+) cord blood cells on glycosaminoglycan surfaces. Stem Cells, 1999, 17(5): 295-305.
    [196] Kratz G, Arnander C, Swedenborg J, et al. Heparin-chitosan complexes stimulate wound healing in human skin. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 1997, 31(2): 119-123.
    [197] Fukutomi M, Kobayashi S, Niwaya K, et al. Changes in platelet, granulocyte, and complement activation during cardiopulmonary bypass using heparin-coated equipment. Artificial Organs, 1996, 20(7): 767-776.
    [198] Bannan S, Danby A, Cowan D, et al. Low heparinization with heparin-bonded bypass circuits: Is it a safe strategy? Annals of Thoracic Surgery, 1997, 63(3): 663-668.
    [199] Kagisaki K, Masai T, Kadoba K, et al. Biocompatibility of heparin-coated circuits in pediatric cardiopulmonary bypass. Artificial Organs, 1997, 21(7): 836-840.
    [200] Svenmarker S, Sandstrom E, Karlsson T, et al. Clinical effects of the heparin coated surface in cardiopulmonary bypass. European Journal of Cardio-Thoracic Surgery, 1997, 11(5): 957-964.
    [201] Park Y J, Lee Y M, Park S N, et al. Platelet derived growth factor releasing chitosan sponge for periodontal bone regeneration. Biomaterials, 2000, 21(2): 153-159.
    [202] Chen X, Li W J, and Yu T Y. Conformation transition of silk fibroin induced by blending chitosan. Journal of Polymer Science Part B-Polymer Physics, 1997, 35(14): 2293-2296.
    [203] Park S J, Lee K Y, Ha W S, et al. Structural changes and their effect on mechanical properties of silk fibroin/chitosan blends. Journal of Applied Polymer Science, 1999, 74(11): 2571-2575.
    [204] Kweon H, Ha H C, Um I C, et al. Physical properties of silk fibroin/chitosan blend films. Journal of Applied Polymer Science, 2001, 80(7): 928-934.
    [205] Rujiravanit R, Kruaykitanon S, Jamieson A M, et al. Preparation of crosslinked chitosan/silk fibroin blend films for drug delivery system. Macromolecular Bioscience, 2003, 3(10): 604-611.
    [206] Park W H, Jeong L, Yoo D I, et al. Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers. Polymer, 2004, 45(21): 7151-7157.
    [207] Sampaio S, Taddei P, Monti P, et al. Enzymatic grafting of chitosan onto Bombyx mori silk fibroin: kinetic and IR vibrational studies. Journal of Biotechnology, 2005, 116(1): 21-33.
    [208] Gobin A S, Froude V E, and Mathur A B. Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration. Journal of Biomedical Materials Research Part A, 2005, 74A(3): 465-473.
    [209] Kuo S W, Chang F C. Effect of copolymer composition on the miscibility of poly(styrene-co-acetoxystyrene) with phenolic resin. Polymer, 2001, 42(24): 9843-9848.
    [210] Pan Y, Xue F. Lightly sulfonated poly(phenylene oxide)/poly(styrene-co-4-vinyl pyridine) blend: interpolymer interaction and miscibility. European Polymer Journal, 2001, 37(2): 247-249.
    [211] K S, Polymer compatibility and incompatibility. 1981, London: MMI Press.
    [212] Taravel M N, Domard A. Relation between the Physicochemical Characteristics of Collagen and Its Interactions with Chitosan .1. Biomaterials, 1993, 14(12): 930-938.
    [213] Freed L E, Vunjaknovakovic G, Biron R J, et al. Biodegradable Polymer Scaffolds for Tissue Engineering. Bio-Technology, 1994, 12(7): 689-693.
    [214] Bhardwaj R S, Henze U, Klein B, et al. Monocyte-biomaterial interaction inducing phenotypic dynamics of monocytes: a possible role of monocyte subsets in biocompatibility. Journal of Materials Science-Materials in Medicine, 1997, 8(12): 737-742.
    [215] Gotoh Y, Minoura N, and Miyashita T. Preparation and characterization of conjugates of silk fibroin and chitooligosaccharides. Colloid and Polymer Science, 2002, 280(6): 562-568.
    [216] Yang J, Chung T W, Nagaoka M, et al. Hepatocyte-specific porous polymer-scaffolds of alginate/galactosylated chitosan sponge for liver-tissue engineering. Biotechnology Letters, 2001, 23(17): 1385-1389.
    [217] Zhou C Z, Confalonieri F, Jacquet M, et al. Silk fibroin: Structural implications of a remarkable amino acid sequence. Proteins-Structure Function and Genetics, 2001, 44(2): 119-122.
    [218] Whitesides G M, Grzybowski B. Self-assembly at all scales. Science, 2002, 295(5564): 2418-2421.
    [219] Yang F, Cui W J, Xiong Z, et al. Poly(L,L-lactide-co-glycolide)/tricalcium phosphate composite scaffold and its various changes during degradation in vitro. Polymer Degradation and Stability, 2006, 91(12): 3065-3073.
    [220] Horan R L, Antle K, Collette A L, et al. In vitro degradation of silk fibroin. Biomaterials, 2005, 26(17): 3385-3393.
    [221] Wu L B, Ding J D. In vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials, 2004, 25(27): 5821-5830.
    [222] Lee H M, Cusick R A, Utsunomiya H, et al. Effect of implantation site on hepatocytes heterotopically transplanted on biodegradable polymer scaffolds. Tissue Engineering, 2003, 9(6): 1227-1232.
    [223] Mooney D J, Kaufmann P M, Sano K, et al. Transplantation of Hepatocytes Using Porous, Biodegradable Sponges. Transplantation Proceedings, 1994, 26(6): 3425-3426.
    [224] Glicklis R, Shapiro L, Agbaria R, et al. Hepatocyte behavior within three-dimensional porous alginate scaffolds. Biotechnology and Bioengineering, 2000, 67(3): 344-353.
    [225] Rucker M, Laschke M W, Junker D, et al. Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice. Biomaterials, 2006, 27(29): 5027-5038.
    [226] Kraft C N, Hansis M, Arens S, et al. Striated muscle microvascular response to silver implants: A comparative in vivo study with titanium and stainless steel. Journal of Biomedical Materials Research, 2000, 49(2): 192-199.
    [227] Sheridan M H, Shea L D, Peters M C, et al. Bioadsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. Journal of Controlled Release, 2000, 64(1-3): 91-102.
    [228] Lv Q, Cao C B, and Zhu H S. A novel solvent system for blending of polyurethane and heparin. Biomaterials, 2003, 24(22): 3915-3919.
    [229] Holy C E, Dang S M, Davies J E, et al. In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam. Biomaterials, 1999, 20(13): 1177-1185.
    [230] Harris L D, Kim B S, and Mooney D J. Open pore biodegradable matrices formed with gas foaming. Journal of Biomedical Materials Research, 1998, 42(3): 396-402.
    [231] Ma X L, Cao C B, and Zhu H S. The biocompatibility of silk fibroin films containing sulfonated silk fibroin. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2006, 78B(1): 89-96.
    [232] Lv Q, Zhang S J, Hu K, et al. Cytocompatibility and blood compatibility of multifunctional fibroin/collagen/heparin scaffolds. Biomaterials, 2007, 28(14): 2306-2313.
    [233]吕强.丝素蛋白基组织工程支架材料的研究:[博士学位论文].北京:清华大学材料科学与工程系. 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700