阿维菌素(abamectin)在甘蓝和土壤中的残留检测技术及降解规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿维菌素属大环内酯类抗生素,是从土壤放线菌的发酵产物中分离出来的,B1a是其主要的生物活性组分,其含量不低于80%,B1b不高于20%,以B1a来标定其含量。阿维菌素具有高效的杀虫、杀螨和抗寄生虫活性,被广泛用于农作物害虫、害螨和家畜抗寄生虫的防治。由于阿维菌素的用药量少,残留低,液相色谱-紫外检测技术根本达不到检测的要求,而液相色谱-荧光检测技术由于受到衍生条件的限制,重现性和再现性较差。本文建立了超高效液相色谱-串联质谱对阿维菌素在甘蓝和土壤中的残留分析方法并对其在环境中的残留动态进行研究,为掌握阿维菌素在甘蓝上使用后的残留情况,及评价阿维菌素对环境的安全性和制定其在甘蓝中的安全、合理使用准则提供科学依据。
     建立了阿维菌素在甘蓝和土壤中的超高效液相色谱-质谱联用(UPLC-MS-MS)残留检测方法。样品经乙腈提取后,浓缩,经NH2固相萃取柱净化,超高效液相色谱梯度分离,质谱采用电喷雾离子源,以正离子检测方式进行质谱分析。实验结果表明,在1~200μg?L-1的质量浓度范围内,阿维菌素农药的工作曲线呈线性,其相关系数r=0.9998,甘蓝添加回收率为75.4%~90.0%,相对标准偏差为3.8%~5.2%,土壤添加回收率为77.4%~109.7%,相对标准偏差为4.3%~5.7%。定量限可达到1μg?kg-1,该方法灵敏、准确,选择性好,抗干扰能力强,可作为蔬菜中阿维菌素残留检测的确证方法。
     研究阿维菌素在甘蓝和土壤中的残留及降解动力学规律。用已建立的UPLC-MS-MS方法对田间试验采集的甘蓝和土壤样品进行测定。消解动态试验结果显示,阿维菌素的消解规律符合一级动力学方程模型,阿维菌素在甘蓝中的半衰期为1.52~1.89天,在土壤中的半衰期为2.01~2.23天,在甘蓝中的消解速率快于在土壤中消解速率,说明阿维菌素属于易降解农药。
     最终残留试验结果表明,在施药量分别为10.8g·hm-2(推荐剂量,有效成分)和16.2 g·hm-2(有效成分)两个剂量,施药分别1~2次,采样距最后一次施药7、14、21天的条件下,间隔7天后甘蓝中阿维菌素的残留量在<1.00~2.25μg?kg-1,14、21天均未检出,间隔7天后土壤中的阿维菌素的残留量在1.72~5.94μg?kg-1,14、21天均未检出。根据两地的农药残留试验结果以及现行的国内制定MRL值,同时参照国际上其他地区或组织制定的MRL值,建议按照推荐剂量10.8g·hm-2(有效成分),施药1次,安全间隔期为7天以上,食用甘蓝是安全的。
Abamectin is macrolides antibiotics isolated from a fermentation broth of the soil actinomycete,Streptomyces avermitilis.Avermectin B1a is its main active component. Abamectin comprises at least 80% avermectin B1a and not more than 20% avermectin B1b,and for this reason the avermectin B1a component is considered as the target analyte in this study. Abamectin is potent insecticide,acaricide and antiparasitics used on a variety of agricultural crops as well as livestocks. Because its dosage is small and low-residual. Ultraviolet detector coupled with HPLC couldn’t fit for the low-level residue measurement,and yet Liquid chromatography-fluorescence detector requires derivatization during sample preparation and is restricted by stringent derivatization conditions.As a result,its repeatability and reproducibility are not good enough.So a new method for the determination of abamectin in cabbage and soil by ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS-MS),and degradation dynamics and final residue of abamectin in cabbage and soil was studied, which could provide scientific basis for evaluating the safety of abamectin in environment and establishing secure,reasonable using guideline of abamectin in cabbage.
     The analytical method was developed. The samples were extracted with acetonitrile, then concentrated and cleaned up by solid phase extraction (SPE) with a NH2 cartridge, separated by LC with gradient elution,and detected by tandem mass spectrometry with electrospray ionization in positive mode(ESI+).Experimental results indicated that the calibration curve of abamectin was well linear and its correlation coefficient was 0.9998 from 1μg?L-1 to 200μg?L-1.Cabbages and soils were spiked with abamectin at 1,10 and 100μg?kg-1 levels.The recoveries of abamectin in cabbage ranged from 75.4% to 90.0%, and the relative standard deviation(RSD) was 3.8%~ 5.2%.The recoveries in soil ranged from 77.4% to 109.7% ,and the RSD was 4.3%~5.7%.The quantification limit was found to be 1μg?kg-1. The method was sensitive,accurate and selective without interference and suitable for the determination and confirmation of abamectin residue in vegetables as well as fruits.
     Using UPLC-MS-MS method determined the abamectin residues in cabbage and its soil samples which came from field trial.The results showed that the degradation rate of abamectin in cabbage and soil samples followed the first-order kinetics equation C=C0?e-kt .The degradation rate of abamectin in cabbage is quicker than that in soil.The half-lives of abamectin were 1.52~1.89 days in cabbage,and 2.01~2.23 days in soil.Abametin is easily degradable pesticide.
     The results of final residual trial revealed that when the cabbage was sprayed at 1~2 times successively at the recommended dosages(10.8g ai·hm-2) and the higher dosages(16.2g ai·hm-2), The residues in cabbage were lower than 0.01mg?kg-1 after 7 days treatments and hadn’t been detected after 14 and 21days respectively, and the residues in soil were between 1.72μg?kg-1 and 5.94μg?kg-1 after 7 days, and hadn’t been detected after 14 and 21days.
     Based on the results of the field results and maximum residue limit(MRL) which is according to China current standard or refers to other international countries or organizations, the conclusion was that the cabbage was edible safely after 7 interval days if the cabbage was sprayed 1 time at the recommended dosage(10.8g ai·hm-2) during the growth season of cabbage.
引文
[1]何焕君,邱丽娜,姚伟芳等.阿维菌素的研究进展[J].生物技术,2006,16 (6):84-85.
    [2]童建华,庄占兴.阿维菌素的生产和应用现状[J].农药科学与管理,1999,20(3):36-37.
    [3]梁剑光,黄鹏,徐正军.阿维菌素生物合成及其代谢途径研究进展[J].常熟理工学院学报,2007,21(4):65-70.
    [4]陈芝,宋渊,文莹等.阿维菌素的生物合成研究进展与展望[J].自然科学进展,2007,17(3):290-296.
    [5]Schenck F.J,Lagman LH.Multiresidue determination of abamectin,doramectin,ivermectin,and moxidectin in milk using liquid chromatography and fluorescence detection[J] . Journal of AOAC International.1999,82(6):1340-1344.
    [6]Tomoko N,Funio M,Yasuyuki H,et al.Simultaneous determination of residual antiparasitic lactones in bovine muscle and liver by liquid chromatography with fluorescence detection[J].Journal of AOAC International,2003,86: 490-493.
    [7]李俊锁,邱月明,王超.兽药残留分析[M].上海:上海科学技术出版社,2002:501.
    [8]王道全.Avermectins的结构改造(综述)[J].北京农业大学学报,1994,20(4):431-437.
    [9]王广成,张忠明,高立明等.阿维菌素的作用机理及其应用现状[J].植物医生,2006,19(1):4-5.
    [10]LANKAS G R,CORDON L R..Toxicology Inivermectin and Abamectin[M].New York:WC,Springer-Verlag,1989:89-112.
    [11]游锡火.阿维菌素类药物的药理作用及毒理作用[J].吉林农业,2000,5:35.
    [12]张晓峰,任跃,吴沿萍等.阿维菌素的急性毒性实验[J].中国公共卫,2005,21(8):984.
    [13]王静,张静,姜文玲.阿维菌素原药对小鼠致畸性的研究[J].癌变·畸变·突变,2003,15(4):242—243.
    [14]NY/T1500.1.1~1500.1.6-2007.农药最大残留限量阿维菌素[S].北京:农业出版社,2007:
    [15]国际食品法典委员会.Pesticide Residues in Food Maximum Residue Limits[DB/OL],Extraneous Maximum Residue Limits.http://www.codexalimentarius.net/mrls/pestdes/jsp/pest_q-e.jsp,2009-03-30:
    [16]食品安全网.农药残留限量查询[DB/OL].http://www.cac.org.cn,2009-03-30:
    [17]李俊锁,张士勤.绵羊血清中阿维菌素的高效液相色谱法测定[J].畜牧兽医学报,1997,28(2):181-184.
    [18]高国文.高效液相色谱法检测大白菜中阿维菌素残留量[J].农药科学与管理,2005,26(11):8-9.
    [19]毕富春,吴国旭.高效液相色谱法定量分析阿维·柴油·乳油中的阿维菌素[J].农药科学与管理,2004,25(9):3-5.
    [20]Hou X L,Wu Y N,Shen J Z.Multiresidue analysis of avermectins in bovine liver and muscle by liquid chromatography-fluorescence detector[J].Chromatographia,2007,65:77-80.
    [21]Wang H,Wang Z J,Liu S Y,et al.Rapid method for multiresidue determination of avermectins in bovine liver using high-performance liquid chromatography with fluorescence detection[J].Bulletin of enviromental Contamination and Toxicology,2009,82(4):395-398.
    [22]谢显传,张少华,王冬生等.柱前衍生高效液相色谱法测定果蔬产品阿维菌素及其有毒代谢物的残留量[J].中国农业科学,2005,38(11):2254-2260.
    [23]何继红,申屠芬琴.阿维菌素类药物残留分析技术研究进展[J].动物医学进展,2009,30(5):98-100.
    [24]谢显传,张少华,王冬生等.阿维菌素荧光衍生反应影响因子的研究[J].分析化学,2006,34(12):1745-1748.
    [25]Payne L D,Wehner T A,Wehner T A.Determination of abamectin and/or ivermectin in cattle feces at low parts per billion levels using HPLC with flourescence detection[J].Journal of Agricultural and Food Chemistry,1995,43(5):1233-1237.
    [26]Schmidt D J,Clarkson C E,Swanson T A,et al.Monoclonal antibodies for immunoassay of avermectins[J].Journal of Agricultural and Food Chemistry,1990,38:1763-1770.
    [27]Shi W M,He J H,Jiang H Y,et al.Determination of multiresidue of avermectins in bovine liver by an indirect competitive ELISA[J].Journal of Agricultural and Food Chemistry,2006,54:6143-6146.
    [28]赵卫东,郑文杰,贺艳等.酶联免疫法检测动物源性产品中阿维菌素残留[J].食品研究与开发,2009,30(4):127-130.
    [29]李俊锁,钱传范.牛组织中阿维菌素残留的ELISA研究[J].畜牧兽医学报,1997,28(1):77-83.
    [30]Li J S,Qian C F.Determination of avermectin B1 in biological samples by immunoaffinity column cleanup and liquid chromatography[J].Journal of AOAC International,1996,79:1062-1067.
    [31]王海荣张兰桐.液-质联用中大气压电离接口技术及其在药物分析中的应用[J].中国医院药学杂志,2006,26(9):1137-1139.
    [32]赵东豪,贺利民,聂建荣等.猪肉组织中阿维菌素类药物残留的高效液相色谱-串联质谱法测定[J].分析测试学报,2008,27(8):862-865.
    [33]Krogh K A,Bjorklund E,Loeffler D,et al.Development of an analytical method to determine avermectins in water,sediments and soils using liquid chromatography-tandem mass spectrometry[J].Journal of Chromatography A.2008,1211:60-69.
    [34]江腾辉,菊荣,徐汉虹.固相萃取技术在农药残留分析中的应用[J].农药,2004,43(10):463-465.
    [35]默涛.农药残留量分析方法[M].上海科学技术出版社,1992:249-256.
    [36]Fritz J S,Dumont P J,Schmidt L W.Methods and materials for solid-phase extraction[J].J Chromatography A,1995,691(1):133-140.
    [37]夏阳,刘俊亭.固相微萃取法(SPME)在农药残留分析中的应用[J].农药,2002,41(3):15-16.
    [38]刘咏梅,王志华,储晓刚.凝胶渗透色谱技术在农药残留分析中的应用[J].分析测试学报,2005,24(2):123-127.
    [39]周相娟,李伟,许华.凝胶渗透色谱技术及其在食品安全检测方面的应用[J].现代仪器,2009,1:1-4.
    [40]戴建昌,张兴,段苓.超临界萃取技术在农药残留分析中的应用研究进展[J].农药学学报,2002,4(3):6-13.
    [41]王多加,周向阳.超临界萃取技术及其在农业上的应用[J].广东农业科学,1997,3:40-42.
    [42]蒋兴东,陈玉飞,涂健等.免疫亲和色谱在动物源性食品兽药残留分析检测中的应用[J].家禽科学,2007,12:35-38.
    [43]李俊锁.兽药残留分析研究进展[J].中国农业科学,1997,30(5):81-87.
    [44]石杰,龚炜,程玉山等.基质固相分散技术在农药残留分析中的应用[J].化学通报,2007,70(6): 467-470.
    [45]田靖,张惟才.阿维菌素的生物合成及代谢工程研究进展[J].生物技术通讯,2006,17(3):447-450.
    [46]WU Z R,LI J S,ZHU L L,et al.Multi-residue analysis of avermectins in swine liver by immunoaffinity extraction and liquid chromatography-mass spectrometry[J].Journal of Chromatography B,2001,755:361-366.
    [47]张睿,王海涛,姚燕林等.柱前衍生高效液相色谱法检测动物源性食品中4种阿维菌素类药物残留[J].检验检疫科学,2008,18(4):30-32.
    [48]张少华,皇甫伟国,何新华等.高效液相色谱法检测葱中阿维菌素的残留量[J].农药,2006,45(4):263-264.
    [49]张启迪,丁双阳,邹明等.鱼肌肉组织中阿维菌素残留的高效液相色谱法测定[J].中国兽医杂志,2008,44(8):88-89.
    [50]高仁君,陈隆智,郑明奇等.科学理解农药最大残留限量的概念.中国农学通报,2005,21(7):353-358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700