电子耳蜗语音处理电路设计与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子耳蜗是一种利用微电子技术使失聪患者恢复听觉的神经电刺激装置,受到临床医学、神经工程及康复工程界学者的高度重视。电子耳蜗的体外语音信号处理电路是其关键组成部分之一,其主要功能是利用声电换能装置将声音信号转化为可以用来刺激人耳听神经的电信号。国内在电子耳蜗研究方面起步较晚,包括体外语音处理电路部分在内的电子耳蜗关键技术有待进一步完善。本课题对电子耳蜗语音处理电路的研究,有助于提高电子耳蜗的国产化水平,造福于2000多万深度耳聋患者,产生巨大的社会效益和经济效益。
     本课题在分析人体听觉器官生理结构、电子耳蜗语音信号处理及相关关键技术的基础上,设计了电子耳蜗体外语音处理电路。该电路使用数字信号处理器芯片TMS320VC5402构建了语音处理模块,以音频芯片TLV320AIC23设计了语音信号采集模块,采用无线数传芯片nRF2401A设计了信号发射模块,并设计了其它相应外围模块。其中,数字信号处理器作为核心器件,在进行语音信号处理的同时,还通过多通道缓冲串行口、复用主机接口等接口管理控制这些功能模块电路的初始化及其工作状态设定。在硬件设计基础上,本课题提出了一种基于连续间隔采样CIS方案和连续可变斜率增量调制CVSD算法的新型语音信号处理方案,该方案在完成普通CIS方案频带划分及声-电转换功能的同时,能以较小的语音质量损失获取较大的压缩率以便于无线数据的传输。最后在DSP开发代码设计工作站CCS软件环境中,实现了相应的语音信号处理,使处理信号成为能够提供给体内刺激器语音信息的信号。
     在语音信号采集、处理、发射各功能模块设计的基础上,针对其小体积的要求,对电子耳蜗体外语音处理电路进行了PCB整体布局上的优化设计,使其达到了基本的便携要求。同时,以电子耳蜗语音处理电路中上述功能模块所要求达到的性能指标为依据,设计了相关的测试方案,分析了实验要点,解决了实验过程中的问题,并对测试结果进行了讨论。结果表明:本课题电子耳蜗语音处理电路可以完成对语音信号的采集、对信号进行分组滤波、编码压缩和量化以进行声电映射、打包组帧及无线发送的功能,达到了电子耳蜗语音处理电路功能上的基本要求。
Cochlear Implant (CI) is a kind of electrical nerve stimulative device, which uses microelectronics technology to restore hearing in deaf patients. Many scholars of clinical medicine, neural engineering and rehabilitation engineering attach great importance to it. As a key component in CI, the speech signal processing circuit’s function is to convert speech signals into electrical signals which is used to stimulate the person ear auditory nerves. Since the research of CI started late in our country, the CI’s key technologies including the design of speech processing electronic circuit are needed to be further improved. The research of CI’s speech signals processing circuit in this project is helpful to improve the CI's progress in our country, which will benefit more than 20 million profoundly deaf patients, and will bring tremendous social and economic benefits.
     On the basis of analysing the physiological structure of human auditory organ, CI’s speech signals processing strategies and some related key technologies, a CI’s speech signals processing scheme had been designed in this project.This project constructed the signal processing circuit by using digital signal processor TMS320VC5402, designed the speech signal acquisition circuit by emploing audio chip TLV320AIC23, set up the signal transmission circuit based on wireless digital transmission chip nRF2401A and designed the other peripheral circuits. In the proposed scheme, as a core, the digital signal processor not only carried on the signal processing, but also managed the peripheral circuits so as to control their initialization and set their estates of tasks via some interfaces such as the multichannel buffered serial port and the host port. On the basic of hardware design, this research proposed a new kind of speech signals processing strategy, which is based on the combination of continuous interleaved sampling strategy and continuously variable slope delta algorithm. The new strategy filtered the signals and implemented the speech-electricity transform, additionly attained high compression ratio when losing little signal quality in order to transmit data wireless conveniently. Finally, the corresponding speech signals processing strategy had been actualized in the DSP’s development environment----code composer studio software, so that the processed signals become the signals which could provide the speech information for the stimulator.
     Considering the small volume requirement of the CI circuit, the entire layout of the PCB design optimization had been carried on and the circuit eventually achieved the target of portability. Synchronously, according to the requirements of CI’s functional modules, some corresponding testing experimental schemes had been designed. In these schemes, main points had been analysed, questions encountered in these experiments had been solved. Finally, these schemes discussed test results. The results indicated that: this circuit can accomplish the acquisition of speech Signals, the signals filtering, compression and quantification for the speech-electricity mapping, frames packing and wireless transmission. The CI circuit achieved the basic function which the CI’s speech signals processing circuit requested.
引文
[1]韩德民.中国多道人工耳蜗植入现状[J].中华耳鼻咽喉科杂志, 2004, 39(2).
    [2] Zeng FG. Cochlear implants in China Audiology [J]. Hearing Research, 1995, 34:61-75.
    [3]江丕栋,杨子彬.生物医学工程:保障人类健康的高新技术[M].济南:山东科学技术出版社, 2001, 04:70-71.
    [4] Francis A. spelman. The past, the present, and future of cochlear prosthesis [J]. IEEE engineering in medicine and biology, 1999, 5/6: 27-33.
    [5] Philipos C. Loizou. Introduction to cochlear implants [J]. IEEE engineering in medicine and biology, 1999, 1/2: 32-42.
    [6] R.Shannon, F.Zeng, V.Kamath. Speech Recognition with Primarily Temporal Cues [J]. Science, 1995, Vol. 270:303-304.
    [7] Danhauer J, Ghadialy F, Eskwitt D, and Mendel L. Performance of 3M/House cochlear implant users on tests of speech perception. [J]. American Academy of Audiology, 1: 236-239,1990.
    [8] Philipos C. Loizou. Mimicking the human ear [J]. IEEE signal processing magazine, 1998, 9: 101-130.
    [9] Peter Gibson, Ian Darley, Claudiu Treaba, et al. Insertion tool for a cochlear implant electrode array [P]. WIPO: WO 02/32498 A1, 2002-4-25.
    [10] Schindler R, Kessler D. Preliminary results with the Clarion cochlear implant system. [J] Laryngoscope, 102:1006-1013, 1992.
    [11] Helms J, Muller J, Schon F, et al. Evaluation of performance with the COMBI 40 cochlear implant in adults: A multicentric clinical study. [J]. ORL, vol.59, pp.23-35, 1997.
    [12] Patrick J, Clark G. The Nucleus 22-channel cochlear implant system [J]. Ear and Hearing, 12:3-9, 1991.
    [13] Seligman P, McDermott H. Architecture of the Spectra 22 speech processor. [J].Ann Otology, Rhinology and Laryngology, 104:139-141, 1995.
    [14] Cochlear Corporation. ESPrit 3G User Manual. Cochlear Corporation: 2003, http://www.cochlear.com.
    [15] Cochlear Corporation. Freedom User Manual. Cochlear Corporation: 2006, http://www.cochlear.com.
    [16] Cochlear Corporation. Freedom BTE Quick Ref. Cochlear Corporation: 2006, http://www.cochlear.com.
    [17]新华社,国产人工耳蜗在沪面世,[EB/01]. http://news.sina.com.cn/o/2008-01-13/050813248822s.shtml,2008-01-13.
    [18]曹克利,师秀珍.人工耳蜗植入患者电听觉的研究. [J].中华医学杂志.1994,74(6).
    [19] Qian-jie Fu, Fan-Gang Zeng, Robert V. Shannon, Sigfrid D. Soli. Importance of tonal envelope cues in Chinese speech recognition. [J]. Acoust. Soc. Am. 104(1), July 1998.
    [20]王正敏,迟放鲁,江晔等.多道程控人工耳蜗医学和工程的研究. [J].上海医学,1999.
    [21]李学佩.神经耳科学. [M].北京大学医学出版社2007-04.
    [22]高文元,迟放鲁,贺秉坤.临床听觉生理学[M].人民军医出版社2004-10-1.
    [23] Janusz A. Kuzma, Thomas H.R. Lenarz. Apex to base cochlear implant electrode [P]. United States: US 6,498,954 B1, 2002-12-24.
    [24]许政敏, Ingeborg Dhooge.电脑干诱发电位记录在聋幼儿人工耳蜗植入术中的应用. [M]. Journal of Audiology and Speech Pathology. 2002, Vol 10,No.2.
    [25] Philipos C. Loizou. Introduction to cochlear implants [J]. IEEE engineering in medicine and biology, 1999, 1/2: 32-42.
    [26] Gallego E, Truy S, Morgon A. et al.EABRs and surface potentials with a transcutaneous multielectrode cochlear implant [J ].Acta Otolaryngol,(Stockh) 1997,117-164.
    [27]曹克利,王直中,王开西等.耳蜗植入的设计、实验研究与临床应用. [J].听力学及言语疾病杂志,1994.
    [28] Wilson B, Lawson D, Zerbi M. Advances in coding strategies for cochlear implants. [J]. Advances in Otolaryngology-Head and Neck Surgery, 9:105-129, 1995.
    [29] Philipos C. Loizou. Signal-Processing Techniques for Cochlear Implants. [J]. IEEE engineering in medicine and biology,1999.
    [30]刘爱国,王正敏.人工电子耳蜗语音信号处理方案研究及其进展,[J].国外医学耳鼻咽喉科学分册,2002,26(6):326-329.
    [31]韩先花,聂开宝.电子耳蜗实现方案及其信号处理算法研究进展,[J].生物医学工程学杂志,2003,20(2):340-344.
    [32] McDermott HJ, Vandali AE, van Hoesel RJ et al. A portable programmable digital sound processor for cochlear implant research. [J].IEEE transactions on rehabilitation engineering, 1993.
    [33] Miyoshi, Shigeki, et al. Proposal of a new method for narrowing and moving the stimulated region of cochlear implants: animal experiment and numerical analysis. [J].IEEE Transaction on Biomedical Engineering, 1999, Vol 46(4): 451-460.
    [34]聂开宝,蓝宁,高上凯.人工电子耳蜗语音信号处理方法的研究进展. [J].生物医学工程学杂志,1999,16(3):365-370.
    [35] Dorman M, Loizou P. Changes in speech intelligibility as a function of time and signal processing strategy for an Ineraid patient fitted with Continuous Interleaved Sampling (CIS) processors. [J].Ear and Hearing,18:147-155,1997.
    [36]聂开宝,蓝宁,高上凯.用小波变换实现电子耳蜗CIS语音信号处理. [J].清华大学学报(自然科学报)1999 39 (9):38-40.
    [37]于淑丽,关添,叶大田.电子耳蜗CIS算法听觉仿真模型语音合成方法的改进,[J].北京生物医学工程,2006.8,25(4):404~406.
    [38] .关添,叶大田.电子耳蜗的选择性频率幅度调制编码算法,[J].清华大学学报(自然科学版),2006, 46(12).
    [39]关添,叶大田.电子耳蜗语音处理主流算法的效果比较和最新进展,[J].生物医学工程学杂志,2006, 23(5):1138~1141.
    [40] Peter Gibson, Ian Darley, Claudiu Treaba, et al. Insertion tool for a cochlear implant electrode array [P]. WIPO: WO 02/32498 A1, 2002-4-25.
    [41]易克初,田斌,付强.语音信号处理. [M].北京:国防工业出版社,2000,6:11-12.
    [42] Thomas F.Quatieri Discrete-Time Speech Signal Processing:Principles and Practice(影印版)[M].电子工业出版社2004.08; 42~133.
    [43]王炳锡.语音编码. [M].西安:西安电子科技大学出版社,2002.07
    [44] MX-COM Inc. Continuously Variable Slope Delta Modulation: A Tutorial. [M].www.mxcom.com,1998.
    [45]国家技术监督局.增量调制终端设备技术要求及测量方法. [M].北京:中国标准出版社,1992:25~35.
    [46]张素香,戚银城,苏平. TMS320C50在语音编码转换中的应用研究,[J].华北电力大学学报,2002.01,29(1):58~62.
    [47] TMS320VC5402 Fixed-Point Digital Signal Processor. Texas Instrument Corporation, 2004. http://www.ti.com.
    [48] Texas Instrument. TLV320AIC23 Data manual, www.ti.com,2003.07.
    [49] Nordic. Single chip 2.4G Transceiver nRF2401A, Nordic VLSIASA ,2004.
    [50] Texas Instrument. TPS73HD318 Data manual, www.ti.com,2003.
    [51] SST Inc.SST39VF010 Data manual.www.SST.com.2002.
    [52] Texas Instrument. TMS320C54x DSP Reference Set Volume 4:Applications Guide. Texas Instrument Corporation, 1996. http://www.ti.com.
    [53] Texas Instrument. TMS320C54x DSP Reference Set Volume 5:Enhanced Peripherals. Texas Instrument Corporation, 1999. http://www.ti.com.
    [54] TMS320C54x Assembly Language Tools User’s Guide. Texas Instrument Corporation, 1999.http://www.ti.com.
    [55]王念旭. DSP基础与应用系统设计. [M].北京:北京航空航天大学出版社, 2001.08.
    [56]张雄伟,陈亮,徐光辉. DSP集成开发与应用实例. [M].北京:电子工业出版社, 2002.06.
    [57]邹彦. DSP原理及应用. [M].北京:电子工业出版社, 2005.07.
    [58]彭启琮. TMS320C54x实用教程. [M].成都:电子科技大学出版社,2000.01.
    [59]梁天明,耿相铭,陈健.多通道串行A/D转换器与TI DSP的接口实现. [J].通信技术.2002, No.5.
    [60]李顶根,曹继光.基于TMS320VC5409 DSP的音频信号处理系统. [J].微电子与基础产品.2002, 28(2).
    [61] NordicSemi Inc.λ/4 printed monopole antenna for 2.45GHz. www.nordicsemi.com, 2005.01.
    [62]孙红,张涛.基于TMS320C5509DSP的无线语音传输采集传输系统,[J].微计算机信息,2007,23(8-2):184~186.
    [63]张克满,史仪凯.基于DSP和Nrf2401芯片的数字无线视频采集系统设计. [J].微电子学与计算机.2005第22卷第3期93~95.
    [64] NordicSemi Inc. tuning the nRF24xx matching network.. www.nordicsemi.com,2006.07.
    [65]顾海州.马双武. PCB电磁兼容技术――设计实践. [M].北京:清华大学出版社,2004.01.
    [66] NordicSemi Inc. Design in of RF circuits. www.nordic. ww.nordicsemi.com,2002.11.
    [67] NordicSemi Inc. nRF2401A RF Layout . www.nordicsemi.com,2005.05.
    [68]张志勇等.掌握和精通MATLAB. [M].北京:北航出版社,1997,7.
    [69] Duane Hanselman and Bruse Littlefield著.李人厚,张平安等译.精通MATLAB—综合辅导与指南. [M].西安:西安及同大学出版社发行, 1999,09.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700