基于非线性光学材料的波导设计及其波长转换研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性波长转换在全光信号处理、数据存储、生物医学、彩色显示、生物工艺学、环境监测处理分析等方面扮演着重要的角色。基于三阶非线性效应的三次谐波和四波混频与基于二阶线非线性效应的差频、和频、倍频,能通过波长转换把半导体激光器的波长范围拓展到紫外、可见光、中红外和太赫兹波段。另一方面四波混频、差频、级联倍频差频、级联和频差频能把光信号从一个波长转移到另一个波长上,在密集波分复用光通信网络能得到应用。本论文通过灵活地设计几种波导结构来实现这些非线性效应,并对其中的波长转换进行了理论研究。具体内容如下:
     (1)研究了损耗情况下AlGaAs准相位匹配波导的波长转换。在非耗尽近似下求出一个有损耗的准相位匹配波导中差频、级联倍频差频转换光功率的解析表达式。对于较大损耗的光波导,此表达式与直接进行数值求解的耗尽情况下转换效率一致。基于这些解析表达式,得出有损耗差频、级联倍频差频过程的优化波导长度公式。同时,我们设计了一个AlGaAs准相位匹配桥状波导,并详细研究和比较了无损耗和有损耗情况下两种非线性过程的转换效率、转换带宽、泵浦光波长容忍度和温度稳定性。
     (2)研究了AlGaAs微环谐振腔中二次谐波的产生。为了避免周期反转结构造成的损耗,我们研究了弯曲AlGaAs波导实现相位匹配的原理,并且分析了微环谐振腔中的有效非线性系数。结果表明微环谐振腔能够实现相位匹配的倍频过程。我们设计了一个高折射率差的AlGaAs微环谐振腔,其中泵浦波长和倍频光波长都处在谐振波长上。在泵浦非耗尽近似下,得出一个转换效率的解析表达式。从此表达式看出,转换效率由于腔场的增强而得到增加。考虑到泵浦光耗尽的情况,采用分段法进行数值模拟。结果表明在无损耗情况下,转换效率可以接近1。
     (3)研究了光子晶体波导中太赫兹波的差频产生。我们通过把近红外光波导放置在太赫兹波光子晶体波导的线缺陷里面,利用近红外光源的差频过程产生太赫兹波。在这种结构中,光子晶体波导能紧紧地限制住太赫兹波的模场,使相互作用的三个光波实现好的模场重叠。两个泵浦光与太赫兹Bloch波奇特的相位匹配条件能够通过合适选择波导参数和泵浦光波长来满足。根据模式理论推导了差频过程的耦合模方程和有效作用面积公式。首先,我们设计了一个AlGaAs光子晶体波导。数值模拟出连续光泵浦的太赫兹波归一化转换效率为0.7632×104W1。其次,我们设计出一个LiNbO3光子晶体波导结构实现了频率为1THz的太赫兹波高效差频产生。由于光子晶体波导结构在太赫兹领域得到了广泛研究,这些太赫兹波产生方案给太赫兹技术提供了参考。
     (4)研究了光子晶体波导中慢光增强的四波混频。利用模式理论,我们推导出光子晶体波导中的三阶非线性作用的耦合模方程组。这些非线性作用包括自相位调制、交叉相位调制和简并四波混频。这些耦合模方程组的形式与非线性光纤光学中的一致,并且可以应用于其他周期波导结构中的三阶非线性效应。基于这些方程,我们系统分析了一个慢光工程的硅基光子晶体波导的群速度色散、光传输损耗、有效作用面积、慢光增强因子和相位失配。考虑到双光子吸收和自由载流子效应,利用有限差分法数值模拟了此光子晶体波导两个色散平坦区域的四波混频转换效率。最后研究了慢光增强的多重四波混频对波长转换的影响。
Nonlinear wavelength conversion had played a key role in all-optical signal processing,optical data storage, biomedicine, color display, biotechnology, environmental monitoringand process analysis and so on. The third-harmonic generation (THG), four wave mixing(FWM) based on the third-order nonlinear interactions and the difference frequency gen-eration (DFG), sum-frequency generation (SFG), second-harmonic generation (SHG) fromthe second-order nonlinear effects, may convert the wavelength of semiconductor lasers tothe ultraviolet (UV), visible light, mid-infrared (IR) light and terahertz regions. On theother hand, the FWM, DFG, cascaded second-harmonic generation and difference frequen-cy generation (cSHG/DFG), cascaded sum-frequency generation and difference frequencygeneration (cSFG/DFG) can move the signal from one wavelength to another, and this maybe applied in the dense wavelength division multiplexing (DWDM) optical communicationnetwork. In this thesis, we design some appropriate waveguide structures to achieve thesenonlinear processes, and theoretically investigate the characters of wavelength conversion.The detailed research contents can be found as follows.
     Firstly, we study the wavelength conversion in the lossy quasi-phase-matched (QPM)AlGaAs waveguide. We obtain the analytical expressions of converted wave power for DFG,cSHG/DFG processes under the non-depletion approximation in lossy QPM waveguides. Itis shown that the analytical results and the numerical simulation with depletion agree verywell for lossy waveguides. Employing the analytical solutions, the formulas of optimizedwaveguide lengths are obtained for lossy DFG and cSHG/DFG processes. After designingan AlGaAs QPM ridge waveguide, we detailly investigate and compare the characteristicsof the second-order nonlinear effects with and without loss, such as conversion efficiency,conversion bandwidth, pump wavelength tolerance and temperature stability.
     Secondly, we study the SHG in AlGaAs microring resonator. In order to avoid theloss of QPM structures, we investigate the principle of curved AlGaAs waveguide for phasematch, and analyze the effective nonlinear coefficient of microring resonator. It is foundthat microring resonator can be employed to satisfy the phase matching condition of SHG. We design a high-index-contrast AlGaAs microring resonator with the wavelengths of pumpand second-harmonic in resonator wavelength. Under the non-depletion approximation, theanalytical solution of conversion efficiency is obtained. Based on the analytical solutions,it is clearly that the enhanced field in the microring resonator can improved the conversionefficiency. Considering the depletion situation, we numerically simulate the SHG processusing the fragment method. The results show that the conversion efficiency may be reach1in lossless case.
     Thirdly, we study the THz wave DFG form photonic crystal waveguides (PCWs). Weplace the near-infrared light waveguide in the line defect of THz PCW to achieve THzwave DFG from near-infrared light sources. In this structure,PCW structure provides atight confinement of THz-wave field, resulting in a good mode field overlap of three waves.The unique phase matching condition between two pump waves and THz Bloch wave canbe satisfied through choosing appropriate waveguide parameters and pump wavelengths.The couple-mode equations and the effective interaction area formula for DFG processesis obtained from the modal theory. Firstly, we design a AlGaAs PCW, the high power-normalized conversion efficiency of0.7632×104W1for3THz generation is obtainedthrough simulating the continuous THz DFG process. Secondly, we design a LiNbO3PCWfor efficient1THz DFG. Since the photonic crystal structures have been widely exploitedfor THz researches, these approaches have the potential to open a new window for THztechnology.
     Fourthly, we study the slow light enhanced FWM in PCW. By employing the modaltheory, we derive the couple-mode equations for third-order nonlinear effects in PCWs.These nonlinear interactions include self-phase modulation, cross-phase modulation anddegenerate FWM. The equations similar to that in nonlinear fiber optics could be expandedand applied for third-order nonlinear processes in other periodic waveguides. Based onthe equations, we systematically analyze the group-velocity dispersion, optical propagationloss, effective interaction area, slow light enhanced factor and phase mismatch for a slowlight engineered silicon PCW. Considering the two-photon absorption and free-carrier ef-fects, the wavelength conversion efficiencies in two low-dispersion regions are numerically simulated by utilizing finite difference method. Finally, we investigate the influence of slowlight enhanced multiple FWM process on the conversion efficiency.
引文
[1] Franken P, Hill A, Peters C, et al. Generation of optical harmonics. Phys. Rev. Lett.,1961,7(4):118–119
    [2] Armstrong J A, Bloembergen N, Ducuing J, et al. Interactions between light wavesin a nonlinear dielectric. Phys. Rev.,1962,127(6):1918–1939
    [3] Wang J, Sun J, Sun Q, et al. Proposal and simulation of all-optical NRZ-to-RZ formatconversion using cascaded sum-and difference-frequency generation. Opt. Express,2007,15(2):583–588
    [4] Gallo K, Assanto G, Stegeman G I. Efficient wavelength shifting over the erbium am-plifier bandwidth via cascaded second order processes in lithium niobate waveguides.Appl. Phys. Lett.,1997,71(8):1020–1022
    [5] Tehranchi A, Kashyap R. Flattop efficient cascaded χ(2)(SFG+DFG) based widebandwavelength converters using step-chirped gratings. IEEE J. Sel. Top. Quant.,2012,18:785–793
    [6] Wang J, Sun J, Sun Q. Experimental observation of a1.5μm band wavelength con-version and logic NOT gate at40Gbit/s based on sum-frequency generation. Opt.Lett.,2006,31(11):1711–1713
    [7] Wang J, Sun J, Sun Q, et al. Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlineari-ty assisted by active mode-locking. Opt. Lett.,2007,32(16):2462–2464
    [8] Wang J, Sun J, Zhang X, et al. All-optical tunable wavelength conversion with ex-tinction ratio enhancement using periodically poled lithium niobate waveguides. J.Lightw. Technol.,2008,26(17):3137–3148
    [9] Wang J, Sun Q, Sun J, et al. All-optical UWB pulse generation using sum-frequencygeneration in a PPLN waveguide. Opt. Express,2009,17(5):3521–3530
    [10] Pierrou M, Laurell F, Karlsson H, et al. Generation of740mW of blue light by intra-cavity frequency doubling with a first-order quasi-phase-matched KTiOPO4crystal.Opt. Lett.,1999,24(4):205–207
    [11] Kintaka K, Fujimura M, Suhara T, et al. Efficient ultraviolet light generation byLiNbO3waveguide first-order quasi-phase-matched second-harmonic generation de-vices. Electron. Lett.,1996,32(24):2237–2238
    [12] Meyn J, Fejer M. Tunable ultraviolet radiation by second-harmonic generation inperiodically poled lithium tantalate. Opt. Lett.,1997,22(16):1214–1216
    [13] Wang S, Pasiskevicius V, Laurell F, et al. First-order type II quasi-phase-matched UVgeneration in periodically poled KTP. Opt. Lett.,1999,24(14):978–980
    [14] Mizuuchi K, Sugita T, Yamamoto K, et al. Efficient340-nm light generation by aridge-type waveguide in a first-order periodically poled MgO: LiNbO3. Opt. Lett.,2003,28(15):1344–1346
    [15] Nishida Y, Asobe M, Suzuki H. Applications of Telecom Light Sources to Non-telecom Fields Wavelength Conversion Laser. NTT Technical Rev.,2005,3(8):15–20
    [16] Myers L E, Eckardt R C, Fejer M M, et al. Quasi-phase-matched optical para-metric oscillators in bulk periodically poled LiNbO3. J. Opt. Soc. Am. B,1995,12(11):2102–2116
    [17] Hofmann D, Schreiber G, Haase C, et al. Quasi-phase-matched difference-frequencygeneration in periodically poled Ti:LiNbO3channel waveguides. Opt. Lett.,1999,24(13):896–898
    [18] Tonouchi M. Cutting-edge terahertz technology. Nat. Photonics,2007,1(2):97–105
    [19] Matsuura S, Tani M, Sakai K. Generation of coherent terahertz radiation by pho-tomixing in dipole photoconductive antennas. Appl. Phys. Lett.,1997,70(5):559–561
    [20] Liu T, Tani M, Pan C. THz radiation emission properties of multienergy arsenic-ion-implanted GaAs and semi-insulating GaAs based photoconductive antennas. J. Appl.Phys.,2003,93(5):2996–3001
    [21] Cotter D, Hanna D, Ka¨rkka¨inen P, et al. Stimulated electronic Raman scattering as atunable infrared source. Opt. Commun.,1975,15(2):143–146
    [22] Piestrup M, Fleming R, Pantell R. Continuously tunable submillimeter wave source.Appl. Phys. Lett.,1975,26(8):418–421
    [23] Imeshev G, Fermann M E, Vodopyanov K L, et al. High-power source of THz ra-diation based on orientation-patterned GaAs pumped by a fiber laser. Opt. Express,2006,14(10):4439–4444
    [24] Chiang A, Wang T, Lin Y, et al. Enhanced terahertz-wave parametric generation andoscillation in lithium niobate waveguides at terahertz frequencies. Opt. Lett.,2005,30(24):3392–3394
    [25] Stute A, Casabone B, Schindler P, et al. Tunable ion-photon entanglement in anoptical cavity. Nature,2012,485(7399):482–485
    [26] Yuan Z, Bao X, Lu C, et al. Entangled photons and quantum communication. Phys.Rep.,2010,497(1):1–40
    [27] Pan J, Chen Z, Lu C, et al. Multiphoton entanglement and interferometry. Rev. Mod.Phys.,2012,84(2):777–838
    [28] Burnham D, Weinberg D. Observation of simultaneity in parametric production ofoptical photon pairs. Phys. Rev. Lett.,1970,25(2):84–87
    [29] Arahira S, Namekata N, Kishimoto T, et al. Generation of polarization entangledphoton pairs at telecommunication wavelength using cascaded χ(2)processes in aperiodically poled LiNbO3ridge waveguide. Opt. Express,2011,19(17):16032–16043
    [30] Li X, Voss P, Sharping J, et al. Optical-fiber source of polarization-entangled photonsin the1550nm telecom band. Phys. Rev. Lett.,2005,94(5):053601
    [31] Ma X, Herbst T, Scheidl T, et al. Quantum teleportation over143kilometres usingactive feed-forward. Nature,2012,489(7415):269–273
    [32] Takesue H, Inoue K. Generation of polarization-entangled photon pairs and violationof Bell′s inequality using spontaneous four-wave mixing in a fiber loop. Phys. Rev.A,2004,70(3):031802
    [33] Maiman T. Stimulated optical radiation in ruby. Nature,1960,187:493–494
    [34] Giordmaine J. Mixing of light beams in crystals. Phys. Rev. Lett.,1962,8(1):19–20
    [35] Bass M, Franken P A, Hill A E, et al. Optical Mixing. Phys. Rev. Lett.,1962,8:18–18
    [36] Langrock C, Diamanti E, Roussev R, et al. Highly efficient single-photon detectionat communication wavelengths by use of upconversion in reverse-proton-exchangedperiodically poled LiNbO3waveguides. Opt. Lett.,2005,30(13):1725–1727
    [37] Bosenberg W, Drobshoff A, Alexander J, et al.93%pump depletion,3.5-Wcontinuous-wave, singly resonant optical parametric oscillator. Opt. Lett.,1996,21(17):1336–1338
    [38] Sinha S, Langrock C, Digonnet M, et al. Efficient yellow-light generation by frequen-cy doubling a narrow-linewidth1150nm ytterbium fiber oscillator. Opt. Lett.,2006,31(3):347–349
    [39] Vodopyanov K, Fejer M, Yu X, et al. Terahertz-wave generation in quasi-phase-matched GaAs. Appl. Phys. Lett.,2006,89:141119
    [40] Imeshev G, Arbore M, Fejer M, et al. Ultrashort-pulse second-harmonic generationwith longitudinally nonuniform quasi-phase-matching gratings: pulse compressionand shaping. J. Opt. Soc. Am. B,2000,17(2):304–318
    [41] Lee Y, Fan F, Huang Y, et al. Nonlinear multiwavelength conversion based on anaperiodic optical superlattice in lithium niobate. Opt. Lett.,2002,27(24):2191–2193
    [42] Thompson D, McMullen J, Anderson D. Second-harmonic generation in GaAs′stackof plates′using high-power CO2laser radiation. Appl. Phys. Lett.,1976,29(2):113–115
    [43] Eyres L, Tourreau P, Pinguet T, et al. All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion. Appl. Phys. Lett.,2001,79(7):904–906
    [44] Yoo S J B, Bhat R, Caneau C, et al. Quasi-phase-matched second-harmonic gen-eration in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding. Appl. Phys. Lett.,1995,66(25):3410–3412
    [45] Yoo S J B, Caneau C, Bhat R, et al. Wavelength conversion by difference frequencygeneration in AlGaAs waveguides with periodic domain inversion achieved by waferbonding. Appl. Phys. Lett.,1996,68(19):2609–2611
    [46] Rafailov E, Loza-Alvarez P, Brown C, et al. Second-harmonic generation from afirst-order quasi-phase-matched GaAs/AlGaAs waveguide crystal. Opt. Lett.,2001,26(24):1984–1986
    [47] Zeaiter K, Hutchings D C, Gwilliam R M, et al. Quasi-phase-matched second-harmonic generation in a GaAs/AlAs superlattice waveguide by ion-implantation-induced intermixing. Opt. Lett.,2003,28(11):911–913
    [48] Yu X, Scaccabarozzi L, J. S. Harris J, et al. Efficient continuous wave second har-monic generation pumped at1.55μm in quasi-phase-matched AlGaAs waveguides.Opt. Express,2005,13(26):10742–10748
    [49] Moutzouris K, Rao S V, Ebrahimzadeh M, et al. Efficient second-harmonic gen-eration in birefringently phase-matched GaAs/Al2O3waveguides. Opt. Lett.,2001,26(22):1785–1787
    [50] Venugopal Rao S, Moutzouris K, Ebrahimzadeh M, et al. Measurements of opticalloss in GaAs/Al2O3nonlinear waveguides in the infrared using femtosecond scatter-ing technique. Opt. Commun.,2002,213(4-6):223–228
    [51] Moutzouris K, Rao S, Ebrahimzadeh M, et al. Second-harmonic generation throughoptimized modal phase matching in semiconductor waveguides. Appl. Phys. Lett.,2003,83:620–622
    [52] Han J, Abolghasem P, Bijlani B, et al. Continuous-wave sum-frequency generationin AlGaAs Bragg reflection waveguides. Opt. Lett.,2009,34(23):3656–3658
    [53] Han J B, Kang D P, Abolghasem P, et al. Pulsed-and continuous-wave difference-frequency generation in AlGaAs Bragg reflection waveguides. J. Opt. Soc. Am. B,2010,27(12):2488–2494
    [54] Ashkin A, Boyd G, Dziedzic J. Resonant optical second harmonic generation andmixing. IEEE J. Quantum.Electron.,1966,2(6):109–124
    [55] Myers L, Bosenberg W. Periodically poled lithium niobate and quasi-phase-matchedoptical parametric oscillators. IEEE J. Quantum.Electron.,1997,33(10):1663–1672
    [56] Fejer M. Nonlinear optical frequency conversion. Physics today,1994,47:25–27
    [57] Xu C, Shinozaki K, Okayama H, et al. Three wave mixing using a fiber ring resonator.Journal of applied physics,1997,81(3):1055–1062
    [58] Yariv A, Xu Y, Lee R, et al. Coupled-resonator optical waveguide: a proposal andanalysis. Opt. Lett.,1999,24(11):711–713
    [59] Van V, Ibrahim T, Absil P, et al. Optical signal processing using nonlinear semicon-ductor microring resonators. IEEE J. Sel. T. Quantum Electron.,2002,8(3):705–713
    [60] Regener R, Sohler W. Efficient second-harmonic generation in Ti: LiNbO3channelwaveguide resonators. J. Opt. Soc. Am. B,1988,5(2):267–277
    [61] Arbore M, Fejer M. Singly resonant optical parametric oscillation in periodicallypoled lithium niobate waveguides. Opt. Lett.,1997,22(3):151–153
    [62] Schreiber G, Hofmann D, Grundkoetter W, et al. Nonlinear integrated optical fre-quency converters with periodically poled Ti: LiNbO3waveguides. in: Proceedingsof Proc. SPIE,2001,144–160
    [63] Scaccabarozzi L, Fejer M, Huo Y, et al. Enhanced second-harmonic generation inAlGaAs/AlxOytightly confining waveguides and resonant cavities. Opt. Lett.,2006,31(24):3626–3628
    [64] Lodenkamper R, Bortz M, Fejer M, et al. Surface-emitting second-harmonic genera-tion in a semiconductor vertical resonator. Opt. Lett.,1993,18(21):1798–1800
    [65] Absil P, Hryniewicz J, Little B, et al. Wavelength conversion in GaAs micro-ringresonators. Opt. Lett.,2000,25(8):554–556
    [66] Turner A, Foster M, Gaeta A, et al. Ultra-low power parametric frequency conversionin a silicon microring resonator. Opt. Express,2008,16(7):4881–4887
    [67] Ferrera M, Duchesne D, Razzari L, et al. Low power four wave mixing in an inte-grated, micro-ring resonator with Q=1.2million. Opt. Express,2009,17(16):14098–14103
    [68] Li Z, Gao S, Liu Q, et al. Modified model for four-wave mixing-basedwavelength conversion in silicon micro-ring resonators. Opt. Commun.,2011,284(8):2215–2221
    [69] Yang Z, Chak P, Bristow A, et al. Enhanced second-harmonic generation in AlGaAsmicroring resonators. Opt. Lett.,2007,32(7):826–828
    [70] Yang Z, Sipe J. Generating entangled photons via enhanced spontaneous parametricdownconversion in AlGaAs microring resonators. Opt. Lett.,2007,32(22):3296–3298
    [71] Gandomkar M, Ahmadi V. Design and analysis of enhanced second harmonic gener-ation in AlGaAs/AlOx microring waveguide. Opt. Express,2011,19(10):9408–9418
    [72] Gandomkar M, Ahmadi V. Thermo-optical switching enhanced with second harmon-ic generation in microring resonators. Opt. Lett.,2011,36(19):3825–3827
    [73] Kuo P S, Fang W, Solomon G S.4ˉ-quasi-phase-matched interactions in GaAs mi-crodisk cavities. Opt. Lett.,2009,34(22):3580–3582
    [74] Kuo P, Solomon G. On-and off-resonance second-harmonic generation in GaAs mi-crodisks. Opt. Express,2011,19(18):16898–16918
    [75] Andronico A, Favero I, Leo G. Difference frequency generation in GaAs microdisks.Opt. Lett.,2008,33(18):2026–2028
    [76] Nistor C, Cojocaru C, Loiko Y, et al. Second-harmonic generation of narrow beamsin subdiffractive photonic crystals. Phys. Rev. A,2008,78(5):053818
    [77] Iliew R, Etrich C, Pertsch T, et al. Slow-light enhanced collinear second-harmonicgeneration in two-dimensional photonic crystals. Phys. Rev. B,2008,77(11):115124
    [78] Takushima Y, Shin S, Chung Y C. Design of a LiNbO3ribbon waveguide for efficientdifference-frequency generation of terahertz wave in the collinear configuration. Opt.Express,2007,15(22):14783–14792
    [79] Nishizawa J, Suto K, Tanabe T, et al. THz generation from GaP rod-type waveguides.IEEE Photon. Technol. Lett.,2007,19(3):143–145
    [80] Huang Y, Wang T, Lin Y, et al. Forward and backward THz-wave difference fre-quency generations from a rectangular nonlinear waveguide. Opt. Express,2011,19(24):24577–24582
    [81] Suizu K, Koketsu K, Shibuya T, et al. Extremely frequency-widened terahertz wavegeneration using Cherenkov-type radiation. Opt. Express,2009,17(8):6676–6681
    [82] Avetisyan Y H. Terahertz-wave surface-emitted difference-frequency generationwithout quasi-phase-matching technique. Opt. Lett.,2010,35(15):2508–2510
    [83] Staus C, Kuech T, McCaughan L. Continuously phase-matched terahertz differencefrequency generation in an embedded-waveguide structure supporting only funda-mental modes. Opt. Express,2008,16(17):13296–13303
    [84] Staus C M, Kuech T F, McCaughan L. AlxGa1xAs nested waveguide heterostruc-tures for continuously phase-matched terahertz difference frequency generation. Opt.Express,2010,18(3):2332–2338
    [85] Lu G, Miyazaki T. Optical phase erasure based on FWM in HNLF enabling formatconversion from320-Gb/s RZDQPSK to160-Gb/s RZ-DPSK. Opt. Express,2009,17(16):13346–13353
    [86] Dulkeith E, Xia F, Schares L, et al. Group index and group velocity dispersion insilicon-on-insulator photonic wires. Opt. Express,2006,14(9):3853–3863
    [87] Turner A, Manolatou C, Schmidt B, et al. Tailored anomalous group-velocity disper-sion in silicon channel waveguides. Opt. Express,2006,14(10):4357–4362
    [88] Foster M, Turner A, Sharping J, et al. optical parametric gain on a silicon photonicchip. Nature,2006,441(7096):960–963
    [89] Lamont M, Kuhlmey B, Sterke C. Multi-order dispersion engineering for optimalfour-wave mixing. Opt. Express,2008,16(10):7551–7563
    [90] Lamont M, Luther-Davies B, Choi D, et al. Net-gain from a parametric amplifier ona chalcogenide optical chip. Opt. Express,2008,16(25):20374–20381
    [91] Lee B, Biberman A, Turner-Foster A, et al. Demonstration of broadband wavelengthconversion at40Gb/s in silicon waveguides. IEEE Photon. Technol. Lett.,2009,21(3):182–184
    [92] Claps R, Dimitropoulos D, Raghunathan V, et al. Observation of stimulated Ramanamplification in silicon waveguides. Opt. Express,2003,11(15):1731–1739
    [93] Espinola R, Dadap J, Osgood Jr R, et al. Raman amplification in ultrasmall silicon-on-insulator wire waveguides. Opt. Express,2004,12(16):3713–3718
    [94] Rong H, Liu A, Jones R, et al. An all-silicon Raman laser. Nature,2005,433(7023):292–294
    [95] Liu A, Jones R, Liao L, et al. A high-speed silicon optical modulator based on ametal–oxide–semiconductor capacitor. Nature,2004,427(6975):615–618
    [96] Xu Q, Schmidt B, Pradhan S, et al. Micrometre-scale silicon electro-optic modulator.Nature,2005,435(7040):325–327
    [97] Rieger G, Virk K, Young J. Nonlinear propagation of ultrafast1.5μm pulses in high-index-contrast silicon-on-insulator waveguides. Appl. Phys. Lett.,2004,84(6):900–902
    [98] Dulkeith E, Vlasov Y, Chen X, et al. Self-phase-modulation in submicron silicon-on-insulator photonic wires. Opt. Express,2006,14(12):5524–5534
    [99] Dekker R, Driessen A, Wahlbrink T, et al. Ultrafast Kerr-induced all-optical wave-length conversion in silicon waveguides using1.55μm femtosecond pulses. Opt.Express,2006,14(18):8336–8346
    [100] Hsieh I, Chen X, Dadap J, et al. Cross-phase modulation-induced spectral and tem-poral effects on co-propagating femtosecond pulses in silicon photonic wires. Opt.Express,2007,15(3):1135–1146.
    [101] Espinola R, Dadap J, Osgood Jr R, et al. C-band wavelength conversion in siliconphotonic wire waveguides. Opt. Express,2005,13(11):4341–4349
    [102] Lin Q, Zhang J, Fauchet P, et al. Ultrabroadband parametric generation and wave-length conversion in silicon waveguides. Opt. Express,2006,14(11):4786–4799
    [103] Panoiu N, Chen X, Osgood Jr R, et al. Modulation instability in silicon photonicnanowires. Opt. Lett.,2006,31(24):3609–3611
    [104] Osgood Jr R, Panoiu N, Dadap J, et al. Engineering nonlinearities in nanoscale opti-cal systems: physics and applications in dispersion-engineered silicon nanophotonicwires. Adv. Opt. Photon.,2009,1(1):162–235
    [105] Dadap J, Panoiu N, Chen X, et al. Nonlinear-optical phase modification in dispersion-engineered Si photonic wires. Opt. Express,2008,16(2):1280–1299
    [106] Lin Q, Painter O, Agrawal G. Nonlinear optical phenomena in silicon waveguides:modeling and applications. Opt. Express,2007,15(25):16604–16644
    [107] Ebnali-Heidari M, Monat C, Grillet C, et al. A proposal for enhancing four-wavemixing in slow light engineered photonic crystal waveguides and its application tooptical regeneration. Opt. Express,2009,17(20):18340–18353
    [108] Li J, White T P, O’Faolain L, et al. Systematic design of flat band slow light inphotonic crystal waveguides. Opt. Express,2008,16(9):6227–6232
    [109] Schulz S, O’Faolain L, Beggs D, et al. Dispersion engineered slow light in photoniccrystals: a comparison. Journal of Optics,2010,12:104004
    [110] Eckhouse V, Cestier I, Eisenstein G, et al. Highly efficient four wave mixing in GaInPphotonic crystal waveguides. Opt. Lett.,2010,35(9):1440–1442
    [111] Cestier I, Willinger A, Eckhouse V, et al. Time domain switching/demultiplexingusing four wave mixing in GaInP photonic crystal waveguides. Opt. Express,2011,19(7):6093–6099
    [112] Cestier I, Willinger A, Colman P, et al. Efficient parametric interactions in a low lossGaInP photonic crystal waveguide. Opt. Lett.,2011,36(19):3936–3938
    [113] Colman P, Cestier I, Willinger A, et al. Observation of parametric gain due to four-wave mixing in dispersion engineered GaInP photonic crystal waveguides. Opt. Lett.,2011,36(14):2629–2631
    [114] Monat C, Ebnali-Heidari M, Grillet C, et al. Four-wave mixing in slow light engi-neered silicon photonic crystal waveguides. Opt. Express,2010,18(22):22915–22927
    [115] Corcoran B, Pelusi M D, Monat C, et al. Ultracompact160Gbaud all-optical demul-tiplexing exploiting slow light in an engineered silicon photonic crystal waveguide.Opt. Lett.,2011,36(9):1728–1730
    [116] Li J, O’Faolain L, Rey I, et al. Four-wave mixing in photonic crystal waveguides:slow light enhancement and limitations. Opt. Express,2011,19(5):4458–4463
    [117] Suzuki K, Hamachi Y, Baba T. Fabrication and characterization of chalcogenide glassphotonic crystal waveguides. Opt. Express,2009,17(25):22393–22400
    [118] West B, Helmy A. Analysis and design equations for phase matching using Braggreflector waveguides. IEEE J. Sel. Top. Quant.,2006,12(3):431–442
    [119] Kim T, Matsushita T, Kondo T. Phase-matched second-harmonic generation in thinrectangular high-index-contrast AlGaAs waveguides. Appl. Phys. Express,2011,4(8):082201
    [120] Duchesne D, Rutkowska K, Volatier M, et al. Second harmonic generation in Al-GaAs photonic wires using low power continuous wave light. Opt. Express,2011,19(13):12408–12417
    [121] Chen A, Sun H, Szep A, et al. Achieving Higher Modulation Efficiency in Electroop-tic Polymer Modulator With Slotted Silicon Waveguide. J. Lightw. Technol.,2011,29(21):3310–3318
    [122] Koos C, Vorreau P, Dumon P, et al. Highly-nonlinear silicon photonic slot waveguide.in: Proceedings of National Fiber Optic Engineers Conference. Optical Society ofAmerica,2008.
    [123] Baba T. Slow light in photonic crystals. Nat. Photonics,2008,2(8):465–473
    [124] Monat C, Corcoran B, Ebnali-Heidari M, et al. Slow light enhancement of nonlin-ear effects in silicon engineered photonic crystal waveguides. Opt. Express,2009,17(4):2944–2953
    [125] Monat C, Corcoran B, Pudo D, et al. Slow light enhanced nonlinear optics in siliconphotonic crystal waveguides. IEEE J. Sel. T. Quantum Electron.,2010,16(1):344–356
    [126] Snyder A, Love J. Optical waveguide theory. New York: Chapman and Hall,1983.46–48
    [127] Yariv A, Yeh P. Optical waves in crystals. New York: Wiley,1984.78–81
    [128] Yeh P. Optical waves in layered media. USA: Wiley Online Library,1988.32–35
    [129] Yariv A. Photonics: Optical Electronics in Modern Communications.(6th ed.). USA:Oxford University Press,2007.526–532
    [130] Scarmozzino R, Gopinath A, Pregla R, et al. Numerical techniques for modelingguided-wave photonic devices. IEEE J. Sel. Top. Quant.,2000,6(1):150–162
    [131] Lusse P, Stuwe P, Schule J, et al. Analysis of vectorial mode fields in optical waveg-uides by a new finite difference method. J. Lightw. Technol.,1994,12(3):487–494
    [132] Hadley G, Smith R. Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions. J. Lightw. Technol.,1995,13(3):465–469
    [133] Fallahkhair A, Li K, Murphy T. Vector finite difference modesolver for anisotropicdielectric waveguides. J. Lightw. Technol.,2008,26(11):1423–1431
    [134] Tsuji Y, Koshiba M, Takimoto N. Finite element beam propagation method foranisotropic optical waveguides. J. Lightw. Technol.,1999,17(4):723–728
    [135] Selleri S, Vincetti L, Zoboli M. Full-vector finite-element beam propagationmethod for anisotropic optical device analysis. IEEE J. Quantum Electron.,2000,36(12):1392–1401
    [136] Silva J, Herna′ndez-Figueroa H, Frasson A. Improved vectorial finite-element BPManalysis for transverse anisotropic media. J. Lightw. Technol.,2003,21(2):567–576
    [137] Thylen L, Yevick D. Beam propagation method in anisotropic media. Appl. Opt,1982,21(15):2751–2754
    [138] Xu C, Huang W, Chrostowski J, et al. A full-vectorial beam propagation method foranisotropic waveguides. J. Lightw. Technol.,1994,12(11):1926–1931
    [139] Joannopoulos J, Meade R, Winn J. Photonic crystals: molding the flow of light. USA:Princeton university press,2008.111–113
    [140] Sakoda K. Optical Properties of Photonic Crystals.(1st ed.). USA: Springer,2004.80-81
    [141] Sukhoivanov I, Guryev I. Photonic crystals: physics and practical modeling. USA:Springer Verlag,2009.221-225
    [142] Taflove A, Hagness S. Computational Electrodynamics: The Finite-Difference Time-Domain Method.(3rd ed.) Norwood: Artech House,2005.77–79
    [143] Teixeira F, Chew W. General closed-form PML constitutive tensors to match arbitrarybianisotropic and dispersive linear media. IEEE Microw. Guided Wave Lett.,1998,8(6):223–225
    [144] Chew W, Weedon W. A3D perfectly matched medium from modified Maxwell’sequations with stretched coordinates. Microwave Opt. Tech. Lett.,2007,7(13):599–604
    [145] Yoo S. Wavelength conversion technologies for WDM network applications. J.Lightw. Technol.,1996,14(6):955–966
    [146] Chou M, Brener I, Fejer M, et al.1.5-μm-band wavelength conversion based oncascaded second-order nonlinearity in LiNbO3waveguides. IEEE Photon. Technol.Lett.,1999,11(6):653–655
    [147] Sun J, Liu W, Tian J, et al. Multichannel wavelength conversion exploiting cascadedsecond-order nonlinearity in LiNbO3waveguides. IEEE Photon. Technol. Lett.,2003,15(12):1743–1745
    [148] Chen B, Xu C. Analysis of novel cascaded χ(2)/(SFG+DFG) wavelength conversionsin quasi-phase-matched waveguides. IEEE J. Quantum.Electron.,2004,40(3):256–261
    [149] Tehranchi A, Kashyap R. Response flattening of efficient broadband wavelengthconverters based on cascaded sum and difference frequency generation in periodicallypoled Lithium Niobate waveguides. IEEE J. Quantum Electron.,2009,45(9):1114–1120
    [150] Tehranchi A, Morandotti R, Kashyap R. Efficient flattop ultra-wideband wavelengthconverters based on double-pass cascaded sum and difference frequency generationusing engineered chirped gratings. Opt. Express,2011,19(23):22528–22534
    [151] Lu G, Shinada S, Furukawa H, et al.160-Gb/s all-optical phase-transparent wave-length conversion through cascaded SFG-DFG in a broadband linear-chirped PPLNwaveguide. Opt. Express,2010,18(6):6064–6070
    [152] Ahlawat M, Tehranchi A, Xu C, et al. Ultrabroadband flattop wavelength conversionbased on cascaded sum frequency generation and difference frequency generation us-ing pump detuning in quasi-phase-matched lithium niobate waveguides. Appl. Opt.,2011,50(25):E108–E111
    [153] Tehranchi A, Kashyap R. Improved cascaded sum and difference frequencygeneration-based wavelength converters in low-loss quasi-phase-matched lithiumniobate waveguides. Appl. Opt.,2009,48(31):G143–G147
    [154] Tehranchi A, Kashyap R. Wideband wavelength conversion using double-pass cas-caded χ(2):χ(2)interaction in lossy waveguides. Opt. Commun.,2010,283(7):1485–1488
    [155] Albuquerque A A C, Drummond M V, Nogueira R N. Transfer Matrix and Fouri-er Transform Methods for Simulation of Second-Order Nonlinear Interactions in aPPLN Waveguide. J. Lightw. Technol.,2011,29(24):3764–3771
    [156] Xu C, Okayama H, Shinozaki K, et al. Wavelength conversions1.5μm by differencefrequency generation in periodically domain-inverted LiNbO3channel waveguides.Appl. Phys. Lett.,1993,63(9):1170–1172
    [157] Rao S, Moutzouris K, Ebrahimzadeh M, et al. Influence of scattering and two-photonabsorption on the optical loss in GaAs-Al2O3nonlinear waveguides measured usingfemtosecond pulses. IEEE J. Quantum.Electron.,2003,39(3):478–486
    [158] Afromowitz M. Refractive index of Ga1xAlxAs. Solid State Commun.,1974,15(1):59–63
    [159] Yariv A, Pochi Y. Optical Electronics in Modern Communications.(6th ed.) USA:Oxford Univ. Press,2007.483–488
    [160] Shin J, Chang Y C, Dagli N. Propagation loss study of very compactGaAs/AlGaAssubstrate removed waveguides. Opt. Express,2009,17(5):3390–3395
    [161] Kapon E, Bhat R. Low-loss single-mode GaAs/AlGaAs optical waveguides grownby organometallic vapor phase epitaxy. Appl. Phys. Lett.,1987,50(23):1628–1630
    [162] Xu C, Takemasa K, Nakamura K, et al. Device length dependence of optical second-harmonic generation in AlGaAs quasiphase matched waveguides. Appl. Phys. Lett.,1997,70(12):1554–1556
    [163] Yu X, Scaccabarozzi L, Levi O, et al. Template design and fabrication for low-lossorientation-patterned nonlinear AlGaAs waveguides pumped at1.55μm. J. Cryst.Growth.,2003,251(1-4):794–799
    [164] Wang J, Sun J, Sun Q. Proposal for all-optical format conversion based on a periodi-cally poled lithium niobate loop mirror. Opt. Lett.,2007,32(11):1477–1479
    [165] Agrawal G. Nonlinear Fiber Optics.(4th ed.) Academic Press, Boston,2007.36–39
    [166] Boyd J. Theory of parametric oscillation phase matched in GaAs thin-film waveg-uides. IEEE J. Quantum.Electron.,1972,8(10):788–796
    [167] Gehrsitz S, Reinhart F, Gourgon C, et al. The refractive index of AlGaAs below theband gap: Accurate determination and empirical modeling. J. Appl. Phys.,2000,87:7825–7837
    [168] Kim J, Sarangan A. Temperature-dependent Sellmeier equation for the refractiveindex of AlxGa1xAs. Opt. Lett.,2007,32:536–538
    [169] Fiore A, Janz S, Delobel L, et al. Second-harmonic generation at λ=1.6μm inAlGaAs/Al2O3waveguides using birefringence phase matching. Appl. Phys. Lett.,1998,72(23):2942–2944
    [170] Rao S, Moutzouris K, Ebrahimzadeh M. Nonlinear frequency conversion in semi-conductor optical waveguides using birefringent, modal and quasi-phase-matchingtechniques. J. Opt. A-Pure Appl. Op.,2004,6:569–584
    [171] Hutchings D, Wagner S, Holmes B, et al. Type-II quasi phase matching in periodicallyintermixed semiconductor superlattice waveguides. Opt. Lett.,2010,35(8):1299–1301
    [172] Horn R, Weihs G. Directional Quasi-Phase Matching in Curved Waveguides. Arxivpreprint arXiv:1008.2190,2010.
    [173] Junya Ota I O T M, Kondo T. Fabrication of Periodically-Inverted AlGaAs Waveg-uides for Quasi-Phase-Matched Wavelength Conversion at1.55μm. Jpn. J. Appl.Phys.,2009,48(4):04C110
    [174] Knopp K J, Mirin R P, Christensen D H, et al. Optical constants of (Al0.98Ga0.02)xOynative oxides. Appl. Phys. Lett.,1998,73(24):3512–3514
    [175] Pereira S, Chak P, Sipe J. Gap-soliton switching in short microresonator structures.J. Opt. Soc. Am. B,2002,19(9):2191–2202
    [176] Williams B. Terahertz quantum-cascade lasers. Nat. photonics,2007,1(9):517–525
    [177] Takigawa S, Noda S. Mode analysis of two-dimensional photonic crystal tera-hertz lasers with gain/loss dispersion characteristics. J. Opt. Soc. Am. B,2010,27(12):2556–2567
    [178] Exter M, Grischkowsky D. Characterization of an optoelectronic terahertz beam sys-tem. IEEE Trans. Microwave Theory Tech.,1990,38(11):1684–1691
    [179] Wu Q, Litz M, Zhang X. Broadband detection capability of ZnTe electro-optic fielddetectors. Appl. Phys. Lett.,1996,68:2924–2926
    [180] Petersen E, Shi W, Chavez-Pirson A, et al. Efficient parametric terahertz generation inquasi-phase-matched GaP through cavity enhanced difference-frequency generation.Appl. Phys. Lett.,2011,98:121119
    [181] Schall M, Helm H, Keiding S. Far infrared properties of electro-optic crystals mea-sured by THz time-domain spectroscopy. Int. J. Infrared and Millimeter wave,1999,20(4):595–604
    [182] Yu N E, Kang C, Yoo H K, et al. Simultaneous forward and backward terahertzgenerations in periodically poled stoichiometric LiTaO3crystal using femtosecondpulses. Appl. Phys. Lett.,2008,93(4):041104
    [183] Adachi S. Properties of aluminium gallium arsenide. UK: Inspec/Iee,1993.23–25
    [184] Brozel M, Stillman G. Properties of gallium arsenide. UK: Inspec/Iee,1996.37–40
    [185] Marandi A, Darcie T, So P. Design of a continuous-wave tunable terahertz sourceusing waveguide-phase-matched GaAs. Opt. Express,2008,16(14):10427–10433
    [186] Corcoran B, Monat C, Grillet C, et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat. Pho-tonics,2009,3(4):206–210
    [187] Chen H, Su J, Wang J, et al. Optically-controlled high-speed terahertz wave modula-tor based on nonlinear photonic crystals. Opt. Express,2011,19(4):3599–3603
    [188] Li J, He J, Hong Z. Terahertz wave switch based on silicon photonic crystals. Appl.Opt.,2007,46(22):5034–5037
    [189] Bingham A, Zhao Y, Grischkowsky D. THz parallel plate photonic waveguides. Appl.Phys. Lett.,2005,87:051101
    [190] Zhang Y, Zhang Y, Li B. Highly-efficient directional emission from photonic crystalwaveguides for coupling of freely propagated terahertz waves into Si slab waveg-uides. Opt. Express,2007,15(15):9281–9286
    [191] Kurt H, Citrin D. Photonic crystals for biochemical sensing in the terahertz region.Appl. Phys. Lett.,2005,87:041108
    [192] Monat C, Grillet C, Corcoran B, et al. Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourieroptics. Opt. Express,2010,18(7):6831–6840
    [193] Mock A, Lu L, O’Brien J. Space group theory and Fourier space analysis of two-dimensional photonic crystal waveguides. Phys. Rev. B,2010,81(15):155115
    [194] Iliew R, Etrich C, Pertsch T, et al. Huge enhancement of backward second-harmonicgeneration with slow light in photonic crystals. Phys. Rev. A,2010,81(2):023820
    [195] Michaelis D, Peschel U, Wa¨chter C, et al. Reciprocity theorem and perturbationtheory for photonic crystal waveguides. Phys. Rev. E,2003,68(6):065601–065601
    [196] Johnson S, Joannopoulos J. Block-iterative frequency-domain methods for Maxwell’sequations in a planewave basis. Opt. Express,2001,8(3):173–190
    [197] Centeno E, Cirac`C. Theory of backward second-harmonic localization in nonlinearleft-handed media. Phys. Rev. B,2008,78(23):235101
    [198] Ishikawa H, Kondo T. Birefringent phase matching in thin rectangular high-index-contrast waveguides. Appl. Phys. Express,2009,2:042202
    [199] O’Faolain L, Schulz S, Beggs D, et al. Loss engineered slow light waveguides. Opt.Express,2010,18(26):27627–27638
    [200] Shi S, Chen C, Prather D. Revised plane wave method for dispersive material and itsapplication to band structure calculations of photonic crystal slabs. Appl. Phys. Lett.,2005,86:043104
    [201] Benchabane S, Robert L, Rauch J, et al. Highly selective electroplated nickel maskfor lithium niobate dry etching. J. Appl. Phys.,2009,105(9):094109–1–094109–6
    [202] Li X. Optoelectronic devices: design, modeling, and simulation. UK: CambridgeUniversity Press,2009.1–10
    [203] Baron A, Ryasnyanskiy A, Dubreuil N, et al. Light localization induced enhancementof third order nonlinearities in a GaAs photonic crystal waveguide. Opt. Express,2009,17(2):552–557
    [204] Combrie′S, Tran Q, De Rossi A, et al. High quality GaInP nonlinear photonic crystalswith minimized nonlinear absorption. Appl. Phys. Lett.,2009,95:221108
    [205] Inoue K, Oda H, Ikeda N, et al. Enhanced third-order nonlinear effects in slow-lightphotonic-crystal slab waveguides of line-defect. Opt. Express,2009,17(9):7206–7216
    [206] McMillan J, Yu M, Kwong D, et al. Observation of spontaneous Raman scattering insilicon slow-light photonic crystal waveguides. Appl. Phys. Lett.,2008,93:251105
    [207] Checoury X, Han Z, Boucaud P. Stimulated Raman scattering in silicon photoniccrystal waveguides under continuous excitation. Phys. Rev. B,2010,82(4):041308
    [208] McMillan J F, Yu M, Kwong D L, et al. Observation of four-wave mixing in slow-light silicon photonic crystal waveguides. Opt. Express,2010,18(15):15484–15497
    [209] Xiong C, Monat C, Clark A, et al. Slow-light enhanced correlated photon pair gener-ation in a silicon photonic crystal waveguide. Opt. Lett.,2011,36(17):3413–3415
    [210] Colman P, Husko C, Combrie′S, et al. Temporal solitons and pulse compression inphotonic crystal waveguides. Nat. Photonics,2010,4(12):862–868
    [211] Panoiu N, McMillan J, Wong C. Theoretical analysis of pulse dynamics in sili-con photonic crystal wire waveguides. IEEE J. Sel. T. Quantum Electron.,2010,16(1):257–266
    [212] Santagiustina M, Someda C, Vadala G, et al. Theory of slow light enhanced four-wavemixing in photonic crystal waveguides. Opt. Express,2010,18(20):21024–21029
    [213] Roy S, Santagiustina M, Colman P, et al. Modeling the Dispersion of the Nonlinearityin Slow Mode Photonic Crystal Waveguides. IEEE Photonics Journal,2012,4(1):224–233
    [214] Krauss T. Slow light in photonic crystal waveguides. J. Phys. D: Appl. Phys.,2007,40:2666–2670
    [215] Soljacic M, Joannopoulos J. Enhancement of nonlinear effects using photonic crys-tals. Nat. Mater.,2004,3(4):211–220
    [216] Hughes S, Ramunno L, Young J, et al. Extrinsic optical scattering loss in photoniccrystal waveguides: role of fabrication disorder and photon group velocity. Phys.Rev. Lett.,2005,94(3):33903
    [217] O.Faolain L, White T, O.Brien D, et al. Dependence of extrinsic loss on group veloc-ity in photonic crystal waveguides. Opt. Express,2007,15(20):13129–13138
    [218] Yin L, Agrawal G. Impact of two-photon absorption on self-phase modulation insilicon waveguides. Opt. Lett.,2007,32(14):2031–2033
    [219] Tran Q, Combrie′S, Colman P, et al. Photonic crystal membrane waveguides withlow insertion losses. Appl. Phys. Lett.,2009,95:061105
    [220] Liu X. Theory and experiments for multiple four-wave-mixing processes with multi-frequency pumps in optical fibers. Phys. Rev. A,2008,77(4):043818
    [221] Matsuda N, Kato T, Harada K, et al. Slow light enhanced optical nonlinearity in asilicon photonic crystal coupled-resonator optical waveguide. Opt. Express,2011,19(21):19861–19874
    [222] Bao C, Hou J, Wu H, et al. Flat band slow light with high coupling efficiency inone-dimensional grating waveguides. IEEE Photon. Technol. Lett.,2011,(99):7–9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700