散发性大肠癌DNA甲基化的临床病理意义及其和遗传学机制的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究散发性大肠癌的抑癌基因启动子甲基化和临床病理学特征以及遗传学改变(微卫星不稳定、染色体不稳定以及相关癌基因、抑癌基因表达)的关系,探讨表遗传学检测的临床意义以及表遗传学机制和遗传学机制之间的相互关系。
     方法:对71例散发性大肠癌(SCRC)采用甲基化特异性PCR的方法行p14~(ARF)、hMLH1、p16~(INK4a)、MGMT和MINT1共5个基因启动子甲基化的检测,选择BAT25和BAT26两个位点进行微卫星不稳定(MSI)检测、进行流式细胞术检测分析倍体类型以及进行p14~(ARF)、hMLH1、p16~(INK4a)、MGMT、k-ras、APE、p53、BAX和TGFβRⅡ共9个基因的免疫组化检测。分析p14~(ARF)、hMLH1、p16~(INK4a)、MGMT和MINT1基因启动子甲基化以及CpG岛甲基子表型(CIMP)和SCRC临床病理特征、MSI、染色体不稳定(CIN)以及相关基因表达的关系。
     结果:第一部分:1、p14~(ARF)、hMLH1、p16~(INK4a)、MGMT和MINT1基因启动子甲基化的阳性率分别为28.2%(20/71)、9.9%(7/71)、25.4%(18/71)、36.6%(26/71)和49.3%(35/71),CIMP阳性率为21.1%(15/71);2、hMLH1基因启动子甲基化(+)的SERC具有右半结肠癌多发(P=0.018)和低分化癌多见(P=0.032)的特征。p16~(INK4a)基因启动子甲基化(+)的SCRC具有结肠癌多发(P=0.043)、低分化癌多见(P=0.000)、淋巴结转移多见(P=0.034)、分期较晚(P=0.046)的特征。p14~(ARF)、MGMT和MINT1三个基因的启动子甲基化均和各项临床病理学指标无显著性关系;3、CIMP(+)SCRC中右半结肠癌(40%vs12.5%,P=0.024)、低分化癌(46.7%vs14.3%,P=0.012)、淋巴结转移(86.7%vs48.2%,P=0.008)、TNMⅢ/Ⅳ期(86.7%vs50.0%,P=0.011)所占比例均显著高于CIMP(—)者。第二部分:1、71例患者共检出二倍体18例,异倍体50例(3例因CV值大于8%从分析中剔除):2、MSI的阳性率为9.9%(7/71),所有阳性者均为BAT25和BAT26同时阳性;3、除了MGMT外,p14~(ARF)(P=0.062)、hMLH1(P=0.074)、p16~(INK4a)(P=0.053)和MINT1(P=0.002)基因启动子甲基化均表现为二倍体多发的倾向。但是仅MINT1基因启动子甲基化和二倍体的关系达到统计学显著性意义。CIMP(+)者也表现为二倍体多发的显著性特点(P=0.003);4、hMLH1(P=0.001)和MINT1(P=0.055)基因启动子甲基化(+)者具有MSI多见的倾向。p14~(ARF)、p16~(INK4a)、MGMT基因启动子甲基化和MSI无显著性关系。CIMP(+)者中MSI的阳性率大于CIMP(—)者(20.0%vs7.1%),但P值为0.158,未达到统计学显著性意义;5、微卫星和染色体稳定型(微卫星稳定且为二倍体,MACS型)SCRC的hMLH1基因启动子甲基化的阳性率显著低于MSI型(MSI,无论二倍体或异倍体)(7.7%vs57.1%,P=0.031),MINT1基因启动子甲基化的阳性率显著高于CIN型(微卫星稳定且为异倍体)(69.2%vs35.4%,P=0.029),p16~(INK4a)基因启动子甲基化阳性率似高于CIN型(46.2%vs16.7%,P=0.057)。MACS型的CIMP阳性率显著高于CIN型(46.2%vs8.3%,P=0.004),而MACS型和MSI型在CIMP阳性率方面无显著性差异。第三部分:1、p14~(APF)、hMLH1、p16~(INK4a)、MGMT、k-ras、APC、p53、BAX和TGFβRⅡ蛋白阳性表达率分别为68.6%(48/70)、76.8%(53/69)、61.8%(42/68)、87.3%(62/71)、43.7%(31/71)、42.3%(30/71)、47.9%(34/71)、71.4%(50/70)和59.2%(42/71):2、hMLH1(P=0.046)、MGMT(P=0.010)基因的启动子甲基化和相应基因的失表达密切相关,而p14~(ARF)和p16~(INK4a)基因启动子甲基化和相应基因的失表达无显著性关系;3、MINT1基因启动子甲基化和突变型p53蛋白表达密切相关(P=0.024),MINT1基因启动子甲基化(+)者突变型p53蛋白阳性表达率低于MINT1基因启动子甲基化(—)者;4、MGMT基因启动子甲基化(+)者具有k-ras蛋白高表达的趋势(P=0.070)。CIMP和APC、p53、BAX、TGFβRⅡ蛋白表达均没有显著性关系,但和k-ras蛋白表达显著相关(P=0.043),CIMP(+)者k-ras蛋白阳性表达率显著高于CIMP(—)者。
     结论:第一部分:hMLH1、p16~(INK4a)基因启动子甲基化和CIMP具有显著的临床病理学意义。hMLH1基因启动子甲基化(+)的SCRC具有右半结肠癌多发和低分化癌多见的显著性特征。p16~(INK4a)基因启动子甲基化(+)的SCRC具有结肠癌多发、低分化癌多见、淋巴结转移多见和分期较晚的显著性特征。CIMP(+)的SCRC具有右半结肠癌多发、低分化癌多见、常有淋巴结转移和分期较晚的显著性特点。第二部分:1、MINT1、hMLH1基因启动子甲基化以及CIMP和基因组遗传学不稳定性(CIN和MSI)具有密切的关系。MINT1基因启动子甲基化(+)者及CIMP(+)者均表现为二倍体多发的显著性特点,而hMLH1基因启动子甲基化(+)者则具有MSI多见的显著性特点;2、MACS型的SCRC是SCRC的一个独立亚型,具有和CIN型及MSI型不同的独特的临床病理和基因表达特征。MACS型SCRC的hMLH1基因启动子甲基化的阳性率显著低于MSI型,MINT1基因启动子甲基化的阳性率显著高于CIN型,CIMP阳性率显著高于CIN型。提示多基因同时甲基化可能为MACS型SCRC的重要发病机制。hMLH1基因启动子甲基化可能为MSI型SCRC的特异性发病机制,而在MACS型SCRC的发生发展过程中可能并
    不扮演重要角色;3、CIN、MSI和多基因启动子甲基化(CIMP)三者之间反映了表遗传学机制和遗传学机制既相互竞争又相互依存的复杂关系。CIN机制是相对独立于MSI机制及表遗传学机制(多基因启动子甲基化)之外的。MSI机制和表遗传学机制可能是一种相互依存的关系,但不是完全重叠的关系,相当一部分的MSI发生在表遗传学机制的基础上,但也有部分的MSI并没有显著的表遗传学背景。第三部分:1、hMLH1、MGMT基因启动子甲基化和相应基因的失表达密切相关;2、MINT1基因启动子甲基化(+)者呈现突变型p53蛋白低表达的显著性特点;3、MGMT基因启动子甲基化(+)者具有k-ras蛋白高表达的倾向(P=0.070)。而这种关系可能是通过MGMT蛋白的失活导致k-ras基因突变引起的;3、CIMP和k-ras蛋白的激活表达密切相关。这种关系可能是通过MGMT基因启动子甲基化导致MGMT蛋白失表达继而引起k-ras基因突变的途径。
Objectives: To explore the correlation between the promotor hypermethylation of suppressor genes and clinicopathological features as well as genetic changes including microsatellite instability(MSI), chromosomal instability(CIN) and the expression of several oncogenes and suppressor genes in sporadic colorectal cancers(SCRC).
    Methods: Detecting the promotor hypermethylation of five genes including p14~(ARF), hMLH1, p16~(INK4a), MGMT and MINT1 with methylation specific PCR, evaluating the microsatellite instability status with two microsatellite loci of BAT25 and BAT26, analyzing the ploidy with flow cytometry and detecting the protein expression of nine genes (p14~(ARF), hMLH1, p16~(INK4a), MGMT, k-ras, APC, p53, BAX and TGF β R II) among 71 SCRC patients and exploring the correlation between genes promotor hypermethylation and clinicopathological characteristics as well as the genetic mechanism of SCRCs.
    Results: Part 1: The positive rates of genes promotor hypermethylation of p14~(ARF), hMLH1, p16~(INK4a), MGMT , MINT1 and CIMP were 28. 2%(20/71), 9. 9%(7/71), 25. 4%(18/71), 36. 6%(26/71), 49. 3%(35/71)and 21.1%(15/71) respectively. SCRCs with hMLH1 gene promotor hypermethylation were more likely to happen to the right hernicolon(P — 0.018) and to be poorly-differentiated adenocarcinomas(P=0.032). p16~(1NK4a) gene promotor hypermethylation was significantly correlated with the proneness of colonic location (P=0.043), poor differentiation (P=0.000), lymph node metastasis(P=0.034)and later stages (P=0.046). The proportion of right-sided colonic cancers (40 %vs12.5%, p=0.24), poorly-differentiated cancers(46.7%vs14.3%, P=0.012), cancers with lymph node metastasis (86.7%vs48.2%, P=0.008) and cancers with TNM III/IV stage (86.7%vs50.0%, P=0.011) in SCRCs showing CIMP was significantly higher than that of those without CIMP.
    Part 2: 18 and 50 cases showed diploidy and aneuploidy respectively among 71 patients. 3 cases with CV value higher than 8 percent were excluded from the ploidy analysis. The positive rate of MSI among SCRC patients was 9. 9 percent (7/71). p14~(ARF)(P=0.062), hMLH1 (P=0.074), p16~(INK4a)(P=0.053) and MINT1 (P=0.002) gene promotor hypermethylation and positive CIMP(P=0.003) displayed the inclination of diploidy. SCRCs with hMLH1 (P=0.001) or MINT1 (P=0.055) gene promotor hypermethylation were significantly more likely to be MSI. The positive rate of MSI in positive CIMP patients was higher than that of negative CIMP ones in the present study, but the difference was not statistically significant(P=0.158). CIMP was significantly more frequent in microsatellite and chromosomal stable (MACS) SCRCs (diploid and microsatellite stable)than that in CIN phenotype (aneuploid and microsatellite stable) (46.2%vs8.3%,P=0.004). The hMLH1 promotor hypermethylation was less prevalent in MACS SCRCs than that in MSI phenotype (MSI regardless of the ploidy) (7.7%vs57.1 %, P=0.031). Both the MINT1 (69.2%vs35.4%,P=0.029) and the p16~(INK4a)(46.2%vs16.7%, P=0.057) gene promotor hypermethylation were more common in MACS SCRCs than that in CIN phenotype. Part 3: The positive rates of protein expression of p14~(ARF), hMLH1, p16~(INK4a), MGMT, k-ras, APC, p53, BAX and TGF β R II were 68. 6% (48/70), 76. 8% (53/69), 61. 8% (42/68), 87. 3% (62/71), 43. 7% (31/71), 42. 3% (30/71), 47.9% (34/71), 71.4% (50/70) and 59. 2% (42/71) respectively. Promotor hypermethylation of hMLH1 (P=0.046) or MGMT (P=0.010) gene was remarkably associated with the loss of protein. Promotor hypermethylation of MINT1 gene was significantly correlated with the accumulation of mutant-type p53 protein(P=0.024). There was a tendency of activated k-ras protein expression in SCRCs with MGMT gene promotor hypermethylation(P=0.070) or positive CIMP(P=0.043) compared with the counterpart.
    Conclusions: Part 1: SCRCs with hMLH1 gene promotor hypermethlation have an obvious inclination to locate on the right semicolon and to be poorly-differentiated. SCRCs with p16~(INK4a) gene promotor hypermethlation are more likely to be colonic cancers, to be
    poorly-differentiated, to metastasize to lymph nodes and to be in the later stages. SCRCs with positive CIMP are significantly inclined to occur to the right hemicolon, to have poor differentiation, to have lymph node metastasis and to be in the later stages. Part 2: There was an intimate relationship between epigenetic changes and genetic instability. Cancers with MINT1 gene promotor hypermethylation or positive CIMP are significantly more likely to be diploid while cancers with hMLH1 gene promotor hypermethylation are significantly inclined to demonstrate MSI. MACS SCRCs may compose a unique phenotype with distinct clinicopathological characteristics and gene expression profile from CIN and MSI phenotype. MACS SCRCs have a significantly lower rate of hMLH1 gene promotor hypermethylation than MSI phenotype and a remarkable higher rate of MINT1 gene promotor hypermethylation or CIMP than CIN phenotype, indicating that MACS SCRCs may develop along a pathway characterized by CIMP shared by MSI phenotype but hMLH1 gene promotor hypermethylation may not play an important role in the carcinogenesis of MACS SCRCs. The correlation among CIN, MSI and CIMP may be complicated, which reflects the competent and dependent relationship between epigenetic and genetic mechanisms. CIN mechanism may be independent of MSI and epigenetic mechanisms. A considerable part of SCRCs with MSI, but not all, may develop from a background of epigenetic instability. Part3: Promotor hypermethylation of hMLH1 or MGMT gene may cause the loss of protein. SCRCs with MINT1 gene promotor hypermethylation has a significant lower rate of accumulated mutant-type p53 protein, while those with MGMT gene promotor hypermethylation(P=0.070) or positive CIMP(P=0.043) have a relatively higher rate of activated k-ras protein expression compared with the counterpart. That the loss of MGMT protein can cause k-ras gene mutation may explain the close relation among CIMP, MGMT gene promotor hypermethylation and k-ras protein expression.
引文
[1] Jablonka E, Lamb MJ. The changing concept of epigenetics [J]. Ann N Y Acad Sci, 2002,981: 82-96.
    [2] Wolffe AP, Matzke MA. Epigenetics: regulation through repression [J]. Science, 1999,286(5439):481-486.
    [3] Klein G. Foulds' dangerous idea revisited: the multistep development of tumors 40 years later [J]. Folia Biol (Praha), 1996, 42(6):273-2781.
    [4] 房静远主编.表型遗传修饰与肿瘤[M].上海:上海科学技术出版社,2003.
    [5] Toyota M, Ho C, Ahuja N, et al. Identification of differentially methy]ated sequences in colorectal cancer by methylated CpG island amplification [J]. Cancer Res, 1999,59(10):2307-2312.
    [6] Toyota M, Ahuja N, Ohe-Toyota M, et al. CpG island methylator phenotype in colorectal cancer [J]. Proc Natl Acad Sci U S A, 1999,96(15):8681-8686.
    [7] van Rijnsoever M, Grieu F, Elsaleh H, et al. Characterisation of colorectal cancers showing hypermethylation at multiple CpG islands [J]. Gut, 2002,51(6):797-802.
    [8] Van Rijnsoever M, Elsaleh H, Joseph D, et al. CpG island methylator phenotype is an independent predictor of survival benefit from 5-fluorouracil in stage Ⅲ colorectal cancer [J]. Clin Cancer Res, 2003,9(8): 2898-2903.
    [9] Jubb AM, Bell SM, Quirke P. Methylation and colorectal cancer [J]. J Pathol, 2001,195(1):111-134.
    [10] 徐晓丽.结直肠癌表观遗传学研究—多基因启动子甲基化及其临床病理学意义[D].上海:复旦大学,2004.
    [11] 白桦,邓大君.CpG岛甲基化检测技术比较[J].国外医学:分子生物学分册,2003,25(2):121-125.
    [12] Yu J, Ni M, Xu J, et al. Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis [J]. BMC Cancer, 2002,2(1): 29.
    [13] Xu XL, Yu J, Zhang HY, et al. Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis[J]. World J Gastroenterol, 2004, 10(23):3441-3454.
    
    [14] Hawkins N, Norrie M, Cheong K, et al. CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability [J] Gastroenterology, 2002, 122(5): 1376-1387.
    
    [15] Kim H, Kim YH, Kim SE, et al. Concerted promoter hypermethylation of hMLH1, pl6INK4A, and E-cadherin in gastric carcinomas with microsatellite instability [J] . J Pathol, 2003, 200(1):23-31.
    
    [16] Toyota M, Ahuja N, Suzuki H, et al. Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype [J] . Cancer Res, 1999,59(21):5438-5442.
    
    [17] Xing EP, NieY, Song Y, et al. Mechanisms of inactivation of pl4ARF, pl5INK4b, and pl6INK4a genes in human esophageal squamous cell carcinoma [J] . Clin Cancer Res, 1999,5(10):2704-2713.
    
    [18] Deng G, Chen A, Hong J, et al. Methylation of CpG in a small region of the hMLHl promoter invariably correlates with the absence of gene expression [J] . Cancer Res, 1999, 59(9):2029-2033.
    
    [19] Yamamoto H, Itoh F, Nakamura H, et al. Genetic and clinical features of human pancreatic ductal adenocarcinomas with widespread microsatellite instability [J] . Cancer Res, 2001,61(7) :3139-3144.
    
    [20] Rosas SL, Koch W, da Costa Carvalho MG, et al. Promoter hypermethylation patterns of pl6, 06-methylguanine-DNA-methyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients [J] . Cancer Res, 2001, 61 (3):939-942.
    
    [21] Gutierrez MI, Siraj AK, Khaled H, et al. CpG island methylation in Schistosoma- and non-Schistosoma-associated bladder cancer [J] . Mod Pathol, 2004, 17(10):1268-1274.
    
    [22] Wiencke JK, Zheng S, Lafuente A, et al. Aberrant methylation of pl6INK4a in anatomic and gender-specific subtypes of sporadic colorectal cancer [J] . Cancer Epidemiol Biomarkers Prev, 1999,8(6):501-506.
    [23] Norrie MW, Hawkins NJ, Todd AV, et al. Inactivation of p16INK4a by CpG hypermethylation is not a frequent event in colorectal cancer [J]. J Surg Oncol, 2003,84(3):143-150.
    [24] Liang JT, Chang KJ, Chen JC, et al. Hypermethylation of the p16 gene in sporadic T3NOMO stage colorectal cancers: association with DNA replication error and shorter survival [J]. Oncology, 1999, 57(2):149-156.
    [25] 杨玉华,何小兵,张锋锐,等.p16基因甲基化状态与散发性大肠癌的相关性研究[J].遗传学报,2003,30(11):1061—1064.
    [26] Mori S, Ogata Y, Shirouzu K. Biological features of sporadic colorectal carcinoma with high-frequency microsatellite instability: special reference to tumor proliferation and apoptosis [J]. Int J Clin Oncol, 2004,9(4):322-329.
    [27] Jeong SY, Shin KH, Shin JH, et al. Microsatellite instability and mutations in DNA mismatch repair genes in sporadic colorectal cancers [J]. Dis Colon Rectum, 2003,46(8):1069-1077.
    [28] Young J, Simms LA, Biden KG, et al. Features of colorectal cancers with high-level microsatellite instability occurring in familial and sporadic settings: parallel pathways of tumorigenesis [J]. Am J Pathol, 2001,159(6):2107-2116.
    [29] Wheeler JM, Bodmer WF, Mortensen NJ. DNA mismatch repair genes and colorectal cancer [J]. Gut, 2000,47(1):148-153.
    [30] Tsai MH, Yang YC, Chen KH, et al. RER and LOH association with sporadic colorectal cancer in Taiwanese patients [J]. Hepatogastroenterology, 2002,49(45):672-677.
    [31] Chan TL, Yuen ST, Chung LP, et al. Frequent microsatellite instability and mismatch repair gene mutations in young Chinese patients with colorectal cancer [J].J Natl Cancer Inst, 1999,91(14):1221-1226.
    [32] Cunningham JM, Kim CY, Christensen ER, et al. The frequency of hereditary defective mismatch repair in a prospective series of unselected colorectal carcinomas [J]. Am J Hum Genet, 2001, 69(4):780-790.
    [33] Arai T, Esaki Y, Sawabe M, et al. Hypermethylation of the hMLH1 promoter with absent hMLH1 expression in medullary-type poorly differentiated colorectal adenocarcinoma in the elderly [J]. Mod Pathol, 2004,17(2):172-179.
    [34] Lind GE, Thorstensen L, Lovig T, et al. A CpG island hypermethylation profile of primary colorectal carcinomas and colon cancer cell lines [J]. Mol Cancer, 2004,3(1):28.
    [35] Shannon BA, Iaeopetta BJ. Methylation of the hMLH1, p16, and MDR1 genes in colorectal carcinoma: associations with clinicopathological features[J]. Cancer Lett, 2001,167(1):91-97.
    [36] Samowitz WS, Albertsen H, Herrick J, et al. Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer [J]. Gastroenterology, 2005,129(3):837-845.
    [37] Kim HC, Roh SA, Ga IN, et al. CpG island methylation as an early event during adenoma progression in carcinogenesis of sporadic colorectal cancer [J]. J Gastroenterol Hepatol., 2005,20(12):1920-1926.
    [38] Lee S, Hwang KS, Lee HS, eL al. Aberrant CpG island hypermethylation of multiple genes in colorectal neop]asia [J]. Lab Invest, 2004,84(7):884-893.
    [39] Nagasaka T, Sharp GB, Notohara K, et al. Hypermethylation of 06-methylguanine-DNA methyltransferase promoter may predict nonrecurrence after chemotherapy in colorectal cancer cases [J]. Clin Cancer Res, 2003,9(17):5306-5312.
    [40] Arnold CN, Goel A, Boland CR. Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines[J]. Int J Cancer, 2003,106(1):66-73.
    [41] Plumb JA, Strathdee G, Sludden J, et al. Reversal of drug resistance in human tumor xenografts by 2'-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter [J]. Cancer Res, 2000,60(21):6039-6044.
    [42] 蔡国响,蔡三军,徐烨,等.CpG岛甲基子表型和散发性大肠癌淋巴结转移的关系研究[A].见:中国抗癌协会大肠癌专业委员会.全国大肠 癌转移与复发的诊治研讨会学术论文集[C].杭州,2005:78.
    [43] Stoler DL, Chen N, Basik M, et al. The onset and extent of genomic instability in sporadic co]orectal tumor progression [J]. Proc Natl Acad Sci U S A, 1999,96(26):15121-15126.
    [44] Coel A, Arnold CN, Niedzwiecki D, et al. Characterization of sporadic colon cancer by patterns of genomic instability [J]. Cancer Res, 2003,63(7):1608-1614.
    [45] Dunican DS, McWilliam P, Tighe O, et al. Gene expression differences between the microsatellite instability (MIN) and chromosomal instability (CIN) phenotypes in colorectal cancer revealed by high-density cDNA array hybridization [J]. Oncogene, 2002,21(20):3253-3257.
    [46] Tang R, Changchien CR, Wu Me, et al. Colorectal cancer without high microsatellite instability and chromosomal instability—an alternative genetic pathway to human colorectal cancer [J]. Carcinogenesis, 2004,25(5):841-846.
    [47] Haydon AM, Jass JR. Emerging pathways in colorectal-cancer development [J]. Lancet Oncol, 2002,3(2):83-88.
    [48] Ceorgiades IB, Curtis LJ, Morris RM, et al. Heterogeneity studies identify a subset of sporadic colorectal cancers without evidence for chromosomal or microsatellite instability [J]. Oncogene, 1999,18(56):7933-7940.
    [49] Yao J, Eu KW, Seow-Choen F, et al. Microsatellite instability and aneuploidy rate in young colorectal-cancer patients do not differ significantly from those in older patients [J]. Int J Cancer, 1999,80(5):667-670.
    [50] Hawkins NJ, Tomlinson I, Meagher A, et al. Microsatellite-stable diploid carcinoma: a biologically distinct and aggressive subset of sporadic colorectal cancer [J]. Br J Cancer, 2001,84(2):232-236.
    [51] Jones AM, Douglas EJ, Halford SE, et al. Array-CGH analysis of microsatellite-stable, near-diploid bowel cancers and comparison with other types of colorectal carcinoma [J]. Oncogene, 2005,24(1):118-129.
    [52] Sasaki K, Hashimoto T, Kawachino K, et al. Intratumoral regional differences in DNA ploidy of gastrointestinal carcinomas [J] . Cancer, 1988,62 (12):2569-2575.
    [53] Ormerod MG, Tribukait B, Giaretti W. Consensus report of the task force on standardisation of DNA flow cytometry in clinical pathology. DNA Flow Cytometry Task Force of the European Society for Analytical Cellular Pathology [J] . Anal Cell Pathol, 1998, 17(2): 103-110.
    [54] Berczi C, Bocsi J, Bartha I, et al. Prognostic value of DNA ploidy status in patients with rectal cancer [J] . Anticancer Res, 2002,22(6B):3737-3741.
    [55] Thompson-Fawcett MW, Rust NA, Warren BF, et al. Aneuploidy and columnar cuff surveillance after stapled ileal pouch-anal anastomosis in ulcerative colitis [J] . Dis Colon Rectum, 2000,43(3) : 408-413.
    [56] Umar A, Boland CR, Terdiman JP, et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability [J] . J Natl Cancer Inst, 2004, 96(4): 261-268.
    [57] Stone JG, Tomlinson IP, Houlston RS. Optimising methods for determining RER status in colorectal cancers [J] . Cancer Lett, 2000, 149(1-2):15-20.
    [58] Chan TL, Curtis LC, Leung SY, et al. Early-onset colorectal cancer with stable microsatellite DNA and near-diploid chromosomes [J] . Oncogene, 2001, 20(35):4871-4876.
    
    [59] Esteller M, Tortola S, Toyota M, et al. Hypermethylation-associated inactivation of p14(ARF) is independent of pl6(INK4a) methylation and p53 mutational status [J] . Cancer Res, 2000, 60(1) : 129-133.
    [60] Carvalho B, Pinto M, Cirnes L, et al. Concurrent hypermethylation of gene promoters is associated with a MSI-H phenotype and diploidy in gastric carcinomas [J] . Eur J Cance, 2003,39(9):1222-1227.
    [61] Wheeler JM, Loukola A, Aaltonen LA, et al. The role of hypermethylation of the hMLlil promoter region in HNPCC versus MS] + sporadic colorectal cancers [J] . J Med Genet, 2000, 37(8) : 588-592.
    
    [62] Herman JG, Umar A, Polyak K, et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma [J] . Proc Natl Acad Sci U S A, 1998,95(12) :6870-6875.
    
    [63] Shen L, Kondo Y, Hamilton SR, et al. P14 methylation in human colon cancer is associated with microsatellite instability and wild-type p53 [J] . Gastroenterology, 2003,124(3):626-633.
    
    [64] Ahuja N, Mohan AL, Li Q, et al. Association between CpG island methylation and microsatellite instability in colorectal cancer [J] . Cancer Res, 1997, 57(16) :3370-3374.
    
    [65] Hoang JM, Cottu PH, Thuille B, et al. BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines [J] . Cancer Res, 1997, 57(2) :300-303.
    
    [66] Loukola A, Eklin K, Laiho P, et al. Microsatellite marker analysis in screening for hereditary nonpolyposis colorectal cancer (HNPCC) [J] . Cancer Res, 2001, 61(11):4545-4549.
    
    [67] de Leeuw WJ, Dierssen J, Vasen HF, et al. Prediction of a mismatch repair gene defect by microsatellite instability and immunohistochemical analysis in endometrial tumours from HNPCC patients [J] . J Pathol, 2000,192(3):328-335.
    
    [68] Cravo M, Lage P, Albuquerque C, et al. BAT-26 identifies sporadic colorectal cancers with mutator phenotype: a correlative study with clinico-pathological features and mutations in mismatch repair genes [J] . J Pathol, 1999,188(3):252-257.
    
    [69] 卢振霞,孙廷霞,侯治富,等.p53和k-ras基因突变在大肠癌发病中的作用[J].吉林大学学报:医学版,2002,28(4):392~394.
    
    [70]安萍,蔡慧芸,于波.结直肠癌中P53和K-ras基因突变与血管内皮生长因子表达的关系[J].中华胃肠外科杂志,2002,5(1):61-63.
    
    [71] Esteller M, Gonzalez S, Risques RA, et al. K-ras and p16 aberrations confer poor prognosis in human colorectal cancer [J] . J Clin Oncol, 2001,19(2):299-304.
    [72] Dimitriadis A, Vincan E, Mohammed IM, et al. Expression of Wnt genes in human colon cancers [J] . Cancer Lett, 2001,166(2):185-191.
    [73] 张艳虹,高玉彤.散发性结直肠癌中P53蛋白表达与微卫星不稳定性的关系[J].实用肿瘤杂志,2000,15(2):87-90.
    [74] Markowitz S. DNA repair defects inactivate tumor suppressor genes and induce hereditary and sporadic colon cancers [J]. J Clin Oncol, 2000,18(21Suppl):75S-80S.
    [75] 来茂德.大肠癌发生的分子机理[J].实用肿瘤杂志,2000,15(2):73-78.
    [76] 蔡崎,陆洪芬,孙孟红,等.散发性结直肠癌hMLH1和hMSH2蛋白表达[J].临床与实验病理学杂志,2003,19(5):521-525.
    [77] 谢丹,梁雪儿.青年人结直肠癌DNA错配修复基因表达和DNA倍性检测[J].中华病理学杂志,2000,29(6):412-415.
    [78] Chiaravalli AM, Furlan D, Facco C, et al. Immunohistochemical pattern of hMSH2/hMLH1 in familial and sporadic colorectal, gastric, endometrial and ovarian carcinomas with instability in microsatellite sequences [J]. Virchows Arch, 2001,438(1):39-48.
    [79] 陈乾坤,丁嘉安,高文.P14(INK4a/ARF)蛋白在非小细胞肺癌组织中表达的意义[J].中国肺癌杂志,2003,6(4):283-285.
    [80] 米建强,沈铭昌.大肠癌及癌前病变组织中抑癌基因P16表达及其意义[J].中国肛肠病杂志,2003,23(4):12-14.
    [81] 齐健,朱尤庆,杨冬,等.胃癌MGMT基因启动子CpG岛甲基化与蛋白表达缺失[J].世界华人消化杂志,2004,12(3):751-753.
    [82] Esteller M, Hamilton SR, Burger PC, et al. Inactivation of the DNA repair gene 06-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia [J]. Cancer Res, 1999,59(4):793-797.
    [83] Belanich M, Randall T, Pastor MA, et al. Intracellular Localization and intercellular heterogeneity of the human DNA repair protein 0(6)-methylguanine-DNA methyltransferase [J]. Cancer Chemother Pharmacol, 1996,37(6):547-555.
    [84] Matsukura S, Miyazaki K, Yakushiji H, et al. Expression and prognostic significance of 06-methylguanine-DNA methyltransferase in hepatocellular, gastric, and breast cancers [J]. Ann Surg Oncol, 2001,8(10):807-816.
    [85] 程超,吴一龙,谷力加,等.多基因表达预测可手术ⅢA期非小细胞肺癌 新辅助化疗疗效的探讨[J].癌症,2005,24(7):846-849.
    [86] 王东旭,房展春.胃粘膜中增殖细胞核抗原及p53,K—ras,bcl—2基因蛋白的表达[J].中华消化内镜杂志,1998,15(4):220-223.
    [87] Kariola R, Abdel-Rahman WM, Ollikainen M, et al. APC and beta-catenin protein expression patterns in HNPCC-related endometrial and colorectal cancers Short communication [J]. Fam Cancer, 2005,4(2):187-190.
    [88] Gafa R, Maestri I, Matteuzzi M, et al. Sporadic colorectal adenocarcinomas with high-frequency microsatellite instability [J]. Cancer, 2000,89(10):2025-2037.
    [89] 刘永源,张英,黄应桂,等.p53,nm23及PCNA蛋白的表达与结肠癌浸润转移的关系[J].广东医学,2003,24(4):381-382.
    [90] Harris CC, Hollstein M. Clinical implications of the p53 tumor-suppressorgene [J]. N Engl J Med, 1993,329(18):1318-1327.
    [91] 张文平,张瑞,郭辉,等.免疫组化法检测大肠癌组织p53基因蛋白表达及意义[J].山西医科大学学报,2003,34(1):21-22.
    [92] 孙桃姣,朱友家,陈建刚,等.转化生长因子β1和转化生长因子βⅡ受体蛋白在口腔鳞状细胞癌中的表达[J].武汉大学学报:医学版,2004,25(5):540-542.
    [93] Brell M, Tortosa A, Verger E, et al. Prognostic significance of 06-methylguanine-DNA methyltransferase determined by promoter hypermethylation and immunohistochemical expression in anaplastic gliomas [J]. ClinCancerRes, 2005,11(14):5167-5174.
    [94] Bearzatto A, Szadkowski M, Macpherson P, et al. Epigenetic regulation of the MGMT and hMSH6 DNA repair genes in cells resistant to methylating agents [J]. Cancer Res, 2000,60(12):3262-3270.
    [95] Whitehall VL, Walsh MD, Young J, et al. Methylation of 0-6-methylguanine DNA methyltransferase characterizes a subset of colorectal cancer with low-level DNA microsatellite instability [J]. Cancer Res, 2001,61(3):827-830.
    [96] Fox EJ, Leahy DT, Geraghty R, et al. Mutually exclusive promoter hypermethylation patterns of hMLH1 and 06-methylguanine DNA methyltransferase in colorectal cancer [J]. J Mol Diagn, 2006,8(1) : 68-75.
    [97] Halford S, Rowan A, Sawyer E, et al. 0(6)-methylguanine methyltransferase in colorectal cancers: detection of mutations, loss of expression, and weak association with G:C>A:T transitions [J] . Gut, 2005, 54(6):797-802.
    [98] Kim SH, Bae SI, Lee HS, et al. Alteration of 06-methylguanine-DNA methyltransferase in colorectal neoplasms in sporadic and familial adenomatous polyposis patients [J] . Mol Carcinog, 2003,37(1) : 32-38.
    [99] Gonzalez-Zulueta M, Bender CM, Yang AS, et al. Methylation of the 5' CpG island of the pl6/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing [J] . Cancer Res, 1995, 55(20) : 4531-4535.
    [100] Merlo A, Herman JG, Mao L, et al. 5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor pl6/CDKN2/MTSl in human cancers [J] . Nat Med, 1995, 1(7):686-692.
    [101] Oh JH, Kim HS, Kim HH, et al. Aberrant methylation of p14ARF gene correlates with poor survival in osteosarcoma [J] . Clin Orthop Relat Res, 2006,442:216-222.
    [102] Menigatti M, Di Gregorio C, Borghi F, et al. Methylation pattern of different regions of the MLH1 promoter and silencing of gene expression in hereditary and sporadic colorectal cancer[J]. Genes Chromosomes Cancer, 2001, 31(4):357-361.
    
    [103] Xirodimas DP, Saville MK, Bourdon JC, et al. Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity [J]. Cell, 2004, 118(1) :83-97.
    [104] Burri N, Shaw P, Bouzourene H, et al. Methylation silencing and mutations of the p14ARF and pl6INK4a genes in colon cancer [J] . Lab Invest, 2001, 81(2):217-229.
    [105] EstellerM, Risques RA, Toyota M, et al. Promoter hypermethylation of the DNA repair gene 0(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis [J] . Cancer Res, 2001,61(12):4689-4692.
    [106] Issa JP. The epigenetics of colorectal cancer [J]. Ann N Y Acad Sci, 2000,910:140-153.
    [107] ToyotaM, Ohe-Toyota M, AhujaN, et al. Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype [J]. Proc Natl Acad Sci U S A, 2000,97(2):710-715.
    [1] Kinzler KW, Vogelstein B. Lessons from Hereditary Colorectal Cancer [J]. Cell,1996,87:159-170.
    [2] Soulie P, Fourme E, Hamelin R, et al. TP53 status and gene amplification in human colorectal carcinomas [J]. Cancer Genet Cytogenet, 1999,115:118-122.
    [3] Dimitriadis A, Vincan E, Mohammed IM, et al. Expression of Wnt genes in human colon cancers [J]. Cancer Letters, 2001, 166(2):185-191.
    [4] 林鸿,林金荣,张亚历,等.41例大肠癌组织A P C基因突变检测[J].肿瘤,2000,20(3):213-215.
    [5] Sieber OM, Tomlinson IP, Lamlum H, et al. The adenomatous polyposis coli(APC) tumour suppressor-genetics, function and disease [J]. Mol Med Today, 2000,6: 462—469.
    [6] Wallis YL, Morton DG, McKeown CM, et al. Molecular analysis of the APC gene in 205 families: extended genotype - phenotype correlations in FAP and evidence for the role of APC amino acid changes in colorectal cancer predisposition [J]. J Med Genet, 1999,36:14-20.
    [7] 张艳虹,高玉彤,来茂德.散发性结直肠癌中p53蛋白表达与微卫星不稳定性的关系[J].实用肿瘤杂志,2000,15(2):87-89.
    [8] Esteller M, Gonzalez S, Risques RA, et al. K-ras and p16 aberrations confer poor prognosis in human colorectal cancer [J]. J Clin Oncol, 2001,19(2):299-304.
    [9] Midgley R, Kerr D. Colorectal cancer [J]. Lancet, 1999,353:391-399.
    [10] 安萍,蔡慧芸,于波.结直肠癌中P53和K-ras基因突变与血管内皮生长因子表达的关系[J].中华胃肠外科杂志,2002,5(1):61-63.
    [11] 卢振霞,孙延霞,侯治富,等.p53和k-ras基因突变在大肠癌发病中的作用[J].吉林大学学报(医学版),2002,28(4):392-394.
    [12] 袁平,孙孟红,张锦生,等.中国人大肠癌k-ras基因突变的研究[J].临床与实验病理学杂志,2000,16(6):464-466.
    [13] Golijon C, Gnerci A, Mouron S, et al. Activation of k-ras and c-erbB-2 protooncogenes in human colonic adenocarcinomas [J]. Acta Gastroenterological Latinoamericana, 2001,31(2):71-76.
    [14] Wheeler JM, Bodmer WF, Mortensen NJ. DNA mismatch repair genes and colorectal cancer [J].Gut, 2000,47(1):148-153.
    [15] 来茂德.大肠癌的分子机理[J].实用肿瘤杂志,2000,15(2):73—78.
    [16] 李宜雄,吕新生,夏家辉.遗传性非息肉病性结直肠癌[J].国外医学.生理、病理科学与临床分册,2000,20(2):160—164.
    [17] Umar A, Buermeyer AB, Simon JA, et al. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis [J]. Cell, 1996,87: 65—67.
    [18] 阎晓初,柳风轩,房殿春,等.大肠癌细胞周期调控因子表达与微卫星不稳定性的关系[J].中华肿瘤杂志,2000,22(2):141—144.
    [19] Peltomaki P. DNA mismatch repair and cancer[J]. Mutat Res, 2001, 488: 77-85.
    [20] 袁瑛,郑树.遗传性非息肉病性结直肠癌的研究进展[J].实用肿瘤杂志,2000,15(6):427—428.
    [21] Weber TK, conlon W, Petrelli NJ, et al. Genomic DNA-based hMSH2 and hMLHl mutation screening in 32 Eastern United States hereditary nonpolyposis colorectal cancer pedigrees [J] . Cancer Res, 1997, 57:3798-3803.
    
    [22] Charames GS, Millar AL, Pal T, et al. Do MSH6 mutations contribute to double primary cancers of the colorectum and endometrium [J] ? Hum Genet,2000 , 107(6):623-629.
    
    [23] Haydon AMM, Jass JR. Emerging pathways in colorectal cancer development [J] . Lancet Oncol,2002,3(2):83-88.
    
    [24] Malkhosyan SR, Yamamoto H, Piao Z, et al. Late onset and high incidence of colon cancer of the mutator phenotype with hypermethylated hMLHl gene in women [J] . Gastroenterology, 2000, 119:598.
    
    [25] Jassa JR, Walsh MD, Barker M, et al. Distinction between familial and sporadic forms of colorectal cancer showing DNA microsatellite instability [J] . Eur J Cancer, 2002, 38:858 - 866.
    
    [26] Kane MF, Loda M, Gaida GM, et al. Methylation of the hMLHl promoter correlates with lack of expression of hMLHl in sporadic colon tumors and mismatch repair-defective human tumor cell lines [J] . Cancer Res, 1997, 57: 808-811.
    
    [27] Thibodeau SN, French AJ, Roche PC, et al. Altered expression of hMSH2 and hMLHl in tumors with Microsatellite instability and genetic alterations in mismatch repair genes [J] . Cancer Res,1996,56:4836-4840
    
    [28] Herman JG, Umar A, Polyak K, et al. Incidence and functional consequences of hMLHl promoter hypermethylation in colorectal carcinoma [J] . Proc Natl Acad Sci USA, 1998,95(12): 6870-6875.
    
    [29] Wheeler JMD, Loukola A, Aaltonen LA, et al. The role of hypermethylation of the hMLHl promoter region in HNPCC versus MSI + sporadic colorectal cancers [J] . J Med Genet, 2000, 37(8) :588-592.
    
    [30] Potocnik U, Glavac D, Golouh R, et al. Causes of microsatellite instability in colorectal tumors: implications for hereditary non-polyposis colorectal cancer screening [J] . Cancer Genet Cytogenet,2001, 126: 85-96.
    [1] Jablonka E, Lamb MJ. The changing concept of epigenetics [J]. Ann N Y Acad Sci, 2002,981:82-96.
    [2] Wolffe AP, Matzke MA. Epigenetics: regulation through repression [J]. Science, 1999,286(5439):481-486.
    [3] 房静远主编.表型遗传修饰与肿瘤[M].上海:上海科学技术出版社,2003.
    [4] Mathers JC. Reversal of DNA hypomethylation by folic acid supplements: possible role in colorectal cancer prevention [J]. Gut, 2005,54(5):579-581.
    [5] Bariol C, Surer C, Cheong K, et al. The relationship between hypomethylation and CpG island methylation in colorectal neoplasia [J]. Am J Pathol, 2003,162(4):1361-1371.
    [6] Sharrard RM, Royds JA, Rogers S, et al. Patterns of methylation of the c-myc gene in human colorectal cancer progression [J]. Br J Cancer, 1992,65(5):667-672.
    [7] Toyota M, Shen L, Ohe-Toyota M, et al. Aberrant methylation of the Cyclooxygenase 2 CpG island in colorectal tumors [J]. Cancer Res, 2000,60(15):4044-4048.
    [8] Merlo A, Herman JG, Mao L, et al. 5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers [J]. Nat Med, 1995,1(7):686-692.
    [9] Gonzalez-Zulueta M, Bender CM, Yang AS, et al. Methylation of the 5' CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing [J]. Cancer Res, 1995,55(20):4531-4535.
    [10] Wiencke JK, Zheng S, Lafuente A, et al. Aberrant methylation of p16INK4a in anatomic and gender-specific subtypes of sporadic colorectal cancer [J]. Cancer Epidemiol Biomarkers Prey, 1999,8(6):501-506.
    [11] Liang JT, Chang KJ, Chert JC, et al. Hypermethylation of the p16 genein sporadic T3NOMO stage colorectal cancers: association with DNA replication error and shorter survival [J].Oncology, 1999, 57(2): 149-156.
    [12] 杨玉华,何小兵,张锋锐,等.p16基因甲基化状态与散发性大肠癌的相关性研究[J].遗传学报,2003,30(11):1061—1064.
    [13] Sato F, Harpaz N, Shibata D, et al. Hypermethylation of the p14(ARF) gene in ulcerative colitis-associated colorectal carcinogenesis [J]. Cancer Res, 2002,62(4):1148-1151.
    [14] Shen L, Kondo Y, Hamilton SR, et al. P14 methylation in human colon cancer is associated with microsatellite instability and wild-type p53 [J]. Gastroenterology, 2003,124(3):626-633.
    [15] Esteller M, Tortola S, Toyota M, et al. Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status [J]. Cancer Res, 2000,60(1):129-133.
    [16] 蔡国响,蔡三军.大肠癌发病的分子机理探讨[J].临床肿瘤学杂志,2003,8(6):467—470.
    [17] Potocnik U, Glavac D, Golouh R, et al. Causes of microsatellite instability in colorectal tumors: implications for hereditary non-polyposis colorectal cancer screening [J]. Cancer Genet Cytogenet, 2001,126(2):85-96.
    [18] Wheeler JM, Loukola A, Aaltonen LA, et al. The role of hypermethylation of the hMLH1 promoter region in HNPCC versus MSI+ sporadic colorectal cancers [J]. J Med Genet, 2000,37(8):588-592.
    [19] Herman JG, gmar A, Polyak K, et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma [J]. Proc Nat1Acad Sci U S A, 1998,95(12):6870-6875.
    [20] Deng g, Chert A, Hong J, et al. Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression [J]. Cancer Res, 1999,59(9):2029-2033.
    [21] Arnold CN, Goel A, Boland CR. Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines[J]. Int J Cancer, 2003,106(1):66-73.
    [22] Plumb JA, Strathdee g, Sludden J, et al. Reversal of drug resistance in human tumor xenografts by 2'-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter [J] . Cancer Res, 2000, 60(21):6039-6044.
    [23] Kim SH, Bae SI, Lee HS, et al. Alteration of 06-methylguanine-DNA methyltransferase in colorectal neoplasms in sporadic and familial adenomatous polyposis patients [J] . Mol Carcinog, 2003,37(1) : 32-38.
    [24] Nagasaka T, Sharp GB, Notohara K, et al. Hypermethylation of 06-methylguanine-DNA methyltransferase promoter may predict nonrecurrence after chemotherapy in colorectal cancer cases [J] . Clin Cancer Res, 2003, 9(14):5306-5312.
    [25] Toyota M, Ho C, Ahuja N, et al. Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification [J] . Cancer Res, 1999, 59(10):2307-2312.
    [26] Toyota M, Ahuja N, Ohe-Toyota M, et al. CpG island methylator phenotype in colorectal cancer [J] . Proc Natl Acad Sci U S A, 1999, 96 (15):8681-8686.
    [27] van Rijnsoever M, Grieu F, Elsaleh H, et al. Characterisation of colorectal cancers showing hypermethylation at multiple CpG islands [J] . Gut, 2002, 51(6):797-802.
    [28] Van Rijnsoever M, Elsaleh H, Joseph D, et al. CpG island methylator phenotype is an independent predictor of survival benefit from 5-fluorouracil in stage III colorectal cancer [J] . Clin Cancer Res, 2003, 9 (8): 2898-2903.
    [29] Kondo Y, Shen L, Issa JP. Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer [J] . Mol Cell Biol, 2003, 23(1):206-215.
    [30] Cameron EE, Bachman KE, Myohanen S, et al. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer [J] . Nat Genet, 1999, 21(1):103-107.
    [31] Giovannucci E, Stampfer MJ, Colditz GA, et al. Folate, methionine, and alcohol intake and risk of colorectal adenoma[J]. J Natl Cancer Inst, 1993, 85(11) :875-884.
    [32] Laird PW, Jackson-Grusby L, Fazeli A, et al. Suppression of intestinal neoplasia by DNA hypomethylation [J] . Cell, 1995, 81 (2): 197-205.
    [33] Santini V, Kantarjian HM, Issa JP. Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications [J] . Ann Intern Med, 2001,134(7):573-586.
    
    [34] McBain JA, Eastman A, Nobel CS, et al. Apoptotic death in adenocarcinoma cell lines induced by butyrate and other histone deacetylase inhibitors [J] . Biochem Pharmacol, 1997,53(9) : 1357-1368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700