云南个旧卡房铜矿地质地球化学与矿床成因探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
云南个旧是世界上最大的锡多金属矿田,近20年来关于其成矿作用有多种认识,除了传统上与燕山期花岗岩有关外,还有海底喷流成矿和玄武岩成矿的新认识。矿床成因成为一个急需解决的科学问题。本次工作以个旧矿区卡房铜矿为研究对象,通过野外地质工作、电子探针分析测试、流体包裹体、稳定同位素地球化学、放射性同位素年代学等方法和手段,主要研究了成矿流体性质和来源、成矿物质来源、成矿年代、矿床成因等方面内容,并取得如下主要成果:
     1)卡房铜矿主要的矿床类型有两类:玄武岩层中或玄武岩与大理岩层间的似层状矿体以及花岗岩与围岩接触带矿体。围岩蚀变主要有夕卡岩化、阳起石化和金云母化。
     2)电子探针分析结果显示,卡房铜矿夕卡岩中的辉石主要为透辉石-钙铁辉石系列,石榴子石端元组分以钙铝榴石-钙铁榴石为主。
     3)流体包裹体及氢、氧同位素研究显示,从石英-硫化物阶段到方解石-硫化物阶段,流体温度有显著降低(从260~360℃到160~280℃),流体密度有略微增大的趋势(从0.56~0.97g/cm3到0.78~1.03g/cm3),而流体盐度则基本保持不变(从1.74~12.51wt%到1.74~11.93wt%)。氢、氧同位素组成表明,早期成矿流体主要以岩浆水为主,而晚期成矿流体可能在上升过程中与地层中的大气降水相混合。
     4)硫同位素分析结果表明,卡房铜矿似层状矿体中硫化物的硫来源于三叠系玄武岩,而燕山期花岗岩和三叠纪玄武岩共同为卡房铜矿接触带矿体提供了成矿所需的大部分的硫。铅同位素分析结果显示,卡房铜矿似层状矿体的成矿物质主要来源于三叠系玄武岩,而接触带矿体的铅可能主要来源于燕山期花岗岩。
     5)辉钼矿Re-Os同位素等时线年龄为83.4±2.1Ma,与老卡岩体锆石LA-ICP-MS年龄(85±0.85Ma)接近,表明卡房铜矿的形成与老卡岩体有密切的成因联系。
     6)右江褶皱带内的个旧锡多金属矿床、都龙锡锌矿床、白牛厂银多金属矿床、广西大厂锡多金属矿床以及大明山矿集区王社铜钨矿床的成矿作用发生在95~80Ma,暗示它们的形成受控于相同的地球动力学背景。成矿作用的动力学背景是岩石圈的伸展,是华南中生代白垩纪晚期大规模成矿作用的结果。
Gejiu is the largest tin polymetallic ore-field over the world. It has been known as the Yanshanian granite-related deposit for long time, but recently some researchers argued that it is a syngenetic deposit formed by marine exhalation or it is a basalt-related. The genesis of deposit is an imortant problem to resolve ugly. Based on detailed field study of Kafang copper deposit, using some feasible methods such as EMPA, fluid inclusion homotemperature measuring, stable isotope measuring and radioactive isotope measuring, this thesis recognizes its characteristics and source of ore-forming fluid, source of ore-forming materials, the age of the Kafang copper deposit, and then gives a reasonable explanation about its genesis. The main conclusions that we got are as follow:
     1) There are two kinds of ore-body in Kafang copper deposit. One is stratiform-like ore-body, and the other is contact ore-body. Its wall rock alteration contains skarnization, actinolitization and phlogopitization.
     2) The analytical results of electron microprobe show that the clinopyroxene is diopside-andradite series. The end member of garnet is dominated by andradite and grossular, with minor spessartine and almandine.
     3) Fluid inclusion analysis indicate that the temperature of ore-forming fluid decreased significantly(260~360℃to 160~280℃), the salinity of ore-forming fluid increased slightly( 0.56 ~0.97g/cm3 to 0.78 ~1.03g/cm3), and the salinity of ore-forming fluid keeps constant basically(1.74~12.51wt% to 1.74~11.93wt%) from quarz-sulfide stage to calcite-sulfide stage. Hydrogen isotope analysis and oxygen isotope analysis show that the ore-forming fluid dominated by magmatic water in the early stage, but in late stage, it could be produced by mixing magmatic and meteoric water.
     4) The compositons of sulfur isotope show that sulfur of stratiform-like ore-body was derived from Triassic basalt, yet Triassic basalt and Yanshanian granite provide sulfur for contact ore-body together. The compositions of lead isotope show that the source of ore-forming matierial of stratiform-like ore-body is Triassic basalt, yet the source of lead of contact ore-body is Yanshanian granite.
     5) Re-Os dating of five molybdenite separated from the Kafang copper deposit gives an isochron age of 83.4±2.1Ma. This age is in good agreement with Laoka granite zircon LA-ICP-MS U-Pb age(85±0.85Ma). These ages suggest that the mineralization in the Kafang copper deposit was genetically associated to the Laoka granite.
     6) Based on the geochronological data of Dulong Sn-Zn deposit, Bainiuchang Ag giant deposit, Dachang tin polymetallic ore field and Wangshe Cu-W deposit and analysis of tectonic evolution of Southeast of Yunnan Province, we propose that these deposits occurred at the same geodynamic framework as a result of large scale extension during late Mesozoic in South China.
引文
[1] Bodnar R J. A method of calculating fluid inclusion volumes based of vapor bubble diameters and PVTX properties of inclusion fluids. Economic Geology, 1983, 78: 535~542
    [2] Chen JS and Chu XL. Sulphur isotope composition of Triassic marine sulfates of South China. Chem. Geol., 1988, 72: 155~161
    [3] Clayton R N, Mayeda T K, Mayeda T K. Oxygen isotope exchange between quartz and water. Geophys. Res, 1972, 77: 3057~3067
    [4] Clayton R N and Mayeda T K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta., 1963, 27: 43~52
    [5] Coleman M L, Sheppard T J, Durham J J, et al. Reduction of water with zinc for hydrogen isotope analysis. Anal. Chem., 1982, 54: 993~995
    [6] Coleman ML. Isotopic analysis of trace sulphur from some S- and I- type granites: heredity or environment? In: Origin of Granite Bathliths: Geochemical Evidence( eds M P Atherton and J Tarney ), Shiva Publishing Limited, 1979, p.129~133
    [7] Dalrymple GB and Lamphere MA. 40Ar/39Ar technique of K-Ar dating: A comparison with the conventional technique. Earth Planet Sci Let, 1971, 12: 300~308
    [8] Doe Bruce R and Marvin Richard F. Radioactive and radiogenic isotope research in North America. In: IUGG quadrennial report (U.S.A.). American Geophysical Union, 1967, 48(2): 672~686
    [9] Du AD , Wu SQ, Sun DZ, et al. Preparation and certification of Re-Os dating reference materials: molybdenite HLP and JDC. Geostandard and Geoanalytical Research, 2004, 28: 41~52
    [10] Einaudi M T, Burt D M. Terminology, classification and composition of skarn deposits. Economic Geology. 1982, 77: 745~754
    [11] Einaudi M T, Meinert L D, Newberry R J. Skarn deposits. Economic Geology. 75th Anniv. Vol., 1981, 317~391
    [12] Foster M D. Interpretation of the composition of trioctahedral micas. Geol Surv Prof Paper, 1960, 354-B: 11~49
    [13] Heinrich, CA. The chemistry of hydrothermal tin ( -tungsten ) ore deposition. EconomicGeology, 1990, 85: 457~481
    [14] Hoefs J. Stable isotope geochemistry. 4th Edition,Springer-Verlag Berlin Heidelberg. 1997
    [15] Ishihara S and Sasaki A. Sulfur isotope ratios of the magnetite-series and ilmenite-series granitoids of the Sierra Nevada batholith-A reconnaisance study. Geology, 1998, 17: 788~791
    [16] Jia Runxing, Fang Weixuan, HeYing, et al. Geochemical Characteristics of Rare Earth Elements in Gejiu Tin Polymetallic Deposits, Yunnan Province, China. Jounral of Rare Earths, 2004, 22(5): 714~720
    [17] Jiang Zhuwei, Nicholas H S, Oliver, et al. Numerical modeling of fault-controlled fluid flow in the genesis of tin deposits of the Malage ore field Gejiu mining district. Economic Geology, 1997, 92: 228~247
    [18] Leake B E, Woolley A R, Arps C E S, et al. Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Mineral and Mineral Names American Mineralogical, 1997, 82: 1019~1037
    [19] Ludwig K. Isoplot/ Ex, version 3.0: a geochronological tool kit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley, 2001, 43
    [20] Meinert L D. Mineralogy and petrology of iron skarns in western British Columbia, Canada. Economic Geology, 1984, 79: 869~882
    [21] Meinert L D. Skarns and skarn deposits. Geoscience Canada, 1992, 19: 145~162
    [22] Ohmoto H and Rye R O. Isotopes of sulfur and carbon. In Barnes H L, ed. Geochemistry of hydrothermal ore deposits. New York, Wiley-Interscience, 1979, p509-567
    [23] Ohmoto H and Goldhaber M B. Sulfur and carbon isotopes. In: Barnes, H L ed. Geochemistry of hydrothermal Ore deposits. 3rd ed. New York: John Wiley and Sons. 1997, 517~611
    [24] Pan Y M and Dong P. The lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: intrusion and wall rock hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 1999, 15: 177~242
    [25] Roedder E. Fluid inclusions. Reviews in Mineralogy, Mineralogical Society of America, 1984, 12: 1~644
    [26] Selby D , Creaser R A , Hart C J R, et al. Absolute timing of sulfide and gold mineralization:A comparison of Re-Os molybdenite and Ar-Ar mica methods from the Tintina Gold Belt , Alaska. Geology, 2002, 30: 791~794
    [27] Selby D and Creaser R A. Re-Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada. Economic Geology, 2001a, 96: 197~204
    [28] Selby D and Creaser R A. Late and Mid Cretaceous mineralization in the Northern Canadian Cordillera : constraints from Re-Os molybdenite dates. Economic Geology, 2001b, 96: 1461~1467
    [29] Selby D and Creaster R A. Macroscale NTIMS and microscale LA-MC-ICP Re-Os isotopic analysis of molybdenite :Testing spatial rest rictions for reliable Re-Os age determinations, and implications for the decoupling of Re and Os within molybdenite. Geochimica et Cosmochimica Acta, 2004, 68: 3897~3908
    [30] Shirey S B and Walker R J. Carius tube digestion for low-blank rhenium-osmium analysis. Anal. Chem. , 1995, 67: 2136~2141
    [31] Steiger RH and J?ger E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett., 1977, 36: 359~362
    [32] Stein H J, Markey R J , Morgan J W, et al. The remarkable Re - Os chronometer in molybdenite : How and why it works. Terra Nova, 2001, 13: 479~486
    [33] Stein H J , Markey R J Morgan J W, Du A, et al. Highlyprecise and accurate Re-Os ages for molybdenite from the East Qinling molybdenum belt , Shanxi Province, China. Economic Geology, 1997, 92: 827~835
    [34] Stein H J, Scherst n A, Hannah J, et al. Subgrainscale decoupling of Re and 187Os and assessment of laser ablation ICP-MS spot dating in molybdenite. Geochimica et Cosmochimica Acta, 2003, 67: 3673~3686
    [35] Stein H J, Sundblad K, Markey R, et al. Re-Os ages for Archean molybdenite and pyrite , Kuittila-Kiviso ,Finland and Proterozoic molybdenite , Kabeliai , Lithuania : Testing the chronometer in a metamorphic and metasomatic setting. Mineralium Deposita, 1998, 33: 329~345
    [36] Sun WD, Arculus RJ, Kamenetsky VS, et al. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature, 2004, 431:975~978
    [37] Tapponnier P, Lacassin R, Leloup P H, et al., The Ailao Shan /Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China. Nature 1990, 343: 431~437
    [38] Taylor H P Jr. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol., 1974, 69, 843~883
    [39] Watanabe Y and Stein H J. Re-Os ages for the Erdenet and Tsagaan Suvarga porphyry Cu-Mo deposits, Mongolia, and tectonic implications. Economic Geology, 2000, 95: 1537~1542
    [40] Wilkinson J J. F Fluid inclusions in hydrothermal ore deposits. Lithos, 2001, 55: 229~272
    [41] Wyborn D and Sun SS. Sulphur-undersaturated magmatism: A key factor for generating magma-related copper-gold deposits. AGSO Research Newsletter, 1994, 21: 7~9
    [42] Zartman R E and Haines S M. The plunbotectonic model for Pb isotopic systematics among major terrestrial reservoirs-a case for bidirectional transport. Geochim. Chsmochim. Acta, 1988, 52: 1327~1339
    [43] Zhao Y M, Dong Y G, Li Daxin, Bi C S. Geology, mineralogy, geochemistry, and zonation of the Bajiazi dolostone-hosted Zn-Pb-Ag skarn deposit, Liaoning Province, China. Ore Geology Reviews, 2003, 23: 153~182
    [44] Zhao Yining and Li Daxin. Mineralization and alteration zoning in the Gejiu tin orefield, Yunnan, China. Scientia Geologica Sinica. 1995, 4(2): 179~192
    [45]蔡明海,何龙清,刘国庆等.广西大厂锡矿田侵入岩SHRIMP锆石U-Pb年龄及其意义.地质论评, 2006, 52: 409~414
    [46]蔡明海,梁婷,吴德成等.桂西北丹池成矿带花岗岩地球化学特征及其构造环境.大地构造与成矿学, 2004a, 28: 306~313
    [47]蔡明海,梁婷,吴德成等.广西大厂锡多金属矿田亢马锡矿床地质特征及成矿时代.地质学报, 2005, 79: 262~268
    [48]蔡明海,梁婷,吴德成等.广西丹池成矿带构造特征及其控矿作用.地质与勘探, 2004b, 6: 5~10
    [49]陈吉探,施琳,谢蕴宏.云南S型和I型两类花岗岩划分对比的初步探讨.云南地质, 1983, 2(1): 28~37
    [50]陈懋弘,毛景文,章伟等.黔西南白层超基性岩的锆石SHRIMP U-Pb年龄和Hf同位素组成.矿床地质(待刊), 2009
    [51]陈文,张彦,金贵善等.青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据.岩石学报, 2006, 22: 867~872
    [52]陈毓川和朱裕生.中国矿床成矿模式.北京:地质出版社, 1993. 1~33
    [53]程彦博,毛景文,谢桂青等.云南个旧老厂-卡房花岗岩体成因初探:锆石U-Pb年代学和岩石地球化学约束.地质学报, 2008a, 82(11): 1478~1493
    [54]程彦博,毛景文,陈懋弘等.云南个旧锡矿田碱性岩和煌斑岩LA-ICP-MS锆石U-Pb测年及其地质意义.中国地质, 2008b, 35(6): 1082~1093
    [55]程彦博,毛景文,谢桂青等.与云南个旧超大型锡矿床有关花岗岩的锆石U-Pb定年及意义.矿床地质(待刊). 2009
    [56]崔勇.云锡卡房18-2号花岗岩含锡矿床地质特征与矿床成因研究及找矿方向.矿产与地质, 2000, 14(3): 175~177
    [57]戴福盛.个旧矿区壳源重熔岩浆岩岩石系列特征、演化及其成岩成矿作用.云南地质, 1996, 15: 330~344
    [58]戴福盛.个旧西矿区构造体系的成生发展及控矿特征闭.矿产与地质, 1990, 2:35~42
    [59]邓贵安.老厂花岗岩破碎带型锡矿床地质地球化学特征.矿产与地质, 1998, 12(4): 230~236
    [60]董云鹏,朱炳泉,常向阳等.滇东师宗-弥勒带北段基性火山岩地球化学及其对华南大陆构造格局的制约.岩石学报, 2002, 18(1): 37~46
    [61]董云鹏和朱炳泉.滇东南建水岛弧型枕状熔岩及其对华南古特提斯的制约.科学通报, 1999, 44(21): 2323~2327
    [62]段永生.个旧矿区老厂矿田矽卡岩型铜锡多金属矿床地质特征及找矿方向.云南地质科技情报, 1997. 2: 12~17
    [63]范成均.云南锡矿带之划分及其区域成矿地质特点.云南地质, 1988, 7(1):1~12
    [64]方维萱,胡瑞忠,高振敏.扬子地块南缘及邻区大陆动力成矿系统、成矿系列特征与找矿方向.矿物学报, 2001, 21(4): 561~570
    [65]方维萱,胡瑞忠,谢桂青等.云南哀牢山地区构造岩石地层单元及其构造演化.大地构造与成矿学, 2002, 26(1): 337~344
    [66]冯贤仁.个旧含锡花岗岩副矿物类型、成因及与矿化关系.云南地质, 1982, 1: 129~133
    [67]傅容珊,黄建华,徐耀民等.印度与欧亚板块碰撞的数值模拟和现代中国大陆形变.地震学报, 2000, 22(1): 1~7
    [68]官容生.滇东南构造岩浆带花岗岩体的含矿性探讨.矿物岩石, 1991, 11(1):92~11
    [69]何学贤,朱祥坤,杨淳等.多接收器等离子质谱(MC-ICP-MS)Pb同位素高精度研究.地球学报, 2005, 26, sup, 19~22
    [70]黄福生.个旧锡矿花岗岩的氢氧同位素稳定同位素研究.岩石矿物及测试, 1983, 4:241~246
    [71]黄廷燃.个旧原生锡矿典型矿床概论.云南地质, 1984, 3(1):36~46
    [72]贾润幸,方维萱,赫英等.云南个旧塘子凹锡多金属矿床微量元素地球化学特征.矿物学报, 2004, 24(2):136~142
    [73]江祝伟和周大鹏.个旧松树脚矿田6号东锡矿床的矿液运移特征.地质学报, 1989, 63(2): 159~168
    [74]蒋少涌,李亮,朱碧等.江西武山铜矿区花岗闪长斑岩的地球化学和Sr-Nd-Hf同位素组成及成因探讨.岩石学报, 2008, 24(8): 1679~1690
    [75]金祖德.个旧土状赤铁矿型锡矿成因商榷.地质与勘探, 1981, 17(7): 32~34
    [76]金祖德.个旧层间赤铁矿型锡矿热液成因之否定.地质与勘探, 1991,27(1): 19~20
    [77]康玉廷.云南锡矿微量元素地球化学特征.云南地质, 1984, 3(2): 131~140
    [78]黎应书,秦德先,陈爱兵等.个旧含锡花岗岩的幔源成因证据.有色金属(矿山部分), 2007, 59(3): 20~26
    [79]黎应书,秦德先,党玉涛等.云南个旧锡矿床铅、硫同位素研究.地质与勘探, 2006a, 42(2): 49~53
    [80]黎应书,秦德先,党玉涛等.云南个旧锡矿的玄武岩成矿.吉林大学学报(地球科学版), 2006b, 36(3): 326~335
    [81]李纯杰,史洪岳.云南蒙自县白牛厂银多金属矿成矿机制的探讨.第五届全国矿床会议论文集: 1993, 247~249
    [82]李家和.个旧花岗岩特征及成因研究.云南地质, 1985, 4: 327~352
    [83]李石锦.云南个旧矿区富锡、铜矿体成矿学浅析.大地构造与成矿学, 1998, 22(2): 148~155
    [84]李希勋,杨庄,施琳等.中国锡矿床,见《中国矿床》委员会,中国矿床[M],中册,北京:地质出版社, 1993, 105~188
    [85]李玉文,周文戈,谢鸿森等.红河-金沙江走滑断裂带的岩浆活动特征与深部作用过程初探.地球物理学报(增刊), 1998,41: 115~122
    [86]蔺志永,王登红,李水如.广西王社铜钨矿床地质特征及其成矿时代.地质学报, 2008, 82(11): 1565~1571
    [87]刘斌和沈昆.流体包裹体热力学.北京:地质出版社, 1999, 1-290
    [88]刘新华.云南个旧老厂塘子凹矿段接触带铜锡矿床地质特征.西南矿产地质, 1993, 3: 16~25
    [89]刘英俊.华南花岗岩类中微量元素的地球化学,花岗岩地质和成矿关系.南京:江苏科学技术出版社, 1982, 57~103
    [90]刘玉平,李朝阳,谷团等.都龙锡锌多金属矿床成矿物质来源的同位素示踪.地质地球化学, 2000, 28(4): 75~82
    [91]刘玉平,李朝阳,谷团等.都龙锡锌多金属矿床成矿物质来源的同位素示踪.地质地球化学, 2000, 28: 75~82
    [92]刘玉平,李正祥,李惠民等.都龙锡锌矿床锡石和锆石U-Pb年代学:滇东南白垩纪大规模花岗岩成岩-成矿事件.岩石学报, 2007, 23: 967~976
    [93]楼亚儿和杜杨松.安徽繁昌-铜陵中生代侵入岩的黑云母特征和成因探讨.矿物学报, 2006, 26(2): 175~180
    [94]卢焕章.研究地壳中流体的工作方法.地学前缘, 1998, 5(1~2): 295~300
    [95]罗君烈.对云南区域成矿的几点认识.云南地质, 1984, 3(2):109~112
    [96]罗君烈.滇东南锡、钨、铅锌、银矿床的成矿模式.云南地质, 1995, 14(4):319~832
    [97]马振飞和陈图宏.云南个旧塘子凹锡多金属矿床地质特征.矿物学报, 2001, 21(4): 578~584
    [98]毛景文,谢桂青,郭春丽等.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景.岩石学报, 2007, 23: 2329~2338
    [99]毛景文,谢桂青,郭春丽等.华南地区中生代主要金属矿床时空分布规律和成矿环境.高校地质学报, 2008a, 14: 510~526
    [100]毛景文,程彦博,郭春丽等.云南个旧锡矿田:矿床模型及若干问题讨论.地质学报, 2008b, 82(11): 1455~1467
    [101]毛景文,L Raimbaull,B Guy.千里山花岗岩体地质地球化学及与成矿关系.矿床地质, 1995, 14(1): 12~25
    [102]毛景文,李红艳,宋学信.湖南柿竹园钨锡钼铋多金属矿床地质与地球化学.北京:地质出版社, 1998. 1~183
    [103]毛景文和李红艳.柿竹园钨锡钼铋多金属矿床中多阶段花岗岩与多期矿化的时空关系.第五届矿床会议论文集,北京:地质出版社, 1993, 361~363
    [104]毛义坤.个旧砂锡矿床的控矿地质条件及其工业类型划分.云锡科技, 1994, 21(3): 15~18
    [105]彭程电,王任重.个旧超大型锡铜多金属矿床区域地学背景研究.西南矿产地质, 1996, (1-2): 1~5
    [106]彭程电.试论个旧锡矿成矿条件及矿床类型、模式.云南地质, 1985, 4: 154~163
    [107]彭张翔.个旧锡矿成矿模式商榷.云南地质, 1992, 11: 362~368
    [108]秦德先,黎应书,范柱国等.个旧锡矿地球化学及成矿作用演化.中国工程科学, 1992, 8(1): 30~39
    [109]秦德先.个旧锡矿的矿床成因与找矿新发现.昆明理工大学学报(理工版), 2001, 26: 38
    [110]秦德先,黎应书,谈树成等.云南个旧锡矿的成矿时代.地质科学, 2006b, 41(1): 122~132
    [111]秦德先,谈树成,范柱国等.个旧-大厂地区地质构造演化及锡多金属成矿.矿物学报, 2004, 24(2): 117~123
    [112]沈渭洲.稳定同位素地质.北京:原子能出版社. 1987
    [113]史清琴.滇东南锡石硫化物矿床的成矿规律.云南地质, 1984, 3(2): 159~164
    [114]谈树成,高建国,晏建国等.云南个旧矿区南部矿床原生晕垂直分带研究-以龙树脚矿段为例.矿物学报, 2001, 21(4): 591~595
    [115]唐尚淘,尹金明.个旧锡矿勘探的数学模型.有色金属矿产与勘查, 1994, 3(2): 109~116
    [116]陶琰,马德云,高振敏.个旧锡矿成矿热液活动的微量元素地球化学指示.地质地球化学, 2002, 30(2): 34~39
    [117]涂光炽.我国西南地区两个别具一格的成矿带(域).矿物岩石地球化学通报, 2002, 22: 1~2
    [118]汪志芬.关于个旧锡矿成矿作用的几个问题.地质学报, 1983, 57: 154~163
    [119]王登红,陈毓川,陈文等.广西南丹大厂超大型锡多金属矿床的成矿时代.地质学报, 2004, 78: 132~138
    [120]王松山.我国K-Ar法标准样(40)Ar-(40)K和(40)Ar-(39)Ar年龄测定及放射成因(40)Ar的析出特征.地质科学, 1983, (4): 315~323
    [121]王新光,朱金初,沈渭洲.个旧锡矿田两个主要成矿花岗岩的对比研究及其地质和找矿意义.南京大学学报(地球科学版), 1990, 66~75
    [122]王新光和朱金初.个旧花岗岩的成因、演化及其找矿意义.大地构造与成矿学, 1992, 16(4): 379~387
    [123]王雅丽和李磊.个旧老厂细脉型锡矿床微量元素的多元统计分析.云南地质, 1997, 16(1): 76~84
    [124]王雅丽和李磊.个旧老厂细脉型锡矿床包裹体地球化学特征研究.云南地质, 1999, 18(1): 36~46.
    [125]王义昭,熊家铺,林尧明.云南地质构造的若干特点.云南地质, 1988, 7(2): 105~110
    [126]王永磊,裴荣富,李进文等.个旧老厂矿田花岗岩地球化学特征及其形成构造背景.地质学报, 2007, 81: 979~985
    [127]魏明秀.我国个旧夕卡岩型锡矿床的地质地球化学研究.地球化学, 1993, 2: 146~154
    [128]伍勤生和刘青莲.个旧含锡花岗岩浆杂岩体的成因、演化及成矿作用,有色总公司矿产地质研究院学报, 1985, 4: 22~31
    [129]伍勤生,许俊珍,杨志.个旧含锡花岗岩的Sr同位素特征及找矿标志的研究.地球化学, 1984, 4: 293~302
    [130]伍勤生,许俊珍,杨志.个旧含锡花岗岩的Sr同位素特征及找矿标志的研究.地球化学, 1984, 4: 293~302
    [131]武俊德.竹林接触带矿床地质特征及找矿预测.矿产与地质, 2000, 14(3): 185~187
    [132]肖景霞和钟立志.个旧老厂锡铁多金属细脉带矿床地质特征及成矿富集规律.云南地质, 1988, 7(3): 272~282
    [133]熊光楚和石盛藤.个旧锡矿区物理-地质模型及应用效果.地质论评, 1994, 40(1): 19~27
    [134]胥颐,刘建华,刘福田等.江为为.哀牢山-红河断裂带机器邻区的地壳上地幔结构.中国科学D辑, 2003, 33(12): 1201~1209
    [135]徐夕生,范钦成,SY O’Reilly等.安徽铜官山石英闪长岩及其包体锆石U-Pb定年与成因探讨.科学通报,2004, 49(18): 1883~1891
    [136]徐云端和李玉新.个旧矿区发现一种富锡矿类型—花岗岩锡矿体.矿产与地质,1997, 11(58): 99~102.
    [137]颜丹平,周美夫,王焰等.都龙-Song Chay变质穹隆体变形与构造年代—南海盆地北缘早期扩张作用始于华南地块张裂的证据.地球科学-中国地质大学学报, 2005, 30(4): 402~412
    [138]杨坪和刘新华.个旧东区矽卡岩型铜、锡矿床地质特征及分布规律.西南矿产地质, 1991, 5(3):13~18
    [139]杨世瑜和颜以彬.云南的锡矿床与花岗岩类在时空分布上的关系.云南地质, 1994, 13(2):149~157
    [140]杨世瑜.试论云南锡矿床控矿构造类型.云南地质, 1987, 6(3)227~240
    [141]冶金工业部西南冶金地质勘探公司(308队).个旧锡矿地质[M].北京:冶金工业出版社, 1984, 1~237
    [142]於崇文和蒋耀松.云南个旧成矿区锡石-硫化物矿床原生金属分带形成的动力学机制.地质学报, 1990, 64(3): 226~237.
    [143]於崇文,唐元骏,石平方.云南个旧锡-多金属成矿区内生成矿作用的动力学体系,武汉:中国地质大学出版社, 1988, 1~304
    [144]袁见齐,朱上庆,翟裕生.矿床学.北京:地质出版社, 1985, 126~130
    [145]张德会,张文淮,刘伟.江西银山多金属矿床高盐度包裹体及其成因意义.岩石学报, 2003, 19(1): 173~180
    [146]张欢,高振敏,马德云等.个旧锡多金属硫化物矿床铅同位素组成特征及其成因意义.矿物学报, 2004a, 24(2): 149~152
    [147]张欢,高振敏,马德云等.个旧锡矿区鲕状黄铁矿、胶状结构黄铁矿中锡的分布及其成因意义.矿物学报, 2004b, 24(1): 87~91
    [148]张欢,高振敏,马德云等.个旧超大型锡多金属矿床成矿流体来源的氦同位素证据.兰州大学学报(自然科学版), 2006, 42(3): 20~24
    [149]张欢,高振敏,马德云等.个旧超大型锡多金属矿床成矿物质来源的铅和硫同位素示踪.地质与勘探, 2005, 41(2): 17~20
    [150]张理刚.同位素地质研究现状与展望.地质与勘探, 1992, 28(4): 21~29
    [151]张世涛和陈国昌.滇东南薄竹山复式岩体的地质特征及其演化规律.云南地质, 1997, 16: 222~232
    [152]张玉泉和谢应雯.哀牢山-金沙江富碱侵入岩年代学和Nd,Sr同位素特征,中国科学D辑, 1997, 27(4): 289~293
    [153]张志信和肖景霞.我国锡矿的成矿地质特征及成矿远景区划浅析.云南地质, 1984, 3(1): 1~10
    [154]赵一鸣和李大新.云南个旧锡矿花岗岩接触带的交代现象.中国地质科学院院报, 1987, 237~252
    [155]赵一鸣,林文蔚,毕承思等.中国矽卡岩矿床.北京:地质出版社. 1990
    [156]郑庆鳌和杨涤生.云南个旧锡多金属矿成矿演化与成矿模式.有色金属矿产与勘查, 1997, 6(2): 82~87
    [157]钟大赉,吴根耀,季建清等.滇东南发现蛇绿岩, 1998, 43(13): 1365~1370
    [158]周怀阳.论个旧-大厂地区火山喷气沉积-花岗岩热液叠加改造型锡石硫化物矿床的地质特征及其成矿地质条件:[南京大学博士论文].南京:南京大学,1997
    [159]周建平,徐克勤,华仁民等.滇东南喷流沉积块状硫化物特征与矿床成因.矿物学报, 1998, 18(2): 158~168
    [160]周建平,徐克勤,华仁民等.个旧等锡矿中沉积组构的发现与矿床成因新探.自然科学进展, 1999, 9(5): 419~422
    [161]周建平,徐克勤,华仁民等.滇东南锡多金属矿床成因商榷.云南地质, 1997, 16(4): 309~349
    [162]朱碧,蒋少涌,丁昕等.江西永平铜矿区花岗岩热液蚀变与岩石成因:矿物化学、元素地球化学和Sr-Nd-Hf同位素制约.岩石学报, 2008, 24(8): 1900~1916
    [163]朱炳泉.地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化.北京:科学出版社1998
    [164]朱金初,王新光,殷成玉.个旧锡矿区不同岩石中锡的富集特征及成矿模式.地质找矿论丛, 1991, 6(2): 11~16
    [165]庄永秋,王任重,杨树培等.云南个旧锡铜多金属矿床[M].地震出版社, 1996. 1~183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700