光催化合成萘酚的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
萘酚(1-萘酚、2-萘酚),是重要的精细化工中间体,广泛应用于医药、农药、染料、香料制造等行业。TiO_2作为光催化剂,在芳香化合物光催化羟基化方面的应用越来越受到重视。
     利用P-25型TiO_2对萘进行光催化,在不加H_2O_2的体系中,萘的转化率很低,仅有2%左右,加入适当浓度的H_2O_2,萘的转化率能提高至19.6%,1-萘酚的收率为2.5%左右。
     利用Photo-Fenton反应和Photo-Fenton-like反应对萘进行了光催化羟基化反应。考察了Fe~(2+)或者Fe~(3+)初始浓度、H_2O_2初始浓度、反应时间等不同因素对反应的影响。Fenton-like反应对萘的光催化羟基化比Fenton反应快。萘的转化率很大程度上取决于Fe~(2+)或者Fe~(3+)的初始浓度以及H_2O_2的初始浓度。在合适的Fe~(2+)或者Fe~(3+)以及H_2O_2初始浓度的情况下,萘的转化率能达到80%以上,1-萘酚收率4.6%。不管在Photo-Fenton反应还是Photo-Fenton-like反应体系中,紫外光照射对萘的转化率影响很小。
     利用浸渍法制备了Fe~(3+)、Cu~(2+)、Ag~+掺杂P-25型TiO_2,发现经过掺杂催化剂晶型没有发生变化。Fe~(3+)掺杂P-25光催化活性比P-25稍高,而Cu~(2+)、Ag~+掺杂P-25光催化剂以及通过溶胶-凝胶法制备的Fe~(3+)、Cu~(2+)、Ag~+掺杂的锐钛矿型TiO_2,光催化活性均比P-25低。经过H_2O_2改性的锐钛矿型TiO_2和P-25相比,萘的转化率基本一致,但生成萘酚的选择性高。
     实验中制备的纳米CdS、介孔分子筛MCM-41对萘的光催化有一定活性,但萘的转化率5%左右,1-萘酚收率1.4%左右,都低于P-25的光催化活性。
Naphthol(1-naphthol, 2-naphthol), is an important fine chemical intermediate, widely used in medicine, pesticides, dyes, perfume manufacturing industry. Titanium dioxide catalysts have attracted a great deal of attention as a photocatalyst of hydroxylation of aromatic compounds.
     Hydroxylation of naphthalene in the presence of P-25 TiO_2 as photocatalyst was investigated. In the absence of H_2O_2, the naphthalene conversion was rather low, while proper H_2O_2 was added to the reaction system, naphthalene conversion, as well as 1-naphthol yield, enhanced rapidly.
     Hydroxylation of naphthalene using Photo-Fenton(Fe~(2+)/H_2O_2) or Photo-Fenton-like(Fe~(3+)/H_2O_2) reactions was investigated under neutral conditions. The effects of different systems variable initial concentration of Fe~(2+)or Fe~(3+), initial concentration of H_2O_2, reaction time were studied. Hydroxylation of naphthalene in Photo-Fenton-like reaction was faster than Fenton reaction.
     The naphthalene conversion was strongly dependent on the initial concentration of Fe~(2+) or Fe~(3+), the initial concentration of H_2O_2. High naphthalene conversion was achieved at proper concentrations of Fe~(2+)/Fe~(3+)and H_2O_2. The UV irradiation had little effect on overall naphthalene conversion in the Fenton reaction or Fenton-like reaction.
     Fe~(3+), Cu~(2+), Ag~+-doped P-25 was prepared by impregnation method. Compared metal-doped TiO_2 to P-25, there was no change in crystal form. While photocatlytic hydroxylation of naphthalene, Fe~(3+)-doped P-25 photocatalytic activity was higher than the P-25, followed by Cu~(2+)-doped P-25 and Ag~+-doped P-25. We also prepared Fe~(3+), Cu~(2+), Ag~+-doped anatase TiO_2 through the sol-gel method. Their photocatalytic activities were lower than P-25. The anatase TiO_2 modified by H_2O_2 is almost the same in the naphthalene conversion, but the selectivity of 1-naphthol increased.
     CdS, as well as mesoporous molecular sieve MCM-41, was prepared in the experiments. Although they all had photocatalytic activity in hydroxylation of naphthalene, much lower than P-25 photocatalytic activity.
引文
[1]董少刚,唐仲华,高旭波,等. 2-萘酚生产对环境的影响及废水处理工艺研究.安全与环境工程, 2005, 12(2): 57~60
    [2]徐克勋.精细有机化工原料及中间体手册.北京:化学工业出版社, 1998: 3~107
    [3]Fiedorow P, Pasikowska M, Koroniak H, et al. Rearrangements of free radicals during 2-naphthol synthesis from 2-isopropylnaphthalene. J. Mol. Struc.: Theochem, 2006, 758: 75~79
    [4]Makoto T, Setsu T, Tsugio H. et al. Beta naphthol production from naphthalene-providing economical process by omitting purification of intermediates. JP61115039-A: 1986-6-2
    [6]Fujishima A, Honda K. Electronchemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37~38
    [7]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem., 1977, 81(15): 1484~1488
    [8]Li X J, Jenks W S. Isotope studies of photocatalysis: Dual mechanisms in the conversion of anisole to phenol. J. Am. Chem. Soc., 2000, 122: 11864~11870
    [9]Soana F, Sturini M, Cermenati L, et al. J. Chem. Soc., Perkin Trans. 2, 2000: 699~704
    [10]Park H, Choi W. Photocatalytic conversion of benzene to phenol using modified TiO2 and polyoxometalates. Catal. Today, 2005, 101: 291~297
    [11]Kumar A, Mathur N. Photocatalytic oxidation of aniline using Ag+-loaded TiO2 suspensions. Appl. Catal A: Gen., 2004, 275: 189~197
    [12]Tryba B, Morawski A W, Inagaki M, et al. The kinetics of phenol decomposition under UV irradiation with and without H2O2 on TiO2, Fe-TiO2 and Fe-C-TiO2 photocatalysts. Appl. Catal. B: Environ., 2006, 65: 86~92
    [13]Peller J, Wiest O, Kamat P V. Hydroxyl radical’s role in the remediation of a common herbicide, 2, 4-dichlorophenoxyacetic acid (2, 4-D). J. Phys. Chem. A, 2004, 108: 10925~10933
    [14]Ding Z, Lu G Q, Greenfield P F. Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J. Phys. Chem. B, 2000, 104: 4815~4820
    [15]Muneera M, Qamara M, Bahnemann D. Photoinduced electron transfer reaction of few selected organic systems in presence of titanium dioxide. J. Mol. Catal A: Chem., 2005, 234: 151~157
    [16]Wang H J, Li J, Quan X. Formation of hydrogen peroxide and degradation of phenol in synergistic system of pulsed corona discharge combined with TiO2 photocatalysis. J. Hazard. Mater., 2007, 141: 336~343
    [17]Lair A, Ferronato C, Chovelon J M. Naphthalene degradation in water by heterogeneous photocatalysis: An investigation of the influence of inorganic anions. J. Photochem. Photobiol. A: Chem., 2008, 193: 193~203
    [18]Cao Y S, Chen J X, Huang L. Photocatalytic degradation of chlorfenapyr in aqueous suspension of TiO2. J. Mol. Catal. A: Chem., 2005, 233: 61~66
    [19]Evgenidou E, Konstantinou I, Fytianos K. Photocatalytic oxidation of methyl parathion over TiO2 and ZnO suspensions. Catal. Today, 2007, 124: 156~162
    [20]Kamat P V. Photochemistry on nonreactive and reactive surfaces. Chem. Rev., 1993, 93: 267~300
    [21]Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev., 1995, 95: 735~758 [22Fujihira M, Satoh Y, Osa T. Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2. Nature, 1981, 293: 206~207
    [23]施利毅,李春忠. TiCl4-O2体系高温反应制备超细TiO2光催化材料的研究.无机材料学报, 1999, 14(5): 717~725
    [24]Yoshitake H, Sugihara T, Tatsumi T. Preparation of wormhole-like mesoporous TiO2 with an extremely large surface area and stabilization of its surface by chemical vapor deposition. Chem. Mater., 2002, 14(3): 1023~1029
    [25]魏绍东.溶胶-凝胶技术制备纳米TiO2技术的研究进展.材料导报, 2004, 18: 50~53
    [26]张启超,杨隽.胶溶法制备超微粒二氧化钛.重庆大学学报, 1989, 12(4): 10~15
    [27]Hepernma O A, Tennakone K, Dissanayake W D D P. Photocatalytic behaviour of metal doped titanium dioxide: studies on the photochemical synthesis of ammonia on Mg/TiO2 catalyst systems. Appl. Catal., 1990, 62(1): L1~L5
    [28]Chio W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem., 1994, 98(51): 13669~13679
    [29]Byun D, Jin Y, Kim B, et al. Photocatalytic TiO2 deposition by chemical vapor deposition. J. Hazard. Mater., 2000, 73(2): 199~206
    [30]张峰,李庆霖,杨建军,等. TiO2光催化剂的可见光敏化研究.催化学报,1999, 20(3): 329~332
    [31]Butler Z C, Davis A P. Photocatalyic oxidation in aqueous titanium dioxide suspensions: the Influence of dissolved transition metals. J. Photochem. Photobiol. A: Chem., 1993, 70: 273~283
    [32]Gratzel M, Russell F H. Electron paramagnetic resonance studies of doped titanium dioxide colloids. J. Phys. Chem., 1990, 94(6): 2566~2572
    [33]Xiao J G, Peng T Y, Li R, et al. Preparation, phase transformation and photocatalytic activities of cerium-doped mesoporous titanic nanoparticles. J. Solid State Chem., 2006, 179(4): 1161~1170
    [34]Liu Z L, Guo B, Hong L, et al. Preparation and characterization of cerium oxide doped TiO2 nanoparticles. J. Phy. Chem. Solids, 2005, 66(1): 161~167
    [35]Xie Y B, Yuan C W, Li X Z. Photocatalytic degradation of X-3B dye by visible light using lanthanide ion modified titanium dioxide hydrosol system. Coll. Surf. A: Physicochem. Eng. Aspects, 2005, 252(1): 87~94
    [36]Yan X L, He J, Evans D G,, et al. Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors. Appl. Catal. B: Environ., 2005, 55(4): 243~252
    [37]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269~271
    [38]Nosaka Y, Matsushita M, Nishino J, et al. Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds. Sci. Technol. Advanced Mater., 2005, 6(2): 143~148.
    [39]Sato S, Nakamura R, Abe S. Visible-light sensitization of TiO2 photocatalysts by wet-method N doping. Appl. Catal. A: Gen., 2005, 284(1~2): 131~137
    [40]Pore V, Heikkila M, Ritala M, et al. Atomic layer deposition of TiO2~XNX thin films for photocatalytic applications. J. Photochem. Photobiol. A: Chem., 2006, 177(1): 68~75
    [41]Liu Y, Chen X, Li J, et al. Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts. Chemosphere, 2005, 61(1): 11~18
    [42]Li D, Haneda H, Hishita S, et al. Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. J. Fluorine Chem., 2005, 126(1): 69~77
    [43]Li D, Haneda H, Labhsetwar N K, et al. Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies. Chem. Phys. Lett., 2005, 401(4~6): 579~584
    [44]Shen M, Wu Z Y, Huang H, et al. Carbon-doped anatase obtained from TiC for photocatalysis under visible light irradiation. Mater. Lett., 60(5): 693~697
    [45]Lin L, Lin W, Zhu X Y, et al. Uniform carbon-covered titania and its photocatalytic property. J. Mol. Catal. A: Chem., 2005, 236(1~2): 46~53
    [46]Yin S, Yamaki H, Komatsu M, et al. Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylene tetramine. J. Mater. Chem., 2003, 13(12): 2996~3001
    [47]Wang Z P, Cai W M, Hong X T, et al. Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources. Appl. Catal. B: Environ., 2005, 57(3): 223~231
    [48]Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-XNx powders. J. Phys. Chem. B, 2003, 107(23): 5483~5486
    [49]Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem. Lett., 2003, 32(4): 364~365
    [50]Yu J C, Ho W, Yu J G, et al. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ. Sci. Technol. 2005, 39(4): 1175~1179
    [51]Lettmann C, Hildenbrand K, Kisch H, et al. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl. Catal. B: Environ., 2001, 32(4): 215~227
    [52]Shahed U M K, Al-Shahry M, Ingler W B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, 297: 2243~2245
    [53]Batzill, M, Morales E. H, Diebold U. Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Phys. Rev. Lett. 2006, 96: 026103
    [54]Sano T, Negishi N, Koike K, et al. Preparation of a visible light-responsive photocatalyst from a complex of TiO2 with a nitrogen-containing ligand. J. Mater. Chem., 2004, 14(3): 380~384
    [55]Luo H, Takata T, Lee Y, et al. Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. Chem. Mater., 2004, 16(5): 846~849
    [56]Yu J C, Yu J, Ho W, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater., 2002, 14(9): 3808~3816
    [57]Chatterjee D, Mahata A. Demineralization of organic pollutants on the dye modified TiO2 semiconductor particulate system using visible light. Appl. Catal. B: Environ., 2001, 33(2): 119~125
    [58]Feigelson L, Muszkat L, Bir L, et al. Dye photo-enhancement of TiO2-photocatalyzed degradation of organic pollutants: the organobromine herbicide bromacile. Water Sci. Technol., 2000, 42(1~2): 275~279
    [59]Hirai T, Suzuki K, Komasawa I. Preparation and photocatalytic properties of composite CdS nanoparticles-titanium dioxide particles. J. Coll. Inter. Sci., 2001, 244(2): 262~265
    [60]丁士文,王利勇,张绍岩,等.纳米MnO2-TiO2复合材料的合成、结构与性能研究.中国科学(B辑), 2003, 33(4): 306~331
    [61]Pilkenton S, Raftery D. Solid-state NMR studies of the adsorption and photooxidation of ethanol on mixed TiO2-SnO2 photocatalysts. Solid State Nucl. Magn. Reson., 2003, 24(4): 236~253
    [62]Vinodgopal K, Bedja I, Kamat P V. Nanostructured semiconductor films for photocatalysis. Photoelectrochemical behavior of SnO2/TiO2 composite systems and its role in photocatalytic degradation of a textile azo dye. Chem. Mater., 1996, 8(8): 2180~2187
    [63]李芳柏,古国榜,李新军,等.纳米复合Sb2O3-TiO2的光催化性能研究.无机化学学报, 2001, 17(1): 37~42
    [64]Fu X Z, Clark L A, Yang Q, et al. Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2. Environ. Sci. Technol., 1996, 30(2): 647~653
    [65]Tawkaew S, Fujishiro Y, Yin S, et al. Synthesis of cadmium sulfide pillared layered compounds and photocatalytic reduction of nitrate under visible light irradiation. Coll. Surf. A: Physicochem. Eng. Aspects, 2001, 179: 139~144
    [66]Bessekhouad Y, Robert D, Weber J V. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J. Photochem. Photobiol. A: Chem., 2004, 163(3): 569~580
    [67]Tawkaew S, Fujishiro Y, Yin S, et al. Synthesis of cadmium sulfide pillared layered compounds and photocatalytic reduction of nitrate under visible irradiation. Coll. Surf. A: Physicochem. Eng. Aspects, 2001, 179(2~3): 139~144
    [68]Wang C, Wang X M, Xu B Q, et al. Enhanced photocatalytic performance of nanosized ZnO/SnO2 photocatalysts for methyl orange degradation. J. Photochem. Photobiol. A: Chem., 2004, 168(1~2): 47~52
    [69]胡蓉蓉,钟顺和.负载型复合半导体V2O5-TiO2/SiO2表面V2O5和TiO2的相互修饰作用.催化学报, 2005, 26(1): 32~36
    [70]Hufschmidt D, Bahnemann D, Testa J J, et al. Enhancement of the photocatalytic activity of various TiO2 materials by platinisation. J. Photochern. Photobiol. A: Chem., 2002, 148: 223~231
    [71]Arabatzis I M, Stergiopoulos T, Bernard M C, et al. Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange. Appl. Catal. B: Environ., 2003, 42: 187~201
    [72]Jakob M, Levanon H, Kamat P V. Charge distribution between UV-irradiation TiO2 and gold nanoparticles: determination of shift in the Fermi level. Nano Lett., 2003, 3: 353~358
    [72]Subramanian M, Wolf E, Kamat P V. Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films. J. Phy. Chem. B, 2001, 105: 11439~11446
    [73]Aguado M A, Anderson M A. Degradation of formic acid over semiconducting membranes supported on glass: effects of structure and electronic doping. Sol. Energy Mater. Sol. Cells, 1993, 28(4): 345~361
    [74]Ranjit K T, Varadarajan T K, Viswanathan B. Photocatalytic reduction of dinitrogen to ammonia over noble-metal-loaded TiO2. J. Photochem. Photobiol. A: Chem., 1996, 96: 181~185
    [75]Harada K. Photocatalytic degradation of organophosphorous insecticides in aqueous semiconductor suspensions.Wat. Res. 1990, 24(11): 1415~1417
    [76]Sun B, Vorontsov A V, Smirniotis P G. Role of platinum deposited on TiO2 in phenol photocatalytic oxidation. Langmuir, 2003, 19: 3151~3156
    [77]Park H, Choi W. Photoelectrochemical investigation on electron transfer mediating behaviors of polyoxometalate in UV-illuminated suspensions of TiO2 and Pt/TiO2. J. Phys. Chem. B, 2003, 107: 3885~3890
    [78]Einaga H, Ibusuki T, Futamura S. Improvement of catalyst durability by deposition of Rh on TiO2 in photooxidation of aromatic compounds. Environ. Sci. Technol., 2004, 38: 285~289
    [79]Li D, Haneda H, Hishita S, et al. Visible-light-driven N-F-codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification. Chem. Mater., 2005, 17: 2596~2602
    [80]Nukumizu K,Nunoshige J, Takata T, et al. TiNXOYFZ as a stable photocatalyst for water oxidation in visible light (<570 nm). Chem. Lett., 2003, 32(2): 196~197
    [81]Liu H Y, Gao L. (Sulfur, nitrogen)-codoped rutile-tianium dioxide as a visible-light-activated photocatalyst. J. Am. Ceram. Soc. 2004, 87(8): 1582~1584
    [82]Teruhisa O, Toshiki T, Maki T, et al. Photocatalytic activity of a TiO2 photocatalyst doped with C4+ and S4+ ions having a rutile phase under visible light. Catal. Lett., 2004, 98(4): 255~258
    [83]闫俊萍,唐子龙,张中太,等. TiO2双掺Cr、Sb的光催化性能研究.稀有金属材料与工程, 2005, 34(3): 429~432
    [84]Yuan Z H, Jia J H, Zhang L D. Influence of co-doping of Zn(II)+Fe(III) on the photocatalytic activity of TiO2 for phenol degradation. Mater. Chem. Phys., 2002, 73: 323~326
    [85]Cheng P, Li W, Zhou T L, et al. Physical and photocatalytic properties of zinc ferrite doped titanic under visible light irradiation. J. Photochem. Photobiol. A: Chem., 2004, 168(1~2): 97~101
    [86]Li D, Ohashi N, Hishita S, et al. Origin of visible-light-driven photocatalysis: A comparative study on N/F-doped and N-F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations. J. Solid State Chem., 2005, 178: 3293~3302
    [87]Yang P, Lu C, Hua N P, et al. Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis. Mater. Lett., 2002, 57: 794~801
    [84]袁昌来,董发勤. (Ag、Nd)/TiO2纳米材料光催化活性及其表面能带结构分析.功能材料, 2007, 38(2): 316~319
    [89]华南平,吴遵义,杜玉扣,等. Pt、N共掺杂TiO2在可见光下对三氯乙酸的催化降解作用.物理化学学报, 2005, 21(10): 1081~1085
    [90]尹霞,向建南,翦立新,等. Fe3+-H掺杂TiO2光催化剂的制备、表征与催化性能.应用化学, 2005, 22(6): 634~637
    [91]肖东昌,夏慧丽.新型纳米光催化剂La3+/S/TiO2的制备及其可见光活性研究.中国稀土学报, 2005, 24(6): 671~674
    [92]Sakatani Y, Nunoshuge J, Ando H, et al. Photocatalytic decomposition of acetaldehyde under visible light irradiation over La3+ and N co-doped TiO2. Chem. Lett., 2003, 32(12): 1156~1157
    [93]李越湘,王添辉,彭绍琴. Eu3+、Si4+共掺杂TiO2光催化剂的协同效应.物理化学学报, 2004, 20(12): 1434~1439
    [94]Wu Y S, Wei H Y, Shi Y C, et al. A comparative study of the effects of Cu, Rh doping on the microstructure, morphological and optical properties of tin dioxide nanocrystallines. J. Mater. Sci., 2005, 39(4): 1305~1308
    [95]彭峰,任艳群.提高二氧化钛光催化性能的研究进展.现代化工, 2002, 22(10): 6~9
    [96]Yoshinao O, Michael G. Effect of surface hydroxyl density on photocatalytic oxygen generation in aqueous TiO2 suspensions. J. Chem. Soc., Faraday Trans., 1988, 84(1): 197~205
    [97]苏文悦,陈亦琳,付贤智. SO42-/TiO2固体酸催化剂的酸强度及光催化性能.催化学报, 2001, 22(2): 175~176
    [98]Stathatos E, Lianos P, Tsakiroglou C. Highly efficient nanocrystalline titania films made from organic/inorganic nanocomposite gels. Micropor. Mesopor. Mater., 2004, 75: 255~260
    [99]Inaba R, Fukahori T, Hamamoto M, et al. Synthesis of nanosized TiO2 particles in reverse micelle systems and their photocatalytic activity for degradation of toluene in gas phase. J. Mol. Catal. A: Chem., 2006, 260: 247~254
    [100]Sonawane R S, Hegde S G, Dongare M K. Preparation of titanium(IV) oxide thin film photocatalyst by sol-gel dip coating. Mater. Chem. Phys., 2002, 77: 744~750
    [101]Irmak S, Kusvuran E, Erbatur O. Degradation of 4-chloro-2-methylphenol in aqueous solution by UV irradiation in the presence of titanium dioxide. Appl. Catal. B: Environ. 2004, 54, 85~91
    [102]孙剑辉,孙胜鹏,王慧亮,等. Fenton氧化技术处理难降解工业有机废水研究进展.工业水处理, 2006, 26(12): 9~13
    [103]Wang S B. A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes and Pigments, 2008, 76: 714~720
    [104]Zhang T Y, Oyama T, Horikoshi S. Photocatalytic decomposition of the sodium dodecylbenzene sulfonate surfactant in aqueous titania suspensions exposed to highly concentrated solar radiation and effects of additives. Appl. Catal. B: Environ., 2003, 42: 13~24
    [105]Al-Ekabi H, Butters B, Delany D, et al. TiO2 advanced photo-oxidation technology: Effect of electron acceptors. Photocatalytic Purification and Treatment of Water and Air. 1993, 321~335

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700