数据库支持的模糊OWL本体构建与存储的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
语义Web是当前Web的扩展,它赋予Web资源信息机器可理解的语义,从而便于人和计算机之间的交互与协作。为了让机器能够理解Web资源信息并做推理,需要建立本体,并使用本体语言进行描述。语义Web本体语言的标准是OWL,它建立在数据表示语言RDF和RDFS(常合称为RDF(S))之上,它们一起构成了当今语义Web的描述语言基础。
     由于很多语义Web应用需要处理大量的模糊知识,而现有本体不能直接用于模糊知识的表示和处理,因此,对本体进行模糊扩展以满足模糊知识管理的需要逐渐成为一个研究热点,这一点与数据库技术为表示和处理现实世界中的模糊数据而产生模糊数据库模型的情况相一致。
     作为Web时代模糊信息表示和处理的两个重要技术方法,模糊数据库模型和模糊本体之间存在着密切的关联关系。一方面,从构建的角度,模糊数据库模型可以作为构建模糊本体的数据源,使模糊本体充分利用现有的模糊数据库模型中的信息;另一方面,从存储的角度,利用模糊关系模型亦即模糊关系数据库在模糊数据存储和处理等方面的优势,能够对语义Web上的模糊信息进行有效的管理。事实上,模糊本体构建和存储是模糊本体管理中的两个重要问题。目前,有关模糊本体存储以及利用结构化模糊数据进行模糊本体构建的研究成果还很少。
     为有效表示和处理大量的模糊知识、实现模糊语义Web本体的管理,本文在对语义Web数据层语言RDF(S)及本体层语言OWL模糊扩展的基础上,展开数据库支持的模糊OWL本体管理的研究,目标在于形成一个有关模糊OWL本体从表示到构建、存储的完整理论框架。具体研究内容包括以下几个方面:
     (1)提出模糊RDFS(f-RDF(S))和模糊OWL(f-OWL)。通过对RDF数据类型进行模糊扩展,给出模糊数据类型的表示方法,这种方法能够解决模糊数据类型信息的表示和处理问题,进而,提出f-RDF(S),并给出f-RDF(S)语义。在f-RDF(S)的基础上,对OWL进行模糊扩展,提出f-OWL,并给出f-OWL的语法和语义。f-OWL奠定了描述模糊OWL本体的语言基础,在此基础上,给出模糊OWL本体的形式化定义。
     (2)提出基于模糊EER模型的模糊OWL本体的构建方法。在给出模糊EER模型的形式化定义后,从模糊描述逻辑角度,指出基于模糊EER模型构建模糊OWL本体具有可行性。在此基础上,给出基于模糊EER模型构建模糊OWL本体的步骤,提出模糊EER模型到模糊OWL本体的转换规则和算法。
     (3)提出基于模糊关系数据库的模糊OWL本体的构建方法。在给出模糊关系数据库的形式化定义后,从模糊描述逻辑角度,指出基于模糊关系数据库构建模糊OWL本体具有可行性。在此基础上,给出基于模糊关系数据库构建模糊OWL本体的步骤,包括模糊关系模式的语义识别、转换规则和算法,以及利用模糊关系数据库中的数据构建模糊OWL本体实例的方法,并证明了基于模糊关系数据库的模糊OWL本体构建方法的正确性。
     (4)提出基于模糊关系数据库的模糊OWL本体的存储方法。通过分析现有本体的存储方法,给出模糊OWL本体的存储模式,该存储模式能够满足模糊OWL本体的存储要求。在此基础上,提出模糊OWL本体结构和不同类型的模糊数据在模糊关系数据库中的存储方法,实现了模糊OWL本体在模糊关系数据库中的合理、有效的存储,并证明了基于模糊关系数据库的模糊OWL本体存储方法的正确性。
The Semantic Web is an extension of the current web in which the web information can be given well-defined semantic meaning, and thus enabling better cooperation between computers and people. In order to recognize the web resources by computers in an intelligent and automatic way, we should construct ontologies and use ontology description languages to represent ontologies. OWL is a standard for expressing ontologies in the Semantic Web building on data description language RDF and RDFS (or simply RDF(S)). OWL together with RDF(S) forms the foundation of current Semantic Web description languages.
     Classical ontologies have limitations when dealing with fuzzy knowledge and data information that play an important role in many web applications, so the significant research efforts in the Semantic Web community are recently directed toward the fuzzy extensions to ontologies, which is in accordance with the case in databases that the fuzzy database models are developed for representing and processing the fuzzy data in many real-world applications.
     As two important techniques of representing and processing the fuzzy information in web, there exist strong relationships between the fuzzy database models and the fuzzy ontologies. On the one hand, from the view of construction, the fuzzy database models in the database area can be used as the dominant source for acquiring the existing knowledge for fuzzy ontologies development. On the other hand, from the view of storage, the fuzzy information in Semantic Web can be managed more effectively by taking advantage of storing and processing fuzzy data of fuzzy relational models (i.e., fuzzy relational databases). In fact, the construction and the storage of fuzzy ontologies are two significant issues in fuzzy ontologies management. Currently, less research has been done in the storage of fuzzy ontologies and the construction of fuzzy ontologies from the structured fuzzy data.
     In order to represent and deal with large amounts of fuzzy knowledge, and realize the management of fuzzy Semantic Web ontologies, the fuzzy extensions of the data level and the ontology level languages of Semantic Web are firstly investigated. On this basis, the management of fuzzy OWL ontologies supported by databases is investigated in detail so as to form a comprehensive theoretical framework of representation, construction, and storage of fuzzy OWL ontologies. The main contributions of this paper include:
     (1) The fuzzy RDFS(f-RDF(S)) and fuzzy OWL (f-OWL) are proposed. Firstly, based on the mechanism of RDF data type, a method of representing the fuzzy data type is proposed, which can solve the problems of representing and processing the fuzzy data type information. The f-RDF(S) is hereby presented, and the semantics of f-RDF(S) is also given. Then, based on f-RDF(S), the OWL is extended to f-OWL, and the syntax and semantics of f-OWL are given. The f-OWL lays the language foundation of describing the fuzzy OWL ontologies. On this basis, the formal definition of fuzzy OWL ontologies is given.
     (2) The construction method of fuzzy OWL ontologies based on fuzzy EER models is presented. Firstly, the formal definition of fuzzy EER models is given, and then from the view of fuzzy description logics, the feasibility of constructing fuzzy OWL ontologies from fuzzy EER models is discussed. On this basis, the steps of constructing fuzzy OWL ontologies using fuzzy EER models is given, and the transformation rules and the algorithm of fuzzy EER models to fuzzy OWL ontologies are given.
     (3) The construction method of fuzzy OWL ontologies based on fuzzy relational databases is presented. Firstly, the formal definition of fuzzy relational databases is given, and then from the view of fuzzy description logics, the feasibility of constructing fuzzy OWL ontologies from fuzzy relational databases is discussed. On this basis, the steps of constructing the fuzzy OWL ontologies using the fuzzy relational databases, including the semantic recognition of fuzzy relational models, the transformation rules, and the algorithm are given. Then, the generation of fuzzy OWL ontologies instances using the data of fuzzy relational databases is developed in detail. The correctness of construction method of fuzzy OWL ontologies is proved.
     (4) The storage method of fuzzy OWL ontologies in fuzzy relational databases is proposed. Firstly, by analyzing the storage approaches of ontologies, the storage schema of fuzzy OWL ontologies is given, which can satisfy the storage demand of fuzzy OWL ontologies. On this basis, the storage methods of fuzzy OWL ontologies structure and fuzzy data of different types in the fuzzy relational databases are proposed, which achieve reasonable and efficient storage. The correctness of storage method of fuzzy OWL ontologies is proved.
引文
1. Berners-Lee T. Semantic Web Road Map, September 1998, http://www.w3.org/DesignIssues/Semantic.html.
    2. Berners-Lee T. Semantic Web-XML 2000, http://www.w3.org/2000/Talks/1206-xm12k-tbl/slide10-0.html.
    3. Berners-Lee T, Hendler J, Lassila O. The Semantic Web [J], The Scientific American,2001,284(5):34-43.
    4. Berners-Lee T, Hendler J. Publishing on the Semantic Web-the Coming Internet Revolution will Profoundly Affect Scientific Information [J], NATURE,2001, 410(6832):1023-1024.
    5. Antoniou G, Harmelen van F. A Semantic Web Primer [M], Massachusetts:The MIT Press,2004.(陈小平等译.语义网基础教程[M],北京:机械工业出版社,2008.)
    6. Shadbolt N, Berners-Lee T, Hall W. The Semantic Web Revisited [J], IEEE Intelligent Systems,2006,21(3):96-101.
    7. Liu S, Mei J, Yue A, et al. XSDL:Making XML Semantics Explicit [C], In Proce edings of the 2nd International Workshop on Semantic Web and Databases (SWDB), LNCS 3372,2004,64-83.
    8.刘升平,林作铨,梅婧等.一种XML的模型论语义[J],软件学报,2006,17(5):1089-1097.
    9. Klyne G, Carroll J J. Resource Description Framework (RDF):Concepts and Abstract Syntax, http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.
    10. Hayes P. RDF Semantics, http://www.w3.org/TR/2004/REC-rdf-mt-20040210/.
    11. Hayes P. RDF Model Theory,http://www.w3.org/TR/2001/WD-rdf-mt-20010925/.
    12. Brickley D, Guha R V. RDF Vocabulary Description Language 1.0:RDF Schema, http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.
    13. Baader F, Calvanese D, McGuinness D, et al. The Description Logic Handbook: Theory, Implementation and Applications [M], Cambridge:Cambridge University Press,2003.
    14. Studer R, Benjamins V R, Fensel D. Knowledge Engineering:Principles and Methods [J]. Data & Knowledge Engineering,1998,25 (1-2):161-197.
    15.史忠植,董明楷,蒋运承等.语义网的逻辑基础[J],中国科学E辑,2004,34(10):1123-1138.
    16. Bechhofer S, Harmelen van F, Hendler J, et al. OWL Web Ontology Language Reference, http://www.w3.org/TR/owl-ref/.
    17.梅婧,刘升平,林作铨.语义Web的逻辑基础[J],模式识别与人工智能,2005,18(5):513-521.
    18. Staab S, Maedche A. Ontology Learning for the Semantic Web [J], IEEE Intelligent Systems,2001,16(2):72-79.
    19. Quan T T, Hui S C, Fong A C M, et al. Automatic Generation of Ontology for Scholarly Semantic Web [C], In Proceedings of the 3rd International Semantic Web Conference,2004,726-740.
    20. Terzi E, Vakali A, Hacid M-S. Knowledge Representation, Ontologies, and the Semantic Web [C], In Proceedings of APWeb 2003, LNCS 2642,2003,382-387.
    21. Sanchez E, Yamanoi T. Fuzzy Ontologies for the Semantic Web [C], In Proceedings of the 7th International Conference on Flexible Query Answering Systems (FQAS 2006), LNAI 4027,2006,691-699.
    22. Ma Z M. Soft Computing in Ontologies and Semantic Web [M], Berlin: Springer-Verlag,2006.
    23. Quan T T, Hui S C, Fong A C M, et al. Automatic Fuzzy Ontology Generation for Semantic Web [J], IEEE Transaction on Knowledge and Data Engineering,2006, 18(6):842-856.
    24. Zadeh L A. Fuzzy Sets [J], Information and Control,1965,8(3):338-353.
    25. Zadeh L A. Fuzzy Sets as a Basis for a Theory of Possibility [J], Fuzzy Sets and Systems,1978,1(1):3-28.
    26.瞿裕忠,胡伟,郑东栋等.关系数据库模式和本体间映射的研究综述[J],计算机研究与发展,2008,45(2):300-309.
    27.张晓明,胡长军,李华昱等.从关系数据库到本体映射研究综述[J],小型微型计算机系统,2009,30(7):1366-1375.
    28.杜小勇,李曼,王珊.本体学习研究综述[J],软件学报,2006,17(9):1837-1847.
    29. Astrova I, Kalja A. Towards the Semantic Web:Extracting OWL Ontologies from SQL Relational Schemata [C], In Proceedings of IADIS International Conference WWW/Internet,2006,62-66.
    30. Astrova I, Korda N, Kalja A. Rule-based Transformation of SQL Relational Databases to OWL Ontologies [C], In Proceedings of the 2nd International Conference on Metadata and Semantics Research,2007.
    31. Astrova I. Reverse Engineering of Relational Databases to Ontologies [C], In Proceedings of the 1st European Semantic Web Symposium (ESWS), LNCS 3053, 2004,327-341.
    32.许卓明,王琦.一种从关系数据库学习OWL本体的方法[J],河海大学学报,2006,34(2):208-211.
    33.余霞,刘强,叶丹.基于规则的关系数据库到本体的转换方法[J],计算机应用研究,2008,25(3):767-770.
    34.陈和平,何璐,陈彬等.基于关系数据库的本体生成器设计与实现[J],计算机工程,2009,35(5):34-36.
    35.曹泽文,张维明,邓苏等.一种从关系数据库向Flogic本体转换的方法[J],计算机科学,2007,34(4):149-153.
    36. Stojanovic L, Stojanovic N, Volz R. Migrating Data-Intensive Web Sites into the Semantic Web [C], In Proceedings of the 17th ACM Symposium on Applied Computing,2002,1100-1107.
    37. Lubyte L, Tessaris S. Extracting Ontologies from Relational Databases [C], In Proceedings of the 2007 International Workshop on Description Logics (DL 2007),2007,387-397.
    38. Cullot N, Ghawi R, Yeongnon K. DB2OWL:A Tool for Automatic Database-to-Ontology Mapping [C], In Proceedings of the 15th Italian Symposium on Advanced Database Systems,2007,491-494.
    39. Li M, Du X, Wang S. A Semi-Automatic Ontology Acquisition Method for the Semantic Web [C], In Proceedings of the 6th International Conference on Advances in Web-Age Information Management (WAIM 2005),2005,209-220.
    40. Li M, Du X, Wang S. Learning Ontology from Relational Database [C], In Proceedings of the 4th International Conference on Machine Learning and Cybernetics,2005,3410-3415.
    41.许卓明,董逸生,陆阳.从ER模式到OWL DL本体的语义保持的翻译[J],计算机学报,2006,29(10):1786-1796.
    42. Xu Z, Cao X, Dong Y, et al. Formal Approach and Automated Tool for Translating ER Schemata into OWL Ontologies [C], In Proceedings of Advances in Knowledge Discovery and Data Mining (PAKDD 2004), LNAI 3056,2004, 464-476.
    43. Upadhyaya S R, Kumar P S. Eronto:A tool for Extracting Ontologies from Extended E/R Diagrams [C], In Proceedings of the 2005 ACM Symposium on Applied Computing,2005,666-670.
    44. An Y, Borgida A, Mylopoulos J. Discovering the Semantics of Relational Tables through Mappings [J], Journal on Data Semantics,2006,7:1-32.
    45. An Y, Mylopoulos J, Borgida A. Building Semantic Mappings from Databases to Ontologies [C], In Proceedings of the 21st National Conference on Artificial Intelligence (AAAI-06),2006,1557-1560.
    46. Xu Z, Zhang S, Dong Y. Mapping between Relational Database Schema and OWL Ontology for Deep Annotation [C], In Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI'06),2006, 548-552.
    47. Habegger B. Mapping a Database into an Ontology:An Interactive Relational Learning Approach [C], In Proceedings of the 23rd International Conference on Data Engineering (ICDE2007),2007,1443-1447.
    48. Hu W, Qu Y. Discovering Simple Mappings between Relational Database Schemas and Ontologies [C], In Proceedings of the 6th International Semantic Web Conference and the 2nd Asian Semantic Web Conference, LNCS 4825,2007, 225-238.
    49. Anuradha G, Cindy X C, Kajal T C, et al. From Ontology to Relational Databases [C], In Proceedings of ER Workshops 2004, LNCS 3289,2004,278-289.
    50. Vysniauskas E, Nemuraite L. Transforming Ontology Representation from OWL to Relational Database [J], Information Technology and Control,2006,35(3): 333-343.
    51. Astrova I, Korda N, Kalja A. Storing OWL Ontologies in SQL Relational Databases [C], In Proceedings of World Academy of Science Engineering and Technology,2007,167-172.
    52.许卓明,黄永菁.从OWL本体到关系数据库模式的转换[J],河海大学学报,2006,34(1),95-99.
    53. Zhou J, Ma L, Liu Q, et al. Minerva:A Scalable OWL Ontology Storage and Inference System [C], In Proceedingis of the ASWC 2006, LNCS 4185,2006, 429-443.
    54.李曼,王琰,赵益宇等.基于关系数据库的大规模本体的存储模式研究[J],华中科技大学学报(自然科学版),2005,33(12):217-220.
    55. Raju K V S V N, Majumdar A K. Fuzzy Functional Dependencies and Lossless Join Decomposition of Fuzzy Relational Database Systems [J], ACM Transactions on Database Systems,1988,13(2):129-166.
    56. Medina J M, Pons O, Vila M A. GEFRED:A Generalized Model of Fuzzy Relational Database [J], Information Sciences,1994,76(1-2),87-109.
    57. Medina J M, Vila M A, Cubero J C, et al. Towards the Implementation of a Generalized Fuzzy Relational Database Model, Fuzzy Sets and Systems,1995,75: 273-289.
    58. Buckles B P, Petry F E. A Fuzzy Representation of Data for Relational Databases [J], Fuzzy Sets and Systems,1982,7 (3):213-226.
    59. Shenoi S, Melton A. Proximity Relations in the Fuzzy Relational Databases [J], Fuzzy Sets and Systems,1989,31 (3):285-296.
    60. Prade H, Testemale C. Generalizing Database Relational Algebra for the Treatment of Incomplete or Uncertain Information and Vague Queries [J], Information Sciences,1984,34:115-143.
    61. Ma Z M, Yan L. A literature Overview of Fuzzy Database Models [J], Journal of Information Science and Engineering,2008,24(1),189-202.
    62. Chen S M, Jong W T. Fuzzy Query Translation for Relational Database Systems [J], IEEE Transactions on Systems, Man and Cybernetics-Part B:Cybernetics, 1997,27 (4):714-721.
    63. Chen G Q, Kerre E E, Vandenbulcke J. The Dependency-Preserving Decomposition and a Testing Algorithm in a Fuzzy Relational Data Model [J], Fuzzy Sets and Systems,1995,72 (1):27-37.
    64. Saxena P C, Tyagi B K. Fuzzy Functional Dependencies and Independencies in Extended Fuzzy Relational Database Models [J], Fuzzy Sets and Systems,1995, 69(1):65-89.
    65. Bhuniya B, Niyogi P. Lossless Join Property in Fuzzy Relational Databases [J], Data and Knowledge Engineering,1993,11 (2):109-124.
    66. Chen G Q, Kerre E E, Vandenbulcke J. Normalization Based on Functional Dependency in a Fuzzy Relational Data Model [J], Information Systems,1996, 21 (3):299-310.
    67. Bahar O, Yazici A. Normalization and Lossless Join Decomposition of Dimilarity-Based Fuzzy Relational Databases [J], International Journal of Intelligent Systems,2004,19(10):885-917.
    68. Jyothi S, Babu M S. Multivalued Dependencies in Fuzzy Relational Databases and Lossless Join Decomposition [J], Fuzzy Sets and Systems,1997,88:315-332.
    69. Ma Z M, Zhang W J, Ma W Y, et al. Data Dependencies in Extended Possibility-Based Fuzzy Relational Databases [J], International Journal of Intelligent Systems,2002,17 (3):321-332.
    70. Zvieli A, Chen P P. Entity-Relationship Modeling and Fuzzy Databases [C], In Proceedings of the 1986 IEEE International Conference on Data Engineering, 1986,320-327.
    71. Ruspini E. Imprecision and Uncertainty in the Entity-Relationship Model, Fuzzy Logic in Knowledge Engineering [M], Verlag TUV Rheinland,1986.
    72. Vandenberghe R M, Caluwe de R M. An Entity-Relationship Approach to Modeling of Vagueness in Databases [C]. LNCS 548,1991,338-343.
    73. Vert G, Morris A, Stock M, et al. Extending Entity-Relationship Modeling Notation to Manage Fuzzy Datasets [C], In Proceedings of the 8th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems,2000,1131-1138.
    74. Chen G Q, Kerre E E. Extending ER/EER Concepts towards Fuzzy Conceptual Data Modeling [C], In Proceedings of the 1998 IEEE International Conference on Fuzzy Systems,1998,2:1320-1325.
    75. Galindo J, Urrutia A, Carrasco R A, et al. Relaxing Constraints in Enhanced Entity-Relationship Models Using Fuzzy Quantifiers [J], IEEE Transactions on Fuzzy Systems,2004,12 (6):780-796.
    76.何新贵.模糊知识处理理论与技术(第二版)[M],北京:国防工业出版社,1999.
    77.何新贵.模糊关系型数据库的数据模型[J],计算机学报,1989,12(2):120-126.
    78.何新贵.属性模糊的模糊关系数据库[J],计算机工程与设计,1990,11(1):18-21.
    79. Semantic Web Best Practices and Deployment Working Group, http://www.w3.org/2001/sw/BestPractices/.
    80. Mazzieri M, Dragoni A F. A Fuzzy Semantics for Semantic Web Languages [C], In Proceedings of the 4th ISWC2005 Workshop on Uncertainty Reasoning for the Semantic Web,2005,12-22.
    81. Mazzieri M. A Fuzzy RDF Semantics to Represent Trust Metadata [C], In Proceedings of the 1st Italian Semantic Web Workshop:Semantic Web Applications and Perspectives (SWAP 2004),2004.
    82. Vanekova V, Bella J, Gursky P, et al. Fuzzy RDF in the Semantic Web:Deduction and Induction [C], In Proceedings of the 6th Workshop on Data Analysis,2005, 16-29.
    83.高明霞,刘椿年.扩展OWL处理模糊知识[J],北京工业大学学报,2006,32(7):653-660.
    84. Gao M, Liu C. Extending OWL by Fuzzy Description Logic [C], In Proceedgings of the 17th IEEE International Conference on Tools with Artificial Intelligence, 2005.
    85.赵德新,冯志勇.基于本体语言OWL的模糊扩展[J],计算机科学,2008,35(8):170-175.
    86.李明泉,冯志勇F-SHIQ公理体系及其OWL扩展[J],计算机工程与应用,2008,44(30):1-5.
    87. Stoilos G, Stamou G, Tzouvaras V, et al. Fuzzy OWL:Uncertainty and the Semantic Web [C], In Proceedings of the 1st 2005 International Workshop on OWL:Experience and Directions,2005:80-89.
    88. Stoilos G, Stamou G, Pan J Z. Handling Imprecise Knowledge with Fuzzy Description Logic [C], In Proceedings of the 2006 International Workshop on Description Logics,2006.
    89. Calegari S, Ciucci D. Fuzzy Ontology and Fuzzy-OWL in the KAON Project [C], In Proceeding of the IEEE International Conference on Fuzzy Systems,2007,1-6.
    90. Calegari S, Ciucci D. Fuzzy Ontology, Fuzzy Description Logics and Fuzzy-OWL [C], In Proceedings of the 7th International Workshop on Fuzzy Logic and Applications, LNAI 4578,2007,118-126.
    91. Lam T H W. Fuzzy Ontology Map-A Fuzzy Extension of the Hard-Constraint Ontology [C], In Proceedings of the 5th IEEE/WIC/ACM International Conference on Web Intelligence,2006:506-509.
    92. Gu H, Lv H, Gao J, et al. Towards a General Fuzzy Ontology and its Construction [C], In Proceedings of the International Conference on Intelligent Systems and Knowledge Engineering (ISKE 2007),2007.
    93. Quan T, Hui S, Cao, T. FOGA:A Fuzzy Ontology Generation Framework for Scholarly Semantic Web [C], In Proceedings of the 2004 Knowledge Discovery and Ontologies (KDO 2004),2004,37-48.
    94. Lee C, Jian Z, Huang L. Fuzzy Ontology and Its Application to News Summarization [J], IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics,2005,35(5):859-880.
    95. Lee C, Chen Y, Jian Z. Ontology-Based Fuzzy Event Extraction Agent for Chinese e-News Summarization [J], Expert Systems with Applications,2003,25: 431-447.
    96. Abulaish M, Dey L. A Fuzzy Ontology Generation Framework for Handling Uncertainties and Non-Uniformity in Domain Knowledge Description [C], In Proceedings of the International Conference on Computing:Theory and Applications,2007,287-293.
    97. Abulaish M, Dey L. Interoperability among Distributed Overlapping Ontologies-A Fuzzy Ontology Framework [C], In Proceedgins of the IEEE/WIC/ACM International Conference on Web Intelligence,2006,397-403.
    98. Sanchez E. Fuzzy Logic and the Semantic Web [M], Elsevier,2006.
    99. Barranco C D, Campana J R, Medina J M, et al. On Storing Ontologies including Fuzzy Datatypes in Relational Databases [C], In Proceedings of the 16th IEEE International Conference on Fuzzy Systems,2007,1-6.
    100. Pan J Z. A Flexible Ontology Reasoning Architecture for the Semantic Web [J], IEEE Transaction on Knowledge and Data Engineering,2007,19(2):246-260.
    101. Gruber T. Towards Principles for the Design of Ontologies used for Knowledge Sharing [J], International Journal Human Computer Study,1995,43(5-6):2-28.
    102. Manola F. RDF Primer, http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.
    103. Heflin J, Hendler J, Luke S. SHOE:A Knowledge Representation Language for Internet Application [R], Technical Report CS-TR-4078, University of Maryland, Department of Computer Science,1999.
    104. Hendler J, Deborah L. McGuinness. The DARPA Agent Markup Language [J], IEEE Intelligent Systems,2000,15(6):67-73.
    105. Fensel D, Harmelen F V, Horrocks I, et al. OIL:An Ontology Infrastructure for the Semantic Web [J], IEEE Intelligent Systems and Their Applications,2001, 16(2):38-45.
    106. Horrocks I. DAML+OIL:A Description Logic for the Semantic Web [J], IEEE Data Engineering Bulletin,2002,25(1):4-9.
    107. Horrocks I, Patel-Schneider P F, Harmelen F V. From SHIQ and RDF to OWL The Making of a Web Ontology Language [J], Journal of Web Semantics,2003, 1(1):7-26.
    108. Horrocks I, Patel-Schneider P F. Reducing OWL Entailment to Description Logic Satisfiability [C], In Proceedings of the 2nd International Semantic Web Conference (ISWC2003),2003,17-29.
    109. Baader F, Horrocks I, Sattler U. Description Logics as Ontology Languages for the Semantic Web [J], Lecture Notes in Computer Science,2005,2605:228-248.
    110. Horrocks I, Sattler U. A Tableau Decision Procedure for SHOIQ [J], Journal of Automated Reasoning,2007,39(3):245-429.
    111. Bosc P, Prade H. An Introduction to Fuzzy Set and Possibility Theory Based Approaches to the Treatment of Uncertainty and Imprecision in Database Management Systems [C], In Proceedings of the 2nd Workshop on Uncertainty Management in Information Systems:From Needs to Solutions,1993.
    112. Motor A, Smets P. Uncertainty Management in Information Systems:From Needs to Solutions [M], Kluwer Academic Publishers,1997.
    113. DeMichiel L G. Resolving Database Incompatibility:An Approach to Performing Relational Operations over Mismatched Domains [J], IEEE Transactions on Knowledge and Data Engineering,1989,1 (4):485-493.
    114. Smets P. Imperfect Information:Imprecision-Uncertainty, Uncertainty Management in Information Systems:From Needs to Solutions [M], Kluwer Academic Publishers,225-254,1997.
    115. Parsons S. Current Approaches to Handling Imperfect Information in Data and Knowledge Bases [J], IEEE Transactions on Knowledge and Data Engineering, 1996,8 (2):353-372.
    116. Ma Z M, Yan L. Fuzzy XML Data Modeling with the UML and Relational Data Models [J], Data & Knowledge Engineering,2007,63 (3):970-994.
    117. Beckett, D. RDF/XML Syntax Specification (Revised), http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/.
    118. Ma Z M. Fuzzy Database Modeling of Imprecise and Uncertain Engineering Information [M], Berlin:Springer,2006.
    119. Rector A, Welty C. Simple Part-Whole Relations in OWL Ontologies, http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/index.html.
    120. Qian X. Correct Schema Transformations [C], In Proceedings of EDBT 1996, 114-128.
    121. Miller R J, Ioannidis Y E, Ramakrishnan R. The Use of Information Capacity in Schema Integration and Translation [C], In Proceedings of the 19th VLDB Conference,1993,120-133.
    122. Udrea O, Getoor L, Miller R J. Leveraging Data and Structure in Ontology Integration [C], In Proceedings of the 27th ACM SIGMOD International Conference on Management of Data,2007,449-460.
    123. Ehrig M, Sure Y. FOAM-Framework for Ontology Alignment and Mapping Results of the Ontology Alignment Evaluation Initiative [C], In Proceedings of the K-Cap Workshop on Integrating Ontologies,2005,72-76.
    124. Galindo J, Urrutia A, Piattini M. Representation of Fuzzy Knowledge in Relational Databases [C], In Proceedings of the 15th International Workshop on Database and Expert Systems Applications,2004,917-921.
    125. Mfourga N. Extracting Entity-Relationship Schemas from Relational Databases: A Form-Driven Approach [C], In Proceedings of the 4th Working Conference on Reverse Engineering (WCRE 1997),1997,184-193.(?)
    126. Chiang R H L, Barron T M, Storey V C. Reverse Engineering of Relational Databases:Extraction of an EER Model from a Relational Database [J], Journal of Data and Knowledge Engineering,1994,12(2):107-142.
    127. Andersson M. Extracting an Entity Relationship Schema from a Relational Database through Reverse Engineering [C], In Proceedings of the 13 rd International Conference of the Entity-Relationship Approach, LNCS 881,1994, 403-419.
    128. Hull R. Relative Information Capacity of Simple Relational Database Schemata [J], SIAM Journal of Computing,1986,15(3):856-886.
    129. Miller R J, Ioannidis Y E, Ramakrishnan R. Schema Equivalence in Heterogeneous Systems:Bridging Theory and Practice [J], Information Systems, 1994,19(1),3-31.
    130. OWL 2 Web Ontology Language Document Overview, http://www.w3.org/TR/ow12-overview/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700