6-氟基丁基苯酞对H_2O_2诱导的PC12细胞氧化损伤的保护作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨6-氟基丁基苯酞(3-butyl-6-fluoro-1 (3H)-isobenzofuranone, F-NBP)对H2O2(hydrogen peroxide)介导的PC12细胞(大鼠嗜铬细胞瘤细胞,pheochromocytoma cell)损伤的保护作用及其可能机制。
     方法:运用不同浓度的连二亚硫酸钠(1,2,4,8,10 mM)对PC12细胞进行损伤,通过MTT法了解在不同时间里PC12细胞的损伤情况,确定出引起细胞损伤的最佳作用浓度和作用时间,并研究了6-氟基丁基苯酞和对照品丁基苯酞的保护作用。运用不同浓度的H2O2(100,300,500,700,1000μM )对PC12细胞进行损伤,通过MTT法了解在不同时间里PC12细胞的损伤情况,确定出引起细胞损伤的最佳作用浓度和作用时间,并研究了6-氟基丁基苯酞和对照品丁基苯酞的保护作用。同时采用GSH-PX, MDA等试剂盒检测H2O2对PC12细胞的氧化损伤,并研究6-氟基丁基苯酞的抗氧化作用及其机制,为进一步确定6-氟基丁基苯酞的抗氧化特性,使用DCF-DA检测细胞内ROS的水平情况。另外,对H2O2介导的PC12细胞凋亡进行了进一步的探讨,采用荧光倒置显微镜、活细胞高内涵成像系统检测凋亡细胞的形态,用活细胞高内涵分析系统对细胞线粒体膜电位的水平也进行了分析。
     结果:2 mM的连二亚硫酸钠处理PC12细胞24小时损伤效果最好,而浓度为5μM,10μM,50μM的6-氟基丁基苯酞可显著提高PC12细胞损伤抑制率,分别达到13%,43%,82%,且具有浓度依赖性。500μM的H2O2处理PC12细胞24小时损伤效果最好,而浓度为5μM,10μM,50μM的6-氟基丁基苯酞可显著提高PC12细胞损伤抑制率,分别达到20%,50%,70%,且具有浓度依赖性。H2O2可显著诱导PC12细胞氧化损伤,造成胞内GSH-PX降低和MDA的增加,并使细胞内ROS水平升高,触发氧化应激对细胞进行损伤,6-氟基丁基苯酞对上述的氧化损伤有抑制作用,对PC12细胞具有保护作用。500μM的H2O2接触细胞24小时后,通过荧光倒置显微镜、活细胞高内涵成像系统观察发现凋亡细胞显著增加,而预先给与6-氟基丁基苯酞作用2小时,可明显降低细胞凋亡。另外,通过测定荧光染料罗丹明123(Rh123)的荧光强度可以反映细胞线粒体膜电位的变化,H2O2能显著降低线粒体膜电位的水平,而6-氟基丁基苯酞则具有一定的保护作用。
     结论:
     1.2 mM的连二亚硫酸钠可介导PC12细胞缺糖缺氧损伤,诱导细胞凋亡,最终导致细胞死亡。一定浓度的6-氟基丁基苯酞预处理2小时可明显抑制连二亚硫酸钠诱导的细胞损伤和凋亡的作用。
     2.500μM的H2O2可介导PC12细胞损伤,触发氧化损伤,诱导细胞凋亡,最终导致细胞死亡。一定浓度的6-氟基丁基苯酞预处理2小时可明显抑制H202诱导的细胞损伤和凋亡的作用。
     3.6-氟基丁基苯酞的神经保护作用可能是通过清除细胞内ROS,抑制细胞凋亡来实现的。6-氟基丁基苯酞可能在脑缺血的防治中有潜在的应用价值。
Objective:To investigate the protective effect of 3-butyl-6-fluoro-1(3H)-isobenzofuranone on the H2O2-induced cytotoxicity in rat pheochromocytoma cells (PC12) cells.
     Methods:Different dose of Na2S2O4 was used to induce the cytotoxicity in PC 12 cells in order to optimize dose by MTT assay. Different dose of H2O2 was used to induce the cytotoxicity in PC 12 cells in order to optimize dose by MTT assay. The enzyme activity of superoxide dismutase(SOD), glutathione peroxidase(GSH-PX) and the lipid peroxidation products malondialdehyde(MDA) in the cells were observed. DNA-binding dye Acridine Orange(AO) was used to determine the morphological characteristic of apoptotic cells. PI was used to a signature of cell membrane integrity and cell damage.Mitochondrial membrane potential in PC 12 cells were monitored by fluorospectrophotometer combining with Rh123.
     Results:1. After treatment with 2mM Na2S2O4 in PC 12 cells for 24 hours, the cell viability decreased markedly, while F-NBP at the different concentration (5μm,10μM,50μM) could elevate the cell viability obviously.2. After treatment with 500μM H2O2 in PC 12 cells for 24 hours, the cell viability decreased markedly, while F-NBP at the different concentration (5μM,10μM,50μM) could elevate the cell viability obviously.3. The results suggest that H2O2 decreasedGSH-PX and GSH-PX activity, in contrast, H2O2 increased MDA and ROS. F-NBP significantly decreased ROS and MDA, increased GSH-PX activity in PC 12 cells.4. After the treatment with 500μM H2O2, the mitochondrial membrane potential significantly decreased, microscopic observation showed that PC 12 cells exhibited morphological alterations such as cell shrinkage and membrane blabbing, the typical characteristics of apoptotic cell death, which was reduced with co-treatment of F-NBP.
     Conclusions:1.2 mM Na2S2O4 could induce ischemia and apoptosis in PC 12 cells, which result in the cell death ultimately.2.500μM H2O2 could induce toxicity, oxidative damage and apoptosis in PC 12 cells, which result in the cell death ultimately.3. The study shows that F-NBP at the different concentration has a protective effects against H2O2-induced cytotoxicity and apoptosis in PC 12 cells, which may represent the cellular mechanisms including scavenging ROS, increasing GSH-PX activity. F-NBP may also represent a potential treatment strategy for ischemia.
引文
[1]Doyle, K. P.; Simon, R. P.; Stenzel-Poore, M. P.Mechanisms of ischemic brain damage. Neuropharmacology.2008,55:310-318.
    [2]Offord, E., Van Poppel, G., Tyrrell, R.. Markers of oxidative damage and antioxidant protection:current status and relevance to disease. Free Radic. Res.,2000,33:S5-S19.
    [3]Satoh, T., Enokido, Y., Aoshima, H., Uchiyama, Y. Changes in mitochondrial membrane potential during oxidative stress-Induced apoptosis in PC 12 cells. J. Neurosci. Res.,1997,50 (3):413-420.
    [4]Burkitt, M.J., Duncan, J..Effects of trans-resveratrol on copper-dependent hydroxyl-radical formation and DNA damage:evidence for hydroxyl-radical scavenging and a novel, glutathione-sparing mechanism of action. Arch. Biochem. Biophys,2000, 381:253-263.
    [5]冯亦璞.缺血性脑卒中的病理生理及药物治疗现状.药学学报,1999,34(1):72~78.
    [6]戚世伟.中药在脑卒中治疗的临床应用进展.中国药物与临床,2007,7(1):56-57.
    [7]Ling L, Bo Z, Yu, QT.DL-3-n-butylphthalide protects endothelial cells against oxidative/nitrosative stress, mitochondrial damage and subsequent cell death after oxygen glucose deprivation in vitro J. Brain Research,2009,1290:91-101.
    [8]Peng, Y., Zeng, X., Feng, Y, Wang, X.. Antiplatelet and antithrombotic activity of L-3-n-butylphthalide in rats. J. Cardiovasc. Pharmacol.,2004,43:876-881.
    [9]Xu, H.L., Feng, Y.P. Inhibitory effects of chiral 3-n-butylphthalide on inflammation following focal ischemic brain injury in rats. Acta Pharmacol. Sin,2000,21,433-438.
    [10]Zhang,Y, Wang, L., Li, J., Wang, X.L.2-(1-Hydroxypentyl)-benzoate increases cerebral blood flow and reduces infarct volume in rats model of transient focal cerebral ischemia. J. Pharmacol. Exp. Ther,2006,317,973-979.
    [11]洪浩,刘国卿.缺血性脑血管疾病治疗的抗氧化应激策略.中国药理学通报,2004,20(1) :19~24.
    [1]Peng, Y., Zeng, X., Feng, Y., Wang, X. Antiplatelet and antithrombotic activity of L-3-n-butylphthalide in rats. J. Cardiovasc. Pharmacol,2004,43:876-881.
    [2]Xu, H.L., Feng, Y.P. Inhibitory effects of chiral 3-n-butylphthalide on inflammation following focal ischemic brain injury in rats. Acta Pharmacol. Sin,2000,21:433-438.
    [3]Zhang, Y., Wang, L., Li, J., Wang, X.L.2-(1-Hydroxypentyl)-benzoate increases cerebral blood flow and reduces infarct volume in rats model of transient focal cerebral ischemia. J. Pharmacol. Exp. Ther,2006,317:973-979.
    [4]徐皓亮,冯亦璞.丁基苯酞对局灶性脑缺血大鼠软脑微循环障碍的影响.药学学报,1999,34(3):172-175.
    [5]熊杰,冯亦璞.丁基苯酞对线粒体呼吸链复合酶活性的影响.药学学报,1999,34(4):241-245.
    [6]Yan Chao-Hua, Feng Yi-Pu, et al. Effects of dl-butylphthalide on regional cerebral blood flow in right middle cerebral artery occlusion rats.Acta Phama Sin,1998,19(2):117-120.
    [7]林建峰,冯亦璞.丁基苯酞对局灶性脑缺血大鼠软脑循环障碍的影响.药学学报,1999,31(3):116-170.
    [8]许勇,姬汴生.米帕明对大鼠皮层神经细胞缺血性损伤的保护作用.中国临床药理学与治疗学,2002,7(2):134-137.
    [9]Salvaterra CG, Goldman WF. Drecteffect of hypoxiaon apparen intracellular calcium levels in cultured pulmonary vascula smooth musculecellsJ. Am Rev Respir Dis, 1991,143:A373.
    [10]许蜀闽.连二亚硫酸钠在建立培养细胞的无氧环境中的应用.第三军医大学学报,2005,27(4):45-47.
    [11]Shafer TJ, Atchison WD. Transmitter, ion channel and receptor properties of pheochromocytoma (PC 12) cells:a model for neurotoxicological studies. Neurotoxicology,1991,12(3):473-492.
    [12]Chou TT.A apoptotic pathway induced by nerve growth factor-mediated TrkA activation in medulloblastomo.J Biol Chem,2000,275(1):565-70.
    [13]Kriatain T,Siesjo BK. Calcium in ischemic cell deat. Stroke,1998,29:705.
    [1]Wei Z, Bai O, Richardson JS, Mousseau DD, Li XM. Olanzapine protects PC 12 cells from oxidative stress induced by hydrogen peroxide. J Neurosci Res.2003,73(3): 364-368.
    [2]Siu AW, To CH. Nitric oxide and hydroxyl radical-induced retinal lipid peroxidation in vitro. Clin Exp Optom.2002,85(6):378-382.
    [3]Adams S, Green P, Claxton R, et al. Reactive carbonyl formation by oxidative and non-oxidative pathways. Front Biosci,2001,6:A17-24.
    [4]董高翔,冯亦璞.丁基苯酞对局部脑缺血再灌注大鼠线粒体ATPase,抗氧化酶活性和脂质过氧化的影响.中国医学科学院学报,2002,24(1):93-97.
    [5]胡盾,黄新祥,冯亦璞.丁基苯酞对全脑缺血大鼠的纹状体细胞外液嘌呤类代谢物含量的影响.药学学报,1996,31(1):13-17.
    [6]Richard C. Li, Matthew W. Morris, Neuroglobin protects PC 12 cells against oxidative stress. Brain Research,2008,1190:159-166.
    [7]Shui Guan, Yong-Ming Bao, Bo Jiang, Li-Jia An, Protective effect of protocatechuic acid from Alpinia oxyphylla on hydrogen peroxide-induced oxidative PC12 cell death. European Journal of Pharmacology,2006,538:73-79.
    [8]Eghbal MA, Tafazoli S, Pennefather P, O'Brien PJ. Peroxidase catalysed formation of cytotoxic prooxidant phenothiazine free radicals at physiological pH. Chem Biol Inter,2004,151:43-51.
    [9]Weiss C, Maker HS, Lehrer GM. Sensitive fluorometric assays for glutathione peroxidase and reductase. Anal Biochem,1980,106 (2):512-516.
    [10]Zhang HY, Liu YH, Wang HQ, Xu JH, Hu HT. Puerarin protects PC 12 cells against beta-amyloid-induced cell injury. Cell Biol Int.2008,32(10):1230-1237.
    [11]You YH, Lin ZB. Protective effects of Canodema lucidum polysaccharides peptide on injury of macrophages induced by reactive oxygen species. Acta Pharmacol Sin, 2002,23(9):787-91.
    [12]Jiang B, Lin JH, Bao YM, et al. Hydrogen peroxide-induced apoptosis in PC 12 cells and the protective effect of puerarin. Cell Biol Int,2003,27(12):1025-31.
    [13]Wei, Z., Bai, O., Richardson, J.S., Mousseau, D.D., Li, X.M.,2003. Olanzapine protects PC12 cells from oxidative stress induced by hydrogen peroxide. J. Neurosci. Res.73,364-368.
    [14]洪浩,刘国卿.缺血性脑血管疾病治疗的抗氧化应激策略.中国药理学通报,2004,20(1):19~24:19-21.
    [15]Liu PK, Grossman RG, Hsu CY, et al. Ischemic injury and faulty gene transcripts in the brain J. Trends Neurosci,2001,24(10):581-588.
    [16]Gul Guner, Guldal Kirkali, Nurten Saydam, Nurcan Ozdamar, Superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and catalase (CAT) activities in experimental brain ischemia-reperfusion,Clinical Neurology and Neurosurgery,1997, 99:S140.
    [17]Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family:a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Rad Biol Med,2002,33(3):337-349.
    [18]Fridovich I. Superoxide radical and superoxide dismutases. Ann Rev Biochem, 1995,64:97-112.
    [19]Bergamini CM, Gambetti S, Dondi A, Cervellati C. Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des,2004,10 (14):1611-1626.
    [1]Elliott, R.M., Astley, S.B., Southon, S., Archer, D.B.. Measurement of cellular repair activities for oxidative DNA damage. Free Radic. Biol. Med.2000,28,1438-1446.
    [2]Lopez-Torres, M., Romero, M., Barja, G. Effect of thyroid hormones on mitochondrial oxygen free radical production and DNA oxidative damage in the rat heart. Mol. Cell. Endocrinol.,2000.,168,127-134.
    [3]Meng H, Li C, Feng L, Cheng B, Wu F, Wang X, Li Z, Liu S. Effects of Ginkgolide B on 6-OHDA-induced apoptosis and calcium over load in cultured PC 12. Int J Dev Neurosci.2007,25(8):509-514.
    [4]Kristensen BW,Noer H,Gramsbergen JB,Zimmer J,Noraberg J.Colchicine induces apoptosis in organotypic hippocampal slice cultures.Brain Research.2003,964:264-278.
    [5]Hong H, Liu GQ. Protection against hydrogen peroxide-induced cytotoxicity in PC12 cells by scutellarin. Life Sci.2004,74(24):2959-2973.
    [6]Hashimoto, Y., Shimada, Y., Itami, A., Ito, T., Kawamura, J., Kawabe, A., Kaganoi, J., Maeda, M., Watanabe, G, Imamura, M..Growth inhibition through activation of peroxisome proliferator-activated receptor gamma in human oesophageal squamous cell carcinoma..2003,Eur. J. Cancer 39,2239-2246.
    [7]Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol.1999,15:269-290.
    [8]Nicholson DW, Thornberry NA. Caspases:killer proteases. Trends Biochem Sci. 1997,22(8):299-306.
    [9]Moldovan L,MoldovanNI. Oxygen free radicals and redox biolog of organelles[J]. Histochem CellBiol,2004,122 4:395-412.
    [10]FrantsevaMV,Carlen PL, Perez-Velazquez JL. Dynamics of in tracellular calcium and free radicalproduction during ischemia ipyramidal neurons. Free Radic Biol Med, 2001,3110:1216-1227
    [11]Sureda FX, Escubedo E, Gabriel C, Comas J, Camarasa J, Camins A. Mitochondrial membrane potential measurement in rat cerebellar neurons by flow cytometry.1997,28(1):74-80.
    [12]Tang W, Liu JW, Zhao WM, Wei DZ, Zhong JJ. Ganoderic acid from Ganoderma Lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells. Life sci, 2006,80:205-211.
    [1]Ozawa S, Kamiya H, Tsuzuki K. Glutamate receptors in the mammalian central nervous system. Prog Neurobiol,1998,54(5):581-618.
    [2]Tanovic A, Alfaro V. Glutamaterelated excitotoxicity neuroprotection with memantine, an uncompetitive antagonist of NMDA glutamate receptor, in Alzheimers disease and vascular dementia. Rev Neurol,2006,42(10):607-616.
    [3]Behar TN, Scott CA, Greene CL, et al. Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J Neurosci,1999,19(11):4449-4461.
    [4]Nacher J, Rosell DR, AlonsoLlosa G, et al. NMDA receptor antagonist treatment induces a longlasting increase in the number of proliferating cells, PSANCAM immunoreactive granule neurons and radial glia in the adult rat dentate gyrus. Eur J Neurosci,2001,13 (3):512-520.
    [5]Bernabeu R, Sharp FR. NMDA and AMPA/kainate glutamate receptors modulate dentate neurogenesis and CA3 synapsinI in normal and ischemic hippocampus. J Cereb Blood Flow Metab,2000,20 (12):1669-1680.
    [6]Cull-Candy S, Brickley S, Farrant M. NMDA receptor subunits:diversity, development and disease. J Curr Op in Neurobiol,2001,11 (3):327-335.
    [7]Chatterton JE, Awobuluyi M, Premkumar LS, et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature, 2002,415(6873):793-798.
    [8]Madry C, Mesic I, Bartholom I, et al. Principal role of NR3 subunits in NR1/NR3 excitatory glycine receptor function. Biochem Biophys Res Commun, 2007,354(1):102-108.
    [9]Wada A, Takahashi H, Lip ton SA, et al. NR3 A modulates the outer vestibule of the NMDA receptor channel. J Neurosci,2006,26(51):13156-13166.
    [10]Awobuluyi M,Yang J, Ye Y, et al. Subunitspecific roles of glycine binding domains in activation of NR1/NR3 N-methyl-D-aspartate receptors. Mol Pharmacol, 2007,71(1):112-122.
    [11]Ishihama K, Turman JE J r. NR3 protein expression in trigeminal neurons during postnatal development. Brain Res,2006,1095(1):12-16.
    [12]Kimihiko S, Atsuko T. Occurrence of N-methyl-L-aspartate in bivalves and its distribution compared with of N-methyl-D-aspartate and D, L-aspartate. Compar Biochem Physiol Part B,2001,130:493-500.
    [13]Antimo DA, Antonella DS, Patrizia S, et al. A specific enzymatic high-performance liquid chromatography method to determine N-methyl-D-aspartic acid in biological tissues. Anal Biochem,2002,308:42-51.
    [14]Zheng X, Stein EA. Blockade of ionotropic glutamatergic transmission in the ventral tegmental area reduces heroin reinforcement in rat. Psychopharmacology (Berl), 2002,164 (2):144-150.
    [15]Matsumoto RR, Brackett RL, Kanthasamy AG Novel NMDA/glycine site antagonists attenuate cocaine-induced behavioral toxicity. Eur J Pharmacol,1997,338 (3):233-242.
    [16]Bespalov AY, Medvedev IO, Sukhotina IA. Effects of the NMDA receptor antagonist, D-CPPene, on sensitization to the operant decrement produced by naloxone in morphine-treated rats. Behav Pharmacol,2001,12 (2):135-142.
    [17]Goebel DJ, Poosch MS. NMDA receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mRNA levels of NR1Com, NR2A, NR2B, NR2C, NR2D and NR3A. Mol Brain Res,1999,69:164-170.
    [18]Dingledine R, Borges K, Bowie D, et al. The glutamate receptor ion channels. Pharmacological Reviews,1999,51(1):7~61.
    [19]Matsuda K, Kamiya Y, Matsuda S, et al. Cloning and characterization of a novel NMDA receptor subunit NR3B:a dominant subunit that reduces calcium permeability. Brain research. Molecular Brain Research,2002,100(1-2):43~52.
    [20]Lau C G, Zukin R S. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nature reviews. Neuroscience,2007,8(6):413~426
    [21]Perez-Otano I, Ehlers M D. Homeostatic plasticity and NMDA receptor trafficking. Trends in Neurosciences,2005,28(5):229~238
    [22]Liu QS, Pu L, Poo MM. Repeated cocaine exposure in vivo facilitates LTP induction in midbrain dopamine neurons. Nature,2005,437(7061):1027~1031
    [23]Lan JY, Skeberdis VA, Jover T, et al. Protein kinase C modulates NMDA receptor trafficking and gating. Nature Neuroscience,2001,4(4):382~390
    [24]Lavezzari G, McCallum J, Dewey CM, et al. Subunit-specificregulation of NMDA receptor endocytosis. The Journal of Neuroscience,2004,24(28):6383~6391
    [25]Nash J E, Fox S H, Henry B, et al. Antiparkinsonian actionsof ifenprodil in the MPTP-lesioned marmoset model of Parkinson's disease. Exp Neurol,2000,65(1): 136-142.
    [26]Dogan A, Rao A M, Baskaya M K, et al. Effects of ifenprodil, a polyamine site NMDA receptor antagonist, on reperfusion injury after transient focal cerebral ischemia. J Neurosurg,1997,87(6):921-926.
    [27]Baskaya M K, Rao A M, Donaldson D, et al. Protective effects of ifenprodil on ischemic injury size, bloodbrain barrierbreakdown, and edema formation in focal cerebral ischemia. Neurosurgery,1997,40(2):364-371.
    [28]Tsuda M, Suzuki T, Misawa M. Age-related decrease in theantiseizure effect of ifenprodil against pentylenetetrazole in mice. Brain Res Dev Brain Res,1997,104 (12):201-204.
    [29]PeinDureau F, Rachiline J, Neyton J, et al. Mapping the bingding site of the neurop rotectant ifenp rodil on NMDA receptors. J Neurosci,2002,22:59-65.
    [30]TanNo K, Esashi A, Nakagawasai O, et al. Nocicep tive behavior induced by polyLlysine and other basic compouds involves the sp inal NMDA receptors. B rain Res, 2004,108:49-53.
    [31]Istvan B, Sandor K, et al. Benzimidazole-2-carboxamides as novel NR2B selective NMDA receptor antagonists. Bioorganic & Medicinal Chemistry Letters,2006,16: 4638-4640.
    [32]Kevin T N, Christopher F C, et al. Cyclic benzamidines as orally efficacious NR2B-selective NMDA receptor antagonists. Bioorganic & Medicinal Chemistry Letters,2007,17:3997-4000.
    [33]曲晓秀,李鸣佳等,蛛网膜下腔应用Ro 25-6981对神经病理痛大鼠的镇痛作用及其电生理学机制研究.中国疼痛医学杂志,2008,14,(2):35-37.
    [34]Poonam M, Carolyn G, et al. Fear memory impairing effects of systemic treatment with the NMDA NR2B subunit antagonist, Ro 25-6981, in mice:Attenuation with ageing. Pharmacology, Biochemistry and Behavior (2008) (in press)
    [35]Wilson J A, Garry E M, Anderson H A, et al. NMDA receptor antagonist treatment at the time of nerve injury prevents injury-induced changes in spinal NR1 and NR2B subunit expression and increases the sensitivity of residual pain behaviours to subsequently administered NDMA receptor antagonists. Pain,2005,17(4):21-32.
    [36]Wang XM, Bausch SB. Effects of distinct classes of N-methyl-D-aspartate receptor antagonists on seizures, axonal sprouting and neuronal loss in vitro:suppression by NR2B-selective antagonists. Neuropharm acology,2004,47:8-20.
    [37]Loschmann P A, Groote C D, Smith L, et al. Antiparkinsonian activity of Ro 25-6981, a NR2B specific NMDA receptor antagonist, in animal models of Parkinson's disease. Exp N eurol,2004,187:86-93.
    [38]Yukewicz L, Weaver J, Bullock MR, et al. The effect of the selective NMDA receptor antagonist traxoprodil in the treatment of traumatic brain injury. J Neurotraumacology,2005,22:1428-1443
    [39]Steece C K, Chambers LK, Jaw T S, et al. Antiparkinsonian actions of CP101-606:an antagonist of NR2B subunit containing N-methyl-D-aspartate receptors. Exp Neurol,2000,163:239-243.
    [40]Nash J.E, Ravenscroft P., et al. The NR2B-selective NMDA receptor antagonist CP-101-606 exacerbates L-DOPA-induced dyskinesia and provides mild potentiation of anti-parkinsonian effects of L-DOPA in the MPTP-lesioned marmoset model of Parkinson's disease. Experimental Neurology 2004,188:471-479.
    [41]Wessell R H, Ahmed S M, Menniti F S, et al. NR2B selective NMDA receptor antagonist CP 101-606 prevents levodopa induced motor response alterations in hemi-parkinsonian rats. Neuropharmacology,2004,47:184-194.
    [42]BartonM E, White H S. The effect of CGX-1007 and CI-1041, novel NDMA receptor antagonists, on kindling acquisition and expression. Eplilepsy Res,2004,59:1-12.
    [43]Abdallah HT, Laurent G, et al. Effect of a selective glutamate antagonist on L-dopa-induced dyskinesias in drug-naive parkinsonian monkeys. Neurobiology of Disease,2004,15:171-176.
    [44]Gyula K, Pa K, et al. NR2B containing NMDA receptor dependent windup of single spinal neurons. Neuropharmacology,2004,46:23-30.
    [45]Williams A J, Dave J R, Lu X.M, et al. Selective NR2B NMDA receptor antagonists are protective against staurosporine-induced apoptosis. European Journal of Pharmacology,2002,452:135-136.
    [46]Gabriele L, Marco L,et al. Functional in vitro characterization of CR 3394:A novel voltage dependent N-methyl-D-aspartate (NMDA) receptor antagonist. Neuro-pharmacology,2006,50:277-285.
    [47]Sophie S, Marco L,et al. In vivo neurochemical effects of the NR2B selective NMDA receptor antagonist CR 3394 in 6-hydroxydopamine lesioned rats, European Journal of Pharmacology,2008,58:297-305.
    [48]Sarrel S, Lanza M, Makove F, In vivo neurochemical effects of the voltage dependent NMDA receptor antagonist CR3394 in 6-hydroxydopamine lesioned rats. Poster Presentations:Animal models, Neurode generation and Neuroprotection,2001, 12:137-139.
    [49]Makoto K, Hiroshi N, Isao S. Discovery of novel andorallyactive NR2B-selective N-methyl-D-aspartate (NMDA) antagonists, pyridinol derivatives with reduced HERG binding affinity.Bioorganic & Medicinal Chemistry Letters,2007,17:5533-5536.
    [50]Kotlinska J. Attenuation of morphine dependence and withdrawal by glycine B site antagonists in rats. Pharmacol, Biochem Behav,2001,68:157-161
    [51]Danysz W, Parsons CG. Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeuticapp lications. Pharmacol Rev, 1998,50:597-664
    [52]Zhu Y, Long Z, Zheng M, et al. Effect of glycine site/NMDA receptor antagonistMRZ2/576 on the conditioned place preference and locomotor activity induced bymorphine in mice. J Zhejiang Univ Sci B,2006,7 (12):998-1005.
    [53]Jackson PF, Davenport TW, Garcia L, et al. Synthesis and biological activity of a series of 4-aryl substituted benz azepines:antagonsists at the strychnine-insensitive glycine site, Bioorg Med Chem Lett,1995,5(24):3097-3100
    [54]Bakchine S, Loft H. Memantine treatment in patients with mild to moderate Alzheimer's disease:results of a randomised, double-blind, placebo-controlled 6-month study. J Alzheimers Dis.2008,13(1):97-107.
    [55]张秀娟,谷氨酸及NMDA受体拮抗剂MK-801对大鼠伏核痛兴奋神经元电活动的影响.生理学报,2005,57(01):101-103.
    [56]高守海.竞争性NMDA受体拮抗剂.氨基酸和生物资源,1995,17(4):46-51.
    [57]Mdzinarishvili A, Geldenhuys W J, et al. NGP1-01, a lipophilic polycyclic cage amine, is neuroprotective in focal ischemia, Neuroscience Letters,2005,383:49-53.
    [58]Mdzinarishvili K, Abbruscato T J, et al. Neuroprotection in mice by NGP1-01 after transient focal brain ischemia. Bainresearch,2008,96:113-120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700