棉铃虫蛹滞育解除相关基因的克隆、表达和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滞育是指昆虫个体接收到环境信号后,程序性地在不良环境到来之前进入一种低代谢、低速发育甚至不发育的状态。对昆虫滞育的研究不但有助于我们了解昆虫的抗逆性,为害虫防治提供新思路,而且昆虫滞育本身也是研究动物发育调节的一个理想模型。根据不同发育阶段,昆虫的滞育可分为卵滞育、蛹滞育、幼虫滞育和成虫滞育。目前的研究结果认为不同的滞育形态分别由不同的作用机制调节的。
     棉铃虫Helicoverpa armiger(aHar)属鳞翅目(Lepidoptera)夜蛾科(Noctuidae)昆虫,是我国主要的农业害虫,以蛹的形式滞育。蛹滞育的经典理论认为是由于脑中促前胸腺激素(PTTH)合成的下调或者是释放受阻,导致前胸腺合成促进发育的蜕皮激素减少,最后进入滞育。蛹滞育解除时,血淋巴中PTTH滴度上升,促进前胸腺分泌蜕皮激素,使发育进程重新启动。通过给棉铃虫活体注射重组PTTH打破蛹滞育直接证明了PTTH→蜕皮激素→滞育解除这条通路。滞育激素(DH)是从家蚕促咽下神经节中分离得到的一种昆虫神经肽,能诱导家蚕卵滞育。有趣的是,DH不能诱导棉铃虫滞育,反而能打破棉铃虫蛹滞育。实验证明,DH打破滞育也是通过作用于前胸腺产生蜕皮激素这一路径。所以鉴定应答蜕皮激素的相关基因对查明滞育解除的机理是至关重要的工作。为此我们用差异展示方法(DD-PCR)对棉铃虫蛹滞育打破相关基因进行了筛选,结果得到30个有差异的cDNA片段;通过RT-PCR验证,得到三个与蛹滞育打破相关的基因。同源比较显示它们分别与番茄褐夜蛾Feltia jaculifera细胞色素氧化酶亚基1(90%)、库蚊Culex pipiens NADH dehydrogenase 1 alpha subcomplex subunit 6(ndua6)(70%)、烟草天蛾Manduca sexta V0-ATPase subunit e (92%)有较高的相似性。三个基因全长序列分别为1530 bp、567 bp和525 bp,阅读框编码510、125和85个氨基酸的蛋白。
     细胞色素氧化酶亚基1(Cytochrome c oxidase subunit 1, COX1)是线粒体电子传递链的末端酶COX的第一个亚基,由线粒体基因组编码,它与另外两个线粒体基因组编码的亚基COX2和COX3共同组成COX活性中心。我们获得cox1的cDNA全长,其ORF包含1530核苷酸,编码510个氨基酸,起始密码子为CGA。为弄清棉铃虫在蛹期及滞育解除时对不同能量要求的反应,我们对cox1 mRNA、蛋白水平表达、COX活性及磷酸化进行了调查。结果显示:棉铃虫cox1 mRNA和蛋白水平的表达与COX活性相关;非滞育蛹COX活性高,而滞育蛹则保持低能量代谢水平。注射20-羟基蜕皮酮打破棉铃虫蛹滞育时,cox1 mRNA及蛋白水平表达逐渐增加的同时COX活性显著提高。棉铃虫COX1的酪氨酸磷酸化与COX活性密切相关,暗示可逆蛋白磷酸化可能通过调节能量代谢的速率在昆虫滞育中起关键作用。
     NADH dehydrogenase 1 alpha subcomplex subunit 6 (ndua6)是线粒体电子传递链第一个酶复合物的一个附着小蛋白,由核基因编码。棉铃虫脑中ndua6基因mRNA和蛋白水平表达非滞育蛹显著高于滞育型蛹。滞育型蛹ndua6 mRNA水平表达在蛹早-中期(0-10天)和滞育维持期(10-35天)没有明显差异,蛋白表达略有下调。注射20-羟基蜕皮酮打破蛹滞育,1天时ndua6 mRNA及蛋白表达水平均上调,2-3天时,蛋白表达仍然保持高水平,而mRNA转录在2天时下调,第3天时又回调至第1天水平,表现出波动性。
     V0-ATPase亚基e是液泡膜上ATP水解酶的一个亚基,是一个二次跨膜蛋白。在滞育蛹脑中,V-ATPase亚基e在滞育前期及维持期都稳定表达,表达量低于非滞育蛹,注射蜕皮激素24小时后,快速上调。非滞育蛹ATPase活性高于滞育蛹,前期高,然后逐步下降。滞育蛹ATPase活性与COX活性趋势基本一致,始终维持在低水平,只是在20-羟基蜕皮酮打破滞育后会显著增高。
When insects receive the environmental signals, such as temperature, photoperiod, humidity etc., they will enter a state of programmed developmental arrest called diapause which is characterized of low metabolism, low-speed development ahead of the unfavorable environment. Insect diapause is an ideal model to study animal development, it will help us to understand the resistance of insect and supply a feasible method for pest biocontrol. Diapause could occur in different stage of life cycles, such as egg diapause, larval diapause, pupal diapause, and adult diapause. Current research result demonstrates that different diapause have different mechanism.
     The cotton bollworm, Helicoverpa armigera (Lepidoptera noctuidae) is a major agricultural pest which belongs to pupal diapause. It is well-known that pupal diapause is regulated by prothoracicotropic hormone (PTTP) and ecdysone. Classic theory of pupal diapause think that a shut-down of prothoracicotropic hormone (PTTH) synthesis and/or release and the subsequent failure of the prothoracic glands (PGs) to synthesize the ecdysteroids needed to promote continuous development (Denlinger, 1985). Recombinant PTTH could effectively break pupal diapause in H. armigera (Wei et al., 2005). Interestingly, diapause hormone (DH), which induces embryo diapause in Bombyx mori, was found to break pupal diapause in H. armigera (Zhang et al., 2004a) and H. virescens (Xu and Denlinger, 2003) by stimulating ecdysone synthesis and release. However, the molecular mechanism of pupal diapause termination in response of ecdysone is yet unknown. With these questions in mind, we injected ecdysone into diapausing pupae to screen the related genes from pupal diapause termination by using differential display PCR (DD-PCR). Thirty cDNA fragments were isolated from brain of diapausing pupae 24 h after injection of 20-hydroxyecdysone, and three genes were identified by homology search, cytochrome c oxidase subunit 1 of Feltia jaculifera (90%) , vacuolar ATPase subunit e of Manduca sexta (92%) and NADH dehydrogenase 1 alpha subcomplex subunit 6 Culex pipiens (70%) respectively.
     Cytochrome c oxidase subunit 1 is the largest subunit of COX, the terminal complex of electron transfer chain (ETC), and comprises the active core of cytochrome c oxidase with COX2 and COX3. We obtained the full length of H. armigera cox1 (Hea-cox1) cDNA which has an open reading frame of 1530 nucleotides encoding a putative protein of 510 amino acid residues, with CGA as start codon. To evaluate the response to different energy demands during pupal development and at diapause termination, we assessed the expression of Hea-cox1 mRNA and protein, COX activity and its phosphorylation. The results show that Hea-cox1 expression at the mRNA and protein levels is associated with COX activity, and high levels of Hea-cox1 expression and COX activity are present in nondiapause pupae, suggesting that low energy metabolism provided by oxidative phosphorylation in mitochondria in diapause individuals is necessary. After diapause is broken by injection of 20-hydroxyecdysone, expression of Hea-cox1 mRNA and protein increases gradually and COX activity increases significantly. Furthermore, Hea-cox1 phosphorylation is closely correlated with COX activity, suggesting that reversible protein phosphorylation might play a key role in insect diapause through suppressing the rate of energy product.
     NADH dehydrogenase 1 alpha subcomplex subunit 6 (ndua6) is an adhere subunit of the complex I in the electron transfer chain (ETC), encoded by the nuclear genome. In the brain of H. armigera pupae, mRNA transcript of ndua6 is higher in non-diapausing than diapausing pupae. No significant difference of ndua6 mRNA transcript was found during diapause preparation and maintemance stage. When diapause was broken by injection of 20-hydroxyecdysone, mRNA transcript increase significantly within 24 h after injection. Protein expression of the ndua6 in non-diapausing pupae is higher than that of diapausing pupae.
     Vo-ATPase subunit e is a subunit in V0 complex of vacuolar ATPase and is a twice trans-membrane protein. In the brain of H. armigera, the same mRNA transcript was found on pupae day 0 and day 1 between non-diapausing and diapausing pupae. With the progress of diapause, mRNA transcript of diapausing pupae has the same profile as non-diapausing pupae and after pupae day 15, transcript of diapausing is significantly low than non-diapausing pupae. mRNA transcript increase significantly within 1 day after injection of 20-hydroxyecdysone. ATPase activity of nondiapause pupae is high at the early pupal stage and decrease during pupal development. the ATPase activity in diapause type pupae show a stable low level, and increases significantly within 1 day after injection of 20-hydroxyecdysone. ATPase activity in nondiapause pupae is higher than diapausing pupae.
引文
Arrese, E.L., Soulages, J.L., 2009. Insect Fat Body: Energy, Metabolism, and Regulation. Annu. Rev. Entomol. 25: 206-225.
    Asling, B., Dushay, M.S., Hultmark, D., 1995. Identification of early genes in the Drosophila immune response by PCR based differential display: the Attacin A gene and the evolution of attacin-like proteins. Insect Biochem Mol Biol 25: 511–518.
    Bayer, M.J., Reese, C., Buhler, S. et al., 2003. Vacuole membrane fusion: V0 functions after trans-SNARE pairing and is coupled to the Ca2+-releasing channel. J Cell Biol 162: 211–222.
    Bebas, P., Cymborowski, B., Giebultowicz, J.M., 2002. Circadian rhythm of acidification in insect vas deferens regulated by rhythmic expression of vacuolar H+-ATPase. J Exp Bio 205: 37-44.
    Beyenbach, K.W., Wieczorek, H., 2006. The V?type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol 209: 577–589.
    Bodnaryk, R.P., 1985. Ecdysteroid levels during post-diapause development and 20- hydroxyecdysone-induced development in male pupae of Mamestra configurata WLK. J Insect Physiol 31: 53–58.
    Bowen, M.F., Bollenbacher, W.E., Gilbert, L.I., 1984. In vitro studies on the role of the brain and prothoracic glands in the pupal diapause of Manduca sexta. J Exp Biol 108: 9–24.
    Bradford, M.M., 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal Biochem 72: 248-254.
    Bryant, Z., Subrahmanyan, L., Tworoger, M. et al.,1999. Characterization of differentially expressed genes in purified Drosophila follicle cells: toward a general strategy for cell type-specific developmental analysis. Proc Natl Acad Sci USA 96: 5559–5564.
    Burger, G., Gray, M.W., Lang, B.F., 2003. Mitochondrial genomes: anything goes. TRENDS in Genetics 19: 709-716.
    Burger, G., Plante, I., Lonergan, K.M. et al., 1995. The mitochondrial DNA of the amoeboid protozoon, Acanthamoeba castellanii: complete sequence, gene content and genome organization. J Mol Biol 245: 522–537.
    Caterino, M.S., Sperling, F.A.H., 1999. Papilio phylogeny based on mitochondrial cytochrome oxidase I and II gene. Mol Phylogenetics Evol 11: 122-137.
    Chomczynski, P., Sacchi, N., 1987. Single-step method of isolation by acid guanidinium thiocyanate phenol chloroform extraction. Anal Biochem 162: 156-159.
    Cho, Y.J.,. Prezioso1, V.R., Liang, P., 2002. Systematic Analysis of Intrinsic Factors Affecting Differential Display. BioTechniques 32: 762-766.
    Couperstein, S.J., Lazarov, A., 1951. A micro-spectrophotometric method for the determination of cytochrome c oxidase. J Biol Chem 189: 665–670.
    Craig, T.L., Denlinger, D.L., 2000. Sequence and transcription patterns of 60S ribosomal protein PO, a diapause-regulated AP endonuclease in the flesh fly, Sarcophaga crassipalpis. Gene 255: 381–388.
    Crozier, A.J.G., 1979. Supradian and infradian cycles of oxygen uptake in diapausing pupae of Pieris brussicue. J Insect Physiol 25: 575.
    Danks, H.V., 1987. Insect dormancy: an ecological perspective. Biological Survey of Canada,Ottawa, pp. 19-45.
    Davey, K.G., 1998. Identification and developmental expression of the mitochondrial phosphate transport protein gene from the spruce budworm, Choristoneura fumiferana. Insect Biochem Mol Biol 28: 791–799.
    David, C.M., Kenneth, B.S., 2008. Mitochondria of cold hardy insects: Responses to cold and hypoxia assessed at enzymatic, mRNA and DNA levels. Insect Biochem Mol Biol 38: 367-373.
    Denlinger, D.L., Campbell, J.J., Bradfield, J.Y., 1980. Stimulatory effect of organic solvents on initiating development in diapausing pupae of the flesh fly Sarcophaga crassipalpis and the tobacco hornworm Manduca sexta. Physiol Entomol 5: 7-15.
    Denlinger, D.L. 1991. Relationship between cold hardiness and diapause. In: Lee, R.E., Denlinger, D.L. (Eds.), Insects at low temperatures, Chapman and Hall, New York. pp. 174-198.
    Denlinger, D.L., 1979. Pupal diapause in tropical flesh flies: environmental and endocrine regulation, metabolic rate and genetic selection. Biol Bull Woods Hole 156: 31–46.
    Denlinger, D.L., 1985. Comprehensive Insect Biochemistry, Physiology and Pharmacology, vol. 8. Pergamon Press, Oxford, pp. 353–412.
    Denlinger, D.L., 1985. Hormonal control of diapause. In: Kerkut, G.A., Gilbert, L.I. (Eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 8. Pergamon Press, Oxford, pp. 353–412.
    Denlinger, D.L., 1986. Dormancy in tropical insects. Annu Rev Entomol 31: 239–264.
    Denlinger, D.L., 2002. Regulation of diapause. Annu Rev Entomol 47: 93–122.
    Denlinger, D.L., Rinehart, J.P., Yocum, G.D., 2001. Stress proteins: a role in insect diapause? In: Denlinger, D.L., Giebultowicz, J.M., Saunders, D.S. (Eds.), Insect Timing: Circadian Rhythmicity to Seasonality. Elsevier, Amsterdam, pp. 155–171.
    Denlinger, D.L., Shukla, M., Faustini, D.L., 1984. Juvenile hormone involvement in pupal diapause of the flesh fly Sarcophaga crassipalpis: regulation of infradian cycles of O2 consumption. J Exp Biol 109: 191–199.
    Denlinger, D.L., Willis, J.H., Fraenkel, G., 1972. Rates and cycles of oxygen consumption during pupal diapause in Sarcophaga flesh flies. J Insect Physiol 18: 871–882.
    Denlinger, D.L., Giebultowicz, J., Adedokun, T., 1988. Insect diapause: Dynamics of hormone sensitivity and vulnerability to environmental stress. In: Endocrinological Frontiers in Physiological Insect Ecology. Sehnal F, Zabza A, Denlinger DL, eds. Wroclaw Technical University Press, Wroclaw, Poland, pp 309-324.
    Denlinger, D.L., Tanaka S., 1989. Cycles of juvenile hormone esterase activity during the juvenile hormone-driven cycles of oxygen consumption in pupal diapause of flesh flies. Experientia 45: 474-476.
    Denlinger, D.L., Wingard, P., 1978. Cyclic GMP breaks pupal diapause in the flesh fly Sarcophaga crassipalpis. J Insect Physiol 24: 715–719.
    Dubrovsky, E.B., Dubrovskaya, V.A., Bilderback, A.L. et al., 2000. The isolation of two juvenile hormone-inducible genes in Drosophila melanogaster. Dev Biol 224: 486–495.
    Flannagan, R.D., Tammariello, S.P., Joplin, K.H. et al., 1998. Diapausespecific gene expression in pupae of the flesh fly Sarcophaga crassipalpis. Proc Natl Acad Sci USA 95: 5616–5620.
    Forgac, M., 2007. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nature reviews: Molecular cell biology 8: 917-929.
    Fujiwara, H., Jindra, M., Newitt, R. et al., 1995. Cloning of an ecdysone receptor homolog fromManduca sexta and the developmental profile of its mRNA in wings. Insect Biochem Mol Biol 25: 845–856.
    Fujiwara, Y., Denlinger, D.L., 2007. High temperature and hexane break pupal diapause in the flesh fly, Sarcophaga crassipalpis, by activating ERK/MAPK. J Insect Physiol 53: 1276-1282.
    Geyer, M., Yu, H., Mandic, R. et al., 2002. Subunit H of the V?ATPase binds to the medium chain of adaptor protein complex 2 and connects Nef to the endocytic machinery. J Biol Chem 277: 28521–2859.
    Giebultowicz, J.M., Denlinger, D.L., 1986. Role of the brain and ring gland in relation to pupal diapause in the flesh fly, Sarcophaga crassipalpis. J Insect Physiol 32: 161–166.
    Goto, S.G., Denlinger, D.L., 2002a. Genes encoding two cystatins in the flesh fly Sarcophaga crassipalpis and their distinct expression patterns in relation to pupal diapause. Gene 292: 121–127.
    Gruenberg, J., Van der Goot, F.G., 2006. Mechanisms of pathogen entry through the endosomal compartments. Nature Rev Mol Cell Biol 7: 495–504.
    Hasegawa, K., Shimizu, I., 1987. In vivo and in vitro photoperiodic induction of diapause using isolated brain–suboesophageael ganglion complexes of the silkworm, Bombyx mori. J Insect Physiol 33: 959–966.
    Hevner, R.F., Duff, R.S., Wong-Rilley, M.T., 1992. Coordination of ATP production and consumption in brain: parallel regulation of cytochrome c oxidase and Na+/K+ -ATPase. Neurosci Lett 138: 188-192.
    Hiesinger, P.R., Fayyazuddin, A., Mehta, S.Q. et al., 2005. The V?ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila. Cell 121: 607–620.
    Hodkova, M., 1992. Storage of the photoperiodic information within the implanted neuroendocrine complexes in females of the linden bug Pyrrhocoris apterus (L.) (Heteroptera). J Insect Physiol 38: 357–363.
    Hurtado-Lorenzo, A., Skinner, M., Annan, J.E. et al., 2006. V?ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nature Cell Biol 8: 124–136.
    Joanisse, D.R., Storey, K.B., 1994. Mitochondrial enzymes during overwintering in two species of cold-hardy gall insects. Insect Biochem Mol Biol 24: 145-150.
    Joanisse, D.R., Storey, K.B., 1996. Fatty acid content and enzymes of fatty acid metabolism in overwintering cold-hardy gall insects. Physiol Zool 69: 1079-1095.
    Joplin, K.H., Yocum, G.D., Denlinger, D.L., 1990. Diapause specific proteins expressed by the brain during pupal diapause of the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol 36: 775–783.
    Joplin, K.H., Denlinger, D.L., 1989. Cycles of protein synthesis during pupal diapause in the flesh fly, Surcophaga crassipulpis. Arch Insect Biochem Physiol 12: 111.
    Katagiri, N., Imai, K., Yamashita, O., 2001. Multiple gene expression up-regulated by diapause hormone in developing ovaries of the silkworm, Bombyx mori. J Insect Biotech Seric 70: 113–120.
    Kawasaki-Nishi, S., Bowers, K., Nishi, T. et al., 2001. The amino-terminal domain of the V?ATPase a subunit controls targeting and in vivo dissociation and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. J Biol Chem 276: 47411–47420.
    Kawasaki-Nishi, S., Nishi, T., Forgac, M., 2001. Yeast V?ATPase complexes containing different isoforms of the 100-kDa a?subunit differ in coupling efficiency and in vivo dissociation. J Biol Chem 276: 17941–17948.
    Kim, I., Cha, S.Y., Yoon, M.H. et al., 2005. The complete nucleotide sequence and gene organization of the mitochondrial genome of the oriental mole cricket, Gryllotalpa orientalis (Orthoptera: Gryllotalpidae). Gene 353: 155-168.
    Ko?tál, V., 2006. Eco-physiological phases of insect diapause. J Insect Physiol 52: 113-127.
    Kostal, V., Sula, J., Simek, P., 1998. Physiology of drought tolerance and cold hardiness of the Mediterranean tiger moth Cymbalophora pudica during summer diapause. J Insect Physiol 44: 165–173.
    Kukal, O., Duman, J.G., Serianni, A.S., 1989. Cold-induced mitochondrial degradation and cryoprotectant synthesis in the freeze-tolerant arctic caterpillars. J Comp Physiol B. 158: 661-671.
    Lebel, D., Poirier, G.G., Beaudoin, A.R., 1978. A Convenient Method for the ATPase Assay. Anal Biochem 85: 86-89.
    Lee, I., Salomon, A.R., Ficarro, S. et al., 2005. cAMP-dependent tyrosine phosphorylation of subunit I inhibits cytochrome c oxidase activity. J Biol Chem 280: 6094– 6100.
    Levin, D.B., Danks, H.V., Barber, S.A., 2003. Variations in mitochondrial DNA and gene transcription in freezing-tolerant larvae of Eurosta solidaginis (Diptera:Tephritidae) and Gynaephora groenlandica (Lepidoptera: Lymantriidae). Insect Mol Biol 12: 281-289.
    Li, G., Alexander, E.A., Schwartz, J.H., 2003. Syntaxin isoform specificity in the regulation of renal H+-ATPase exocytosis. J Biol Chem 278: 19791–19797.
    Liang, P., Pardee, A.B., 1992. Differential display of eukaryotic mRNA by means of the polymerase chain reaction. Science. 257: 967-971.
    Liang, P., Pardee, A.B., 1995. Recent advances in differential display. Curr Opin Immunol 7: 274-280.
    Liang, P., 1998. Factors ensuring successful use of differential display. Methods: A Companion to Methods in Enzymology. 16: 361-364.
    Liang, P., Averboukh, L., Pardee, A.B., 1993. Distribution and Cloning of Eukaryotic mRNA by means of Differential Display: Refinements and Optimization. Nucleic Acids Research, 21(14): 3269-3275.
    Liang, P., Zhu, W.-M., Zhang, X.-Y. et al..1994. Differential display using one-base anchored oligo-dT primers. Nucleic Acids Res 22: 5763-5764.
    Liang, P., 2002. A Decade of Differential Display. BioTechniques 33: 338-346.
    Liegeois, S., Benedetto, A., Garnier, J.M. et al., 2006. The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. J Cell Biol 173: 949–961.
    Ma, E., Xu, T., Haddad, G.G., 1999. Gene regulation by O2 deprivation: an anoxia-regulated novel gene in Drosophila melanogaster. Mol Brain Res 63: 217–224.
    McBrayer, Z., Ono, H., Shimell, M.J. et al., 2007. Prothoracicotropic Hormone Regulates Developmental Timing and Body Size in Drosophila. Dev. Cell 13: 857-871.
    Merzendorfer, H., Huss, M., Schmid, R. et al., 1999. A Novel Insect V-ATPase Subunit M9.7 Is Glycosylated Extensively. J Biol Chem 274: 17372-17378.
    Nishi, T., Forgac, M., 2002. The vacuolar (H+)-ATPases: Nature’s most versatile proton pumps.Nature Rev Mol Cell Biol 3: 94–103.
    Ogawa, S., Yoshino, R., Angata, K. et al., 2000. The mitochondrial DNA of Dictyostelium discoideum: complete sequence, gene content and genome organization. Mol Gen Genet 263: 514–519.
    Owegi, M.A., Pappas, D.L., Finch, M.W., 2006. Identification of a domain in the V0 subunit d that is critical for coupling of the yeast vacuolar proton-translocating ATPase. J Biol Chem 281: 30001–30014.
    Pagliarini, D.J., Dixon, J.E., 2006. Mitochondrial modulation: reversible phosphorylation takes center stage? TRENDS in Biochemical Sciences 31: 26-34.
    Phillips, J.R, Newsom, L.D., 1966. Diapause in Heliothis zea and Heliothis virescens (Lepidoptera: Noctuidea). Annu. Entomol. Society of America 59: 154-159.
    Pyza, E., Borycz, J., Giebultowica, J.M. et al., 2004. Involvement of V-ATPase in the regulation of cell size in the fly’s visual system. J Ins Physi 50: 985-994
    Radermacher, M., Ruiz, T., Wieczorek, H. et al., 2001. The structure of the V1 ATPase determined by three-dimensional electron microscopy of single particles. J Struct Biol 135: 26–37.
    Ragland, G.J., Fuller, J., Feder, J.L. et al., 2009. Biphasic metabolic rate trajectory of pupal diapause termination and post-diapause development in a tephritid fly. J Insect Physiol 55: 344-350.
    Rebecca, M.R., 2005. Molecular characterization of adult diapause in the northern house mosquito, Culex pipiens. Dissertation, Ohio State University.
    Reineke, S., Wieczorek, H., Merzendorfer, H., 2002. Expression of Manduca sexta V-ATPase genes mvB, mvG and mvd is regulated by ecdysteroids. J Exp Biol 205: 1059–1067.
    Richard, D.S., Saunders, D.S., 1987. Prothoracic gland function in diapause and non-diapause Sarcophaga argyrostoma and Calliphora vicina. J. Insect Physiol 33: 385–392.
    Rinehart, J.P., Cikra-Ireland, R.A., Flannagan, R.D. et al., 2001. Expression of ecdysone receptor is unaffected by pupal diapause in the flesh fly, Sarcophaga crassipalpis, while its dimerization partner, USP, is downregulated. J Insect Physiol 47: 915–921.
    Rinehart, J.P., Cikra-Ireland, R.A., Flannagan, R.D. et al., 2001. Expression of ecdysone receptor is unaffected by pupal diapause in the flesh fly, Sarcophaga crassipalpis, while its dimerization partner, USP, is downregulated. J Insect Physiol 47: 915–921.
    Rinehart, J.P., Yocum, G.D., Denlinger, D.L., 2000. Developmental upregulation of inducible Hsp70 transcripts, but not the cognate form, during pupal diapause in the flesh fly, Sarcophaga crassipalpis. Insect Biochem. Mol Biol 30: 515–521.
    Safranek, L., Williams, C.M., 1980. Studies on the prothoraciotropic hormone in the tobacco hornworm, Manduca sexta. Biol Bull 158: 141–153.
    Sawadaa, H., Yamahamab, Y., Yamamotoc, T., et al., 2006. A novel RNA helicase-like protein during early embryonic development in silkworm Bombyx mori: Molecular characterization and intracellular localization. Insect Biochem Mol Biol 36: 911–920.
    Shao, E., Nishi, T., Kawasaki-Nishi, S. et al., 2003. Mutational analysis of the non-homologous region of subunit A of the yeast V?ATPase. J Biol Chem 278: 12985–12991.
    Shaw, P.J., Cirelli, C., Greenspan, R.J. et al.. 2000. Correlates of sleep and waking in Drosophila melanogaster. Science 287: 1834–1837.
    Shionoya, M., Matsubayashi, H., Asahina, M. et al., 2003. Molecular cloning of theprothoracicotropic hormone from the tobacco hornworm, Manduca sexta. J Insect Physiol. 33: 795-801.
    Shirai, Y., Iwasaki, T., Matsubara, F. et al., 1994. The carbachol-induced release of prothoracicotropic hormone from braincorpus cardiacum-corpus allatum complex of the silkworm, Bombyx mori. Journal of Insect Physiology 40: 469-473.
    Singtripop, T., Wanichacheewa, S., Sakurai, S., 2000. Juvenile hormone mediated termination of larval diapause in the bamboo borer, Omphisa fuscidentalis. Insect Biochem Mol Biol 30: 847–854.
    Singtripopa, T., Saeangsakdaa, M., Tatuna, N. et al., 2007. Correlation of oxygen consumption, cytochrome c oxidase, and cytochrome c oxidase subunit I gene expression in the termination of larval diapause in the bamboo borer, Omphisa fuscidentalis. J Insect Physiol 53: 933-939.
    Slama, K., Denlinger, D.L., 1992. Infradian cycles of oxygen consumption in diapausing pupae of the flesh fly, Sarcophaga crassipalpis, monitored by a scanning microrespirographic method. Archives Insect Biochem Physiol 20: 135–143.
    Storey, K.B., Storey, J.M., 2004. Metabolic rate depression in animals: transcriptional and translational controls. Biological Reviews 79: 207-233.
    Sun-Wada, G.H., Toyomura, T., Murata, Y. et al., 2006. The a3 isoform of V-ATPase regulates insulin secretion from pancreaticβ-cells. J Cell Sci 119: 4531–4540.
    Suzuki, M.G., Terada, T., Kobayashi, M. et al.. 1999. Diapause-associated transcription of BmEts, a gene encoding an ETS transcription factor homolog in Bombyx mori. Insect Biochem Mol Biol 29: 339–347.
    Tammariello, S.P., Denlinger, D.L., 1998. G0/G1 cell cycle arrest in the brains of Sarcophaga crassipalpis during pupal diapause and the expression pattern of the cell cycle regulator, proliferating cell nuclear antigen. Insect Biochem Mol Biol 28: 83–89.
    Tauber, M.J., Tauber, C.A., Masaki, S., 1986. Seasonal Adaptations of Insects. Oxford University Press, Oxford, UK.
    Tomioka, K., Agui, N., Bollenbacher, W.E., 1995. Electrical properties of the cerebral prothoracicotropic hormone cells in diapausing and non-diapausing pupae of the tobacco hornworm, Manduca sexta. Zoological Science 12: 165-173.
    Uno, T., Nakasuji, A., Shimoda, M. et al., 2004. Expression of cytochrome c oxidase subunit I gene in the brain at an early stage in the termination of pupal diapause in the sweet potato hornworm, Agrius convolvuli. J Insect Physiol 50: 35-42.
    Wei, Z.-J., Zhang, Q.-R., Kang, L. et al., 2005. Molecular characterization and expression of prothoracicotropic hormone during development and pupal diapause in the cotton bollworm, Helicoverpa armigera. J Insect Physiol 51: 691-700.
    Wieczorek, H., Gr¨uber, G., Harvey, W.R. et al., 2000. Structure and regulation of insect plasma membrane H(+)V-ATPase. J Exp Biol 203: 127–135.
    Wilson, K., Cahill, V., Ballment, E. et al., 2000. The complete sequence of the mitochondrial genome of the crustacean Penaeus monodon: are malacostracan crustaceans more closely related to insects than to branchiopods? Molecular Biology and Evolution 17: 863-874.
    Wipking, W., Viebahn, M., Neumann, D., 1995. O2 consumption, water, lipid and glycogen content of early and late diapause and non-diapause larvae of the burnet moth Zygaena Trifolii. J Insect Physiol 41: 47–56.
    Wong-Riley, M.T., 1989. Cytochrome oxidase: an endogenous metabolic marker of neural activity.Trends in Neuroscience 12: 94-101.
    Xu, W.-H., Denlinger, D.L., 2003. Molecular characterization of prothoracicotropic hormone and diapause hormone in Heliothis virescens during diapause, and a new role for diapause hormone. Insect Mol Biol 12: 509–516.
    Yang, J., Furukawa, S., Sagisaka, A. et al.. 1999. cDNA cloning and gene expression of cecropin D, an antibacterial protein in the silkworm, Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 122: 409–414.
    Yocum, G.D., Joplin, K.H., Denlinger, D.L., 1998. Upregulation of a 23 kDa small heat shock protein transcript during pupal diapause in the flesh fly, Sarcophaga crassipalpis. Insect Biochem Mol Biol 28: 677–682.
    Zhang, T.-Y., Sun, J.-S., Zhang, L.-B. et al., 2004a. Cloning and expression of the cDNA encoding the FXPRLamide family of peptides and a functional analysis of their effect on breaking pupal diapause in Helicoverpa armigera. J Insect Physiol 50: 25–33.
    Zhang, T.-Y., Sun, J.-S., Zhang, Q.-R. et al., 2004b. The diapause hormone-pheromone biosynthesis activating neuropeptide gene of Helicoverpa armigera encodes multiple peptides that break, rather than induce, diapause. J Insect Physiol 50: 547-554.
    郭予元. 1998.棉铃虫的研究.北京:中国农业出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700