水钠锰矿吸附Pb~(2+)微观机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铅作为重金属污染元素,在环境中的行为和归趋一直是人们关注的重点。研究铅与土壤常见组分——水钠锰矿的作用机理,对于阐明铅在土壤、沉积物及水体中的形态与化学行为,以及对铅污染土壤的修复和水体的净化等有着重要意义。本论文以合成的酸性和碱性系列不同锰氧化度水钠锰矿为材料,采用X-射线衍射(XRD)、透射电镜(TEM)、高分辨透射电镜(HRTEM)、红外光谱(IR)、光电子能谱(XPS)、X射线吸收精细结构光谱(XAFS)等技术,通过研究不同锰氧化度水钠锰矿表面的Mn和O化学状态、(110)面网间距、Pb~(2+)吸附量、吸附过程中释放的Mn~(2+)、H~+和K~+的变化,以及水钠锰矿用Na_4P_2O_7、Zn~(2+)或Mn~(2+)溶液进行化学处理前后,其锰氧化度、(110)面网间距、Pb~(2+)吸附量、吸附过程中阳离子释放量的变化,并结合Pb~(2+)在不同锰氧化度水钠锰矿的微观吸附形态等,探讨了水钠锰矿亚结构变化对Pb~(2+)吸附量的影响。取得的主要结果有:
     1、同系列的不同锰氧化度水钠锰矿具有相似的晶体形貌。它们的锰氧化度与其d_(110)面网间距呈极显著的负相关,与Pb~(2+)的最大吸附量呈极显著的正相关,供试水钠锰矿锰氧化度的高低表观上反映了结构中八面体空位数量的多少,水钠锰矿随着锰氧化度的提高,导致其结构中的八面体空位数增多,对Pb~(2+)的吸附容量增大,八面体空位数量对Pb~(2+)吸附量的大小起着非常重要的作用。当八面体空位位点增多时,Pb~(2+)吸附量增大,导致样品部分表面出现两个Pb~(2+)离子同时配位吸附于一个空位单面位点区域的可能性增大。Pb~(2+)的吸附量与吸附过程中Mn~(2+)、H~+和K~+的释放量之和呈极显著的正相关,释放的Mn~(2+)、H~+和K~+主要来自于水钠锰矿结构中八面体空位处吸附的相应阳离子。吸附前Mn~(2+/3+)与H~+、K~+占据水钠锰矿结构中八面体空位上下方位点的相对多少受水钠锰矿的锰氧化度高低的影响,锰氧化度低时,八面体空位上下方位点吸附Mn~(2+/3+)较多,吸附的H~+、K~+则较少,反之亦然。
     2、X-射线光电子能谱研究表明,在高真空测试环境下,不同锰氧化度水钠锰矿结构中,Mn存在饱和配位和不饱和配位两种化学状态,其相对含量分别为82.79%-91.69%和8.31%-17.21%,锰氧化度高的水钠锰矿,八面体空位上结合的-OH较多,由于晶粒间的团聚作用而导致不饱和配位Mn的含量相对减少。在不同锰氧化度水钠锰矿结构中,O以晶格氧、羟基氧和水分子中氧三种化学状态存在,其相对含量分别为50.44%-65.05%、24.90%-39.27%和8.07%-12.63%,锰氧化度高的水钠锰矿,八面体空位上结合的-OH较多,从而结构中羟基氧的相对含量增加。初步探讨了在沿(110)方向上含Mn~(3+)的MnO_6八面体链中空位的分布,并建立水钠锰矿结构模型,为其亚结构的深入研究提供理论依据。
     3、红外光谱研究表明,水钠锰矿的899-920 cm~(-1)红外吸收带源于八面体空位处OH的弯曲振动,随着水钠锰矿锰氧化度的降低,空位处与OH配位的Mn~(4+)被Mn~(3+)替代的数量增多,OH弯曲振动频率向低频移动;1059-1070、1115-1124和1165-1171 cm~(-1)吸收带归属于层内Mn~(3+)-OH的弯曲振动,并随着水钠锰矿锰氧化度的降低而逐渐增强。对于990和1023-1027 cm~(-1)两吸收带,归属于层间Mn~(3+) -OH的弯曲振动,当水钠锰矿吸附Pb~(2+)后,部分层内Mn~(3+)可迁移至层间,使得990 cm~(-1)吸收带增强并向高频移动;564-567 cm~(-1)吸收带源于空位处Mn-O的红外吸收,当空位上下方吸附重金属Pb~(2+)或Mn~(3+)后,由于振动耦合效应,该吸收带发生分裂;610-626和638-659 cm~(-1)吸收带的间距可反映水钠锰矿结构中Mn~(3+)分布的对称性,当水钠锰矿吸附Pb~(2+)后,由于Pb~(2+)在结构中的不规则分布,降低了Mn~(3+)分布的对称性,致使两吸收带的间距增大。
     4、锰平均氧化度为3.67的酸性水钠锰矿经不同pH焦磷酸钠溶液处理后,层结构边缘的Mn~(3+)和部分层间Mn~(3+)被络合出,处理后锰平均氧化度有所增加。处理前后水钠锰矿的晶体结构类型没有发生改变,但是处理后矿物结构中位于八面体空位上下方的Mn~(3+)减少,H~+增多,可吸附Pb~(2+)的空位位点数量增加,对Pb~(2+)的最大吸附量增大。处理前酸性水钠锰矿结构中的Mn~(3+)可能约有1/6的Mn~(3+)位于层结构边缘区,另外约5/6的Mn~(3+)位于层间和层结构非边缘区。
     5、水钠锰矿经Zn~(2+)和Mn~(2+)分别处理后,矿物类型未改变,并具有相似的晶体形貌。Zn~(2+)溶液处理水钠锰矿时,随着Zn~(2+)浓度的增大,水钠锰矿的锰平均氧化度和d_(110)面网间距不变,结构中空位数量也未改变,Zn~(2+)通过占据部分吸附点位,导致其对Pb~(2+)的最大吸附量从3190 mmol/kg减少为2030 mmol/kg。而Mn~(2+)溶液处理水钠锰矿时,大多数Mn~(2+)被氧化为Mn~(3+),这些Mn~(3+)部分位于八面体空位上下方的吸附位点,部分进入八面体空位中。随着加入的Mn~(2+)浓度增大,Mn~(2+)被氧化为Mn~(3+)而进入八面体空位的数量增多,锰平均氧化度减小,d_(110)面网间距从0.1416 nm增大至0.14196 nm,结构中空位数量减少,对Pb~(2+)的最大吸附量从3190 mmol/kg减少至1332 mmol/kg。研究结果进一步表明,水钠锰矿结构中的八面体空位数量对Pb~(2+)的吸附量的大小起着非常重要的作用。
     6、X射线吸收精细结构光谱研究表明,在吸附Pb~(2+)后的水钠锰矿中,Pb~(2+)邻近存在两个Pb-O配位壳层和两个Pb-Mn配位壳层,对于相同锰氧化度的样品,当Pb~(2+)吸附量低时,两个Pb-O配位壳层中,Pb~(2+)的配位数分别为2.7、9.1,与Pb~(2+)的距离分别为0.226、0.397 nm;两个Pb-Mn配位壳层中,Pb~(2+)的配位数分别为2.8、6.6,与Pb~(2+)的距离分别为0.356、0.375 nm;当Pb~(2+)的吸附量增加时,其配位环境发生畸变,使得Pb-O配位壳层和Pb-Mn配位壳层中,Pb~(2+)的配位数分别减少为1.5、3.4和1.2、3.6,与Pb~(2+)的间距分别增大为0.227、0.398 nm和0.357、0.376 nm。Pb~(2+)在不同锰氧化度水钠锰矿表面的吸附形态基本相同,均存在三种吸附形态,一是与水钠锰矿层结构a轴方向层边面形成单齿共角配合物,二是与结构b轴方向层边面形成双齿共角配合物,三是与八面体空位形成三齿共角配合物。随着水钠锰矿的锰氧化度增大,Pb~(2+)吸附量增加,Pb~(2+)在结构中的分布密集,导致其配位环境发生畸变,使得Pb-O配位壳层和Pb-Mn配位壳层中Pb~(2+)的配位数减少,与Pb~(2+)的间距增大。
Lead is an environmental heavy metal that has always attracted extensive attention.An exploration of the mechanisms that determine lead and soil component interactions is crucial to understand the fate of lead in soils,sediments,and water.A greater understanding of Pb interaction mechanisms could also aid in water purification and lead-contaminated soil remediation efforts.In this study,two series of birnessites with ranges in Mn average oxidation state(AOS) were synthesized.The chemistry states of Mn and O on the surface of birnessites,the relation between d_(110)-spacing,maximum Pb~(2+) adsorption and the AOS in the birnessites before and after treatments with Na_4P_2O_7,Zn~(2+) or Mn~(2+) solution,characterization of Mn~(2+),H~+ and K~+ release from birnessites during Pb~(2+) adsorption,and complex configuration of Pb~(2+) adsorbed on the birnessites with different AOS were analyzed by XRD,TEM,HRTEM,IR,XPS,XAFS,BET.The effect of variance of birnessite substructure on the amount of Pb~(2+) adsorbed was discussed.
     1.One birnessite series was prepared in acidic media(49.6%to 53.6%Mn) and the other in alkaline media(50.0%to 56.2%Mn).The correlations of synthetic birnessite Pb~(2+) adsorption capacity to d(110)-interplanar spacing,AOS by titration,and release of Mn~(2+), H~+,and K~+ during Pb~(2+) adsorption were investigated.Maximum Pb~(2+) adsorption to the birnessites synthesized in acidic media ranged from 1320 to 2457 mmol/kg with AOS values that ranged from 3.67 to 3.92.For birnessites synthesized in alkaline media, maximum Pb~(2+) adsorption ranged from 524 to 1814 mmol/kg and AOS values ranged from 3.49 to 3.89.Birnessite AOS values and Pb~(2+) adsorption increased as Mn content decreased.Maximum Pb~(2+) adsorption to the synthetic birnessites calculated from a Langmuir fit of the Pb adsorption data was linearly related to AOS.Birnessite AOS was positively correlated to Pb~(2+) adsorption,but negatively correlated to d(110) spacing. Vacant Mn structural sites in birnessite increased with AOS and resulted in greater Pb~(2+) adsorption,leading to the increase of the total amount of Mn~(2+),H~+ and K~+ released,and the increased likelihood for two Pb~(2+) adsorbed in the region of one side of a vacant site. Birnessite AOS values apparently reflect the quantity of vacant sites that largely account for Pb~(2+) adsorption.Therefore,birnessite Pb~(2+) adsorption capacity was largely determined by Mn site vacancies,from which Mn~(2+),H~+,and K~+ released during adsorption were mostly derived.
     2.The investigations on birnessites with different AOS by XPS indicated that there were two chemistry states of Mn,staturated and undersaturated coordinately Mn,whose relative contents were 83.79%-91.69%and 8.31%-17.21%in the structure,respectively. -OH located at vacant Mn octahedral site increased with the increase of AOS in birnessite accounting for the aggregation of crystal grains,which led to the decrease in relative content of undersaturated coordinately Mn.There were three chemistry states of oxygen, lattice oxygen,hydroxide and H_2O,whose relative contents were 50.44%-65.05%, 24.90%-39.27%and 8.07%-12.63%in the structure,respectively.-OH located at vacant Mn octahedral site increased with the increase of AOS in birnessite,which resulted in the increase in relative content of chemistry state of hydroxide in the structure.Structure models of birnessites were presumed,and the distribution of vacant sites in the Mn~(3+)-rich MnO_6 rows was discussed,which provided fundamental for further study on the substructure of birnessite.
     3.The structural features of birnessites with different Mn average oxidation state(AOS) before and after Pb~(2+) adsorption were characterized by fourier transform infrared(FTIR), and the adsorbent band centres of FTIR were determined by second derivatives of these spectra.The band at 899-920 cm~(-1) was assigned to the bending vibration of -OH located at vacant Mn octahedral sites.The lower AOS in birnessite,the more Mn~(4+) coordinated to -OH located at vacant Mn octahedral sites displaced by Mn~(3+),which led to the position of -OH bending vibration shifting to a relative low wave number.The bands at 1059-1070, 1115-1124 and 1165-1171 cm~(-1) were assigned to the vibration of Mn~(3+)-OH located in the layer,and the intensity of these bands increased with the decrease of AOS in birnessite. The bands at 990 and 1023-1027 cm~(-1) were assigned to the vibration of Mn~(3+)-OH located in the interlayer.A partial of Mn~(3+) in the layer migrated to the interlayer during the Pb~(2+) adsorption inducing the intensity of the band at 990 cm~(-1) to increase and its position shifting to a relative high wave number.The band at 564-567cm~(-1) was assigned to the vibration of Mn-O located at vacant Mn octahedral sites,and would split due to the effect of coupling on vibration when Pb~(2+) or Mn~(3+) was adsorbed above or below vacant sites. The space between the bands at 610-626 and 638-659 cm~(-1) reflected the symmetry of Mn~(3+) distribution in the birnessite,and increased after Pb~(2+) was adsorbed on the birnessite.
     4.Acid birnessite was treated with Na_4P_2O_7 at pH 2,4,5 respectively.After the treatments, the species and content of manganese ion in the complex solution,and the variation of average oxidation state(AOS) of Mn in birnessite,and the amount of Pb~(2+) adsorbed and Mn~(2+),H~+ released during the Pb adsorption were investigated.The results indicated that after acid birnessite(AOS=3.67) was treated by Na_4P_2O_7 at different pH,Mn~(3+) located in the layer-structure-edge and partial of Mn~(3+) located in the interlayer were released to the solution through complexation with Na_4P_2O_7.The Mn AOS of birnessites after treatments were increased to 3.78(pH 2),3.78(pH 4),3.82(pH 5) respectively.While the crystal structure of birnessite didn't change after treatments,the amount of Mn~(3+) located above or below vacant sites decreased,and the amount of H~+ located above or below vacant sites went up in the structure.The amount of vacant sites responsible for Pb~(2+) adsorption increased,which led to the increase of the maximum amount of Pb~(2+) adsorbed. Additional,the distribution of Mn~(3+) in the strucuture of acid birnessite was deduced. About one sixths of Mn~(3+) located in layer-structure-edge,and five sixths of Mn~(3+) located in the interlayer and non-layer-structure-edge.
     5.The association of vacant Mn octahedral sites with Pb~(2+) adsorption was deeply elucidated from the variances of AOS,d(110)-interplanar spacing,maximum Pb~(2+) adsorption,maximum Zn~(2+) and Mn~(2+) release during the Pb~(2+) adsorption for the birnessites before and after treatments.The AOS and d(110)-interplanar spacing of the birnessites remained almost unchanged as the concentration of the treating Zn~(2+) increased,indicative of unchanged amount of vacant Mn octahedral sites.Whereas maximum Pb~(2+) adsorption decreased from 3190 to 2030 mmol/kg due to occupancy of the treating Zn~(2+) on adsorption sites.However,the AOS of the Mn~(2+)-treated birnessites decreased,and most of the treating Mn~(2+) were oxidized to Mn~(3+) and located below or above vacant Mn octahedral sites or migrated into vacant Mn octahedral sites,when the concentration of the treating Mn~(2+) increased from 1 to 2.4 mM.The d(110)-interplanar spacings of the treated birnessites were found to increase from 0.14160 to 0.14196 nm,indicative of the decrease in the amount of vacant Mn octahedral sites,mainly due to the increase of the produced Mn~(3+) migrating into vacant Mn octahedral sites.Moreover,the maximum Pb~(2+) adsorption of the Mn~(2+)-treated birnessites was observed to decrease from 3190 to 1332 mmol/kg.The results suggest that birnesstie Pb~(2+) adsorption capacity is largely determined by the number of Mn site vacancies.
     6.The investigations on birnessites with Pb~(2+) by XAFS indicated that two Pb-O and two Pb-Mn shells were found in the birnessites after Pb~(2+) adsorption.For the same birnessite, at low amount of adsorption,Pb~(2+) coordination numbers were 2.7 and 9.1,respectively,in the two Pb-O shells at distances of 0.226 and 0.397 nm,respectively,and Pb~(2+) coordination numbers were 2.8 and 6.6,respectively,in the two Pb-Mn shells at distances of 0.356 and 0.375 nm,respectively.At high amount of adsorption,in the two Pb-O shells, Pb~(2+) coordination numbers decreased to 1.5 and 3.4,respectively,the distances between Pb and O increased to 0.227 and 0.398 nm,respectively,and in the two Pb-Mn shells, Pb~(2+) coordination numbers decreased to 1.2 and 3.6,respectively,the distances between Pb and Mn increased to 0.357 and 0.376 nm,respectively on account of the distortion of the Pb~(2+) coordination environment.The same three bonding mechanisms in Pb~(2+) adsorption on the bimessites with different AOS:a single-corner-sharing complex on particle edges along a axis,a double-corner-sharing complex on particle edges along b axis,and a triple-corner-sharing complex in the interlayer above or below vacant sites. The amount of Pb~(2+) adsorbed increased with the increase in AOS of birnessite,which led to the decrease of Pb~(2+) coordination numbers and the increase of the distances between Pb and O in Pb-O and Pb-Mn shells due to the distortion of the Pb~(2+) coordination environment.
引文
1.樊耀亭,吕秉玲,徐杰,蒋永贵,张琳萍.水溶液中二氧化锰对铀的吸附环境.科学学报,1999,19(1):42-46.
    2.冯拉俊,刘毅辉,雷阿利.纳米颗粒团聚的控制.微纳电子技术,2003,7-8:536-540.
    3.黄丽,刘凡,谭文峰,王贻俊,陆泗进.华中地区几种土壤铁锰胶膜及其基质中某些元素的地球化学特点.地球化学,2002,31(5):487-494.
    4.姜洪泉,鹏王,线恒泽.低量Yb~(3+)掺杂的TiO_2复合纳米粉体的制备及光催化活性.化学学报,2006,64(2):145-150.
    5.李学垣.土壤化学.北京:高等教育出版社,2001.
    6.刘凡,谭文峰,刘桂秋,李学垣,贺纪正.几种土壤中铁锰结核的重金属离子吸附与锰矿物类型.土壤学报,2002,39(5):699-706.
    7.刘季花,林学辉,梁宏锋,崔汝勇,李杨.东太平洋海底结核及相关沉积物的稀土元素地球化学特征.海洋学报,1999,21(2):134-141.
    8.刘良梧,张民.变性土铁锰氧化物结核与钙质结核的元素富集及其环境意义.土壤,1995,27(5):262-268.
    9.陆泗进,谭文峰,刘凡,冯雄汉.一种改进的盐滴定法测定氧化锰矿物的电荷零点.土壤学报,2006,43(5):756-763.
    10.潘根兴.淮北土壤铁锰结核中过渡金属元素的富集及其环境地球化学意义.科学通报,1989,34(19):1505-1507.
    11.冉勇,傅家谟,Gilkes R J.氧化锰对金(Ⅰ)和金(Ⅱ)络和物的吸附.中国科学,1998,28(6):523-531.
    12.冉勇,刘铮.土壤和氧化物对稀土元素的专性吸附及其机理.科学通报,1992,18:1705-1709.
    13.谭文峰,李永华,刘凡,李学垣.湖北省几种土壤铁锰结核中的锰矿物类型.华中农业大学学报,1998,28:42-47.
    14.谭文峰,刘凡,李永华,贺纪正,李学垣.土壤铁锰结核中锰矿物类型鉴定的探讨.矿物学报,2000a,20:63-67.
    15.谭文峰,刘凡,李永华,贺纪正,李学垣.我国几种土壤铁锰结核中的锰矿物类型.土壤学报,2000b,37(2):192-201.
    16.谭文峰,刘凡,贺纪正,李学垣.淋溶土铁锰结核中锰矿物的鉴定方法及性质的研究.见:黄巧云主编.《迈向二十一世纪的土壤与植物营养》.北京:中国农业出版社,1997:102-106.126.
    17.吴巧玲,孙尧俊,黄月芳,费伦,龙英才.镁离子型Birnessite的合成和表征.分析测试学报,1998,17(2):20-23.
    18.谢正苗,朱祖祥,袁可能,黄昌勇.土壤中二氧化锰对As(Ⅲ)的氧化及其意义.环境化 学,1989,8(2):1-6.
    19.熊毅.土壤胶体(第一册).北京:科学出版社,1983.
    20.熊毅.土壤胶体(第二册).北京:科学出版社,1985.
    21.熊毅,陈家坊主编.土壤胶体(第三册).北京:科学出版社,1990.
    22.于天仁,季国亮,丁昌璞主编.可变电荷土壤的电化学.北京:科学出版社,1996.
    23.Anderson P R,Christensen T H.Distribution coefficients of cadmium cobalt,nickel,and zinc in soils.J Soil Sci,1988,39:15-22.
    24.Appelo C A J,Postma D.A consistent model for surface complexation on birnessite(-MnO_2) and its application to a column experiment.Geochim Cosmochim Acta,1999,63(19-20):3039-3048.
    25.Bailey S W.The Status of Clay Mineral Structures.Clays Clay Miner,1966,14:1-23.
    26.Balisterieri L S,Murray J W.The surface chemistry of δ-MnO2 in major ion seawater.Geochim Cosmochim Acta,1982,46:1041-1052.
    27.Banerjee D,Nesbitt H W.Oxidation of aqueous Cr(Ⅲ) at birnessite surfaces:constraints on reaction mechanism.Geochim Cosmochim Acta,1999,63(11-12):1671-1687.
    28.Banerjee D,Nesbitt H W.XPS study of dissolution of birnessite by humate with constraints on reaction mechanism.Geochim Cosmochim Acta,2001,65(11):1703-1714.
    29.Bargar J R,Brown G E,Parks G A.Surface complexation of Pb(Ⅱ) at oxide-water interfaces:I.XAFS and bond-valence determination of mononuclear and polynuclear Pb(Ⅱ) sorption products on aluminum oxides Geochim Cosmochim Acta,1997,61(13):2617-2637.
    30.Besson G,Drits V A.Refined relationships between chemical composition of dioctahedral fine-grained micaceous minerals and their infrared spectra within the OH stretching region;Part Ⅱ,The main factors affecting OH vibrations and quantitative analysis.Clays Clay Miner,1997,45(2):170-183.
    31.Bradbury M H,Baeyens B.Modelling the sorption of Mn(Ⅱ),Co(Ⅱ),Ni(Ⅱ),Zn(Ⅱ),Cd(Ⅱ),Eu(Ⅲ),Am(Ⅲ),Sn(Ⅳ),Th(Ⅳ),Np(Ⅴ) and U(Ⅵ) on montmorillonite:Linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides.Geochim Cosmochim Acta,2005,69(4):875-892.
    32.Brown G.Associated minerals.In:Brindley G W,Brown G eds.,Crystal structures of clay minerals and their X-ray identification.London,UK:London Press,1984:361-410.
    33.Burns R G.The uptake of cobalt into ferromanganese nodules,soils,and synthetic manganese(Ⅳ)oxides.Geochim Cosmochim Acta,1976,40(1):95-102.
    34.Cabelli D E,Bielski B H J.Pulse radiolysis study of the kinetics and mechanisms of the reactions between manganese(Ⅱ) complexes and perhydroxyl(HO_2)/superoxide(O~(2-)) radicals.1.Sulfate,formate and pyrophosphate complexes.J Phys Chem,1984,88(14):3111-3115.
    35.Cai J,Liu J,Suib S L.Preparative parameters and framework dopant effects in the synthesis of layer-structure birnessite by air oxidation. Chetn Mater, 2002, 14: 2071-2077.
    
    36. Chahi A, Petit S, Decarreau A. Infrared evidence of dioctahedral-trioctahedral site occupancy in palygorskite. Clays Clay Miner, 2002, 50(3): 306-313.
    
    37. Chen C C, Golden D C, Dixon J B. Transformation of synthetic birnessite to cryptomelane: an electron microscopy study. Clays Clay Miner, 1986, 34: 511-520.
    
    38. Chen Y X, Chen Y Y, Lin Q, Hu Z Q, Hu H, Wu J Y. Factors affecting Cr(III) oxidation by manganese oxides. Pedosphere, 1997,7(2): 185-192.
    
    39. Chukhrov F V, Sakharov B V, Gorshkov A I. The structure of birnessite from the Pacific Ocean. Akademiya Nauk SSSR Izvestiya, Seriya Geologicheskaya, 1985, 8: 66-73.
    
    40. Driehaus W, Seith R, Jekel M. Oxidation of arsenate(III) with manganese oxides in water treatment. Water Res, 1995, 29: 297-305.
    
    41. Drits V A, Lanson B, Bougerol-Chaillout C, Gorshkov A I, Manceau A. Structure of heavy-metal sorbed birnessite: Part 2 Results from electron diffraction. Am Mineral, 2002, 87: 1646-1661.
    
    42. Drits V A, Lanson B, Gorskhov A I, Manceau A. Sub- and superstructure of four-layer Ca-exchanged birnessite. Am Mineral, 1998, 83: 97-118.
    
    43. Drits V A, Silvester E, Gorshkov A I, Manceau A. Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite; I, Results from X-ray diffraction and selected-area electron diffraction. Am Mineral, 1997, 82(9-10): 946-961.
    
    44. Fendorf S E, Zasoski R J. Chromium(III) oxidation by .delta.-manganese oxide (MnO_2). 1. Characterization. Environmental Science, Technology, 1992, 26(1): 79-85.
    
    45. Feng X H, Liu F, Tan W F, Liu X W. Synthesis of birnessite from the oxidation of Mn~(2+) by O_2 in alkali medium: Effects of synthesis conditions. Clays Clay Miner, 2004, 52(2): 240-250.
    
    46. Feng X H, Zhai L M, Tan W F, Liu F, He J Z. Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals. Environmental Pollution, 2007, 147(2): 366-373.
    
    47. Foster A L, Brown G E, Parks G A. X-ray absorption fine structure study of As(V) and Se(IV) sorption complexes on hydrous Mn oxides. Geochim Cosmochim Acta, 2003, 67: 1937-1953.
    
    48. Fu G, Allen H E, Cowan C E. Adsorption of cadmium and copper by manganese dioxide. Soil Sci, 1991, 152: 72-81.
    
    49. Gadde R R, Laitinen H A. Studies of heavy metal adsorption by hydrous iron and manganese oxides. Anal Chem, 1974,46: 2022-2026.
    
    50. Gaillot A-C, Drits V A, Manceau A, Lanson B. Structure of the synthetic K-rich phyllomanganate birnessite obtained by high-temperature decomposition of KMnO_4 Substructures of K-rich birnessite from 1000°C experiment. Microporous and Mesoporous Materials, 2007, 98(1-3): 267-282.
    
    51. Gaillot A C, Flot D, Drits V A, Manceau A, Burghammer M, Lanson B. Structure of synthetic K-rich bimessite obtained by high-temperature decomposition of KMnO_4. I. Two-layer polytype from 800℃ experiment. Chem Mater, 2003, 15(24): 4666-4678.
    
    52. Giles C H, MacEwan T H, Nakhwa S N, Smith D. Studies in adsorption Part XI. A system of classification of solution adsorption isotherms and its use in diagnosis of adsorption mechanisms and in measurement of specific surface area of solids. Journal of Chemical Society, 1960, 3: 3973-3993.
    
    53. Gilkes R J. Geochemistry and mineralogy of manganese in soils. In: Graham R D, Hannam K J eds., Manganese in Soils and Plants. Netherlands: Kluwer Academic Publishers, 1988: 23-35.
    
    54. Giovanoli R. On natural and synthetic manganese nodules. In: Varentsov I M, Grasselly G Eds., Geology and Geochemistry of manganese, Vol. 1. Budapest: Hungarian Academy of Science, 1980:251-253.
    
    55. Giovanoli R, Stahli E, Feitknecht W U. Oxidehydroxide des vierwertigen Mangans mit Schichtengitter. 1. Natriummangan( II ,III)- manganat(IV). Helv Chim Acta, 1970a, 53: 209-220.
    
    56. Giovanoli R, Stahli E, Feitknecht W U. Oxidehydroxide des vierwertigen Mangans mit Schichtengitter. 2. Mangan(III)- manganat(IV). Helv Chim Acta, 1970b, 53: 453-464.
    
    57. Golden D C, Chen C C, Dixon J B. Transformation of bimessite to buserite, todorokite, and manganite under mild hydrothermal treatment. Clays Clay Miner, 1987, 35(4): 271-280.
    
    58. Golden D C, Dixon J B, Chen C C. Ion exchange, thermal transformations, and oxidizing properties of bimessite. Clays Clay Miner, 1986, 34: 511-520.
    
    59. Grosvenor A P, Kobe B A, Biesinger M C, Mclntyre N S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and interface analysis, 2004, 36: 1564-1574.
    
    60. Healy T W, Herring A P, Fuerstenau D W. The effect of crystal structure on the surface properties of a series of manganese dioxides. J Colloid Interf Sci, 1966, 21: 435-444.
    
    61. Hem J D. Redox processes at surfaces of manganese oxide and their effects on aqueous metal ions. Chem Geol, 1978,21: 199-218.
    
    62. Hem J D. Rates of manganese oxidation in aqueous systems. Geochim Cosmochim Acta, 1981, 45: 1369-1374.
    
    63. Isaure M P, Manceau A, Geoffroy N, Laboudigue A, Tamura N, Marcus M A. Zinc mobility and speciation in soil covered by contaminated dredged sediment using micrometer-scale and bulk-averaging X-ray fluorescence, absorption and diffraction techniques. Geochim Cosmochim Acta, 2005, 69: 1173-1198.
    
    64. Jones L H P, Milne A A. Bimessite a new manganese oxide mineral from Aberdeenshire, Scotland. Miner Mag, 1956, 31: 283-288.
    
    65. Julien C M, Massot M, Poinsignon C. Lattice vibrations of manganese oxides: Part I. Periodic structures. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004, 60(3): 689-700.
    
    66. Kang L, Zhang M, Liu Z-H, Ooi K. IR spectra of manganese oxides with either layered or tunnel structures. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 67(3-4): 864-869.
    
    67. Kijima N, Yasuda H, Sato T, Yoshimura Y. Preparation and characterization of open tunnel oxide [alpha]-MnO2 precipitated by ozone oxidation. Journal of Solid State Chemistry, 2001, 159(1):94-102.
    
    68. Kim J B, Dixon J B, Chusuei C C, Deng Y J. Oxidation of Chromium(III) to (VI) by Manganese Oxides. Soil Sci Soc Am J, 2002, 66: 306-315.
    
    69. Kim J G, Dixon J B, Chusuei C C, Deng Y. Oxidation of chromium(III) to (VI) by manganese oxides. Soil Sci Soc Am J, 2002, 66(1): 306-315.
    
    70. Kinniburgh D G General purpose adsorption isotherms. Environ Sci Technol, 1986, 20(9): 895-904.
    
    71. Kostka J E, Luther G W, Nealson K H. Chemical and biological reduction of Mn (III)-pyrophosphate complexes: Potential importance of dissolved Mn(III) as an environmental oxidant. Geochim Cosmochim Acta, 1995, 59(5): 885-894.
    
    72. Krauskopf K B. Factors controlling the concentrations of 13 rare metal in sea-water. Geochim Cosmochim Acta, 1956, 9: 1-32.
    
    73. Krauskopf K B. Separation of manganese from iron in sedimentary processes. Geochim Cosmochim Acta, 1957, 12: 61-84.
    
    74. Kuma K, Usui A, Paplawsky W, Gedulin B, Arrhenius G. Crystal structures of synthetic 7 A and 10 A manganates substituted by mono- and divalent cations. Miner Mag, 1994,58: 425-477.
    
    75. Lanson B, Drits V A, Feng Q, Manceau A. Structure of synthetic Na-birnessite: Evidence for a triclinic one-layer unit cell. Am Mineral, 2002a, 87(11-12): 1662-1671.
    
    76. Lanson B, Drits V A, Gaillot A-C, Silvester E, Plancon A, Manceau A. Structure of heavy-metal sorbed birnessite: Part 1. Results from X-ray diffraction. Am Mineral, 2002b, 87(11-12): 1631-1645.
    
    77. Lanson B, Drits V A, Silvester E, Manceau A. Structure of H-exchanged hexagonal birnessite and its mechanism of formation from Na-rich monoclinic buserite at low pH. Am Mineral, 2000, 85(5-6): 826-838.
    
    78. Loganathan P, Burau R G. Sorption of heavy metals by a hydrous manganese oxide. Geochim Cosmochim Acta, 1973, 37: 1277-1293.
    
    79. Loganathan P, Burau R G, Fuerstenau D W. Influence of pH on the sorption of Co~(2+), Zn~(2+) and Ca~(2+) by a hydrous manganese oxide. Soil Sci Soc Am J, 1977,41: 57-62.
    80. Luo J, Suib S L. Preparative parameters, magnesium effects, and anion effects in the crystallization of birnessites. J Phys Chem B, 1997, 101: 10403-10413.
    
    81. Manceau A, Charlet L. X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface : I. Molecular mechanism of Cr(III) oxidation on Mn oxides. Journal of Colloid and Interface Science, 1992, 148(2): 425-442.
    
    82. Manceau A, Drits V A, Silvester E, Bartoli C, Lanson B. Structural mechanism of Co (super 2+) oxidation by the phyllomanganate buserite. Am Mineral, 1997, 82(11-12): 1150-1175.
    
    83. Manceau A, Gorskhov A I, Drits V A. Structural chemistry of Mn, Fe, Co, and Ni in Mn hydrous oxides. II. Information from EXAFS spectroscopy, electron and X-ray diffraction. Am Mineral, 1992,77: 1144-1157.
    
    84. Manceau A, Lanson B, Drits V A. Structure of heavy metal sorbed bimessite. Part III: Results from powder and polarized extended X-ray absorption fine structure spectroscopy. Geochim Cosmochim Acta, 2002, 66(15): 2639-2663.
    
    85. Marcus M A, Manceau A, Kersten M. Mn, Fe, Zn and As speciation in a fast-growing ferromanganese marine nodule. Geochim Cosmochim Acta, 2004, 68: 3125-3136.
    
    86. Martinez-Alonso S, Rustad J R, Goetz A F H. Ab initio quantum mechanical modeling of infrared vibrational frequencies of the OH group in dioctahedral phyllosilicates. Part II: Main physical factors governing the OH vibrations. Am Mineral, 2002, 87(8-9): 1224-1234.
    
    87. Matocha C J, Elzinga E J, Sparks D L. Reactivity of Pb(II) at the Mn(III,IV) (oxyhydr)oxide-water interface. Environ. Sci. Technol., 2001, 35(14): 2967-2972.
    
    88. McKenzie R M. The sorption of cobalt by manganese minerals in soils. Aust J Soil Res, 1967, 5: 235-246.
    
    89. McKenzie R M. The reaction of cobalt with manganese dioxide minerals. Aust J Soil Res, 1970, 8: 97-106.
    
    90. McKenzie R M. The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Miner Mag, 1971, 38: 493-503.
    
    91. Mckenzie R M. An electron microprobe study of the relationships between heavy metals and manganese and iron in soils and ocean floor nodules. Aust J Soil Res, 1975, 13: 177-188.
    
    92. McKenzie R M. Proton release during adsorption of heavy metal ions by a hydrous manganese dioxide. Geochim Cosmochim Acta, 1979, 43: 1855-1857.
    
    93. McKenzie R M. The adsorption of lead and other heavy metals on oxides of manganese and iron. Australian Journal of Soil Research, 1980, 18(1): 61-73.
    
    94. Mckenzie R M. The manganese oxides in soils. In: Varentsov I M, Grasselly G Eds., Geology and Geochemistry of manganese, Vol. 1. Budapest: Hungarian Academy of Science, 1980: 259-269.
    
    95. McKenzie R M. The surface charge on manganese dioxides. Aust J Soil Res, 1981, 19: 41-50.
    96. McKenzie R M. Manganese oxides and hydroxides. In: Dixon J B, Weed S B eds., Minerals in Soil Environments (2nd edition). Madison: SSSA Book Series 1, 1989: 439-465.
    
    97. Means J L, Crerar D A, Borcsik M P, Duguid J O. Adsorption of cobalt and selected actinides by Mn and Fe oxides in soils and sediments. Geochim Cosmochim Acta, 1978,42: 1763-1773.
    
    98. Mellin T A, Lei G. Stabilization of 10A-manganates by interlayer cations and hydrothermal treatment: implications for the mineralogy of marine manganese concretions. Mar Geol, 1993, 115:67-83.
    
    99. Morgan J J, Stumm W. Colloid-chemical properties of manganese dioxide. J Colloid Sci, 1964, 19: 347-359.
    
    100. Murray J W. The surface chemistry of hydrous manganese dioxide. J Colloid Interf Sci, 1974, 46: 357-371.
    
    101. Murray J W. The interaction of cobalt with hydrous manganese dioxide. Geochim Cosmochim Acta, 1975a, 39: 635-647.
    
    102. Murray J W. The interaction of metal ions at the manganese dioxide-solution interface. Geochim Cosmochim Acta, 1975b, 39: 505-519.
    
    103. Nelson Y M, Lion L W, Shuler M L, Ghiorse W C. Lead binding to metal oxide and organic phases of natural aquatic biofilms. Limnology, 1999,44: 1715-1729.
    
    104. Nelson Y M, Lion L W, Shuler M L, Ghiorse W C. Lead adsorption to mixtures of biogenic Mn oxides and Fe oxides. Environ Sci Technol, 2002, 36: 421-425.
    
    105. Nesbitt H W, Canning G W, Bancroft G M. XPS study of reductive dissolution of 7?birnessite by H3AsO3, with constraints on reaction mechanism. Geochim Cosmochim Acta, 1998, 62(12):2097-2110.
    
    106. Nico P S, Zasoski R J. Importance of Mn(III) Availability on the Rate of Cr(III) Oxidation on δ-MnO2. Environ Sci Technol, 2000, 34(16): 3363-3367.
    
    107. Non J S, Schwarz J A. Estimation of the point of zero charge of simple oxides by mass titration. J Colloid Interf Sci, 1989, 130: 157-163.
    
    108. O'Reilly S E, Hochella M F. Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides. Geochim Cosmochim Acta, 2003, 67(23): 4471-4487.
    
    109. Ooi K, Miyai Y, Katoh S. Ion-exchange properties of ion-sieve-type manganese oxides prepared by using different kinds of introducing ions. Separation science and technology, 1987, 22:1779-1789.
    
    110. Paterson E, Bunch J L, Clark D R. Cation exchange in synthetic manganates: I . Alkylammonium exchange in a synthetic phyllomanganate. Clay Minerals, 1986, 21: 949-955.
    
    111. Peacock C L, Sherman D M. Sorption of Ni by birnessite: Equilibrium controls on Ni in seawater. Chemical Geology, 2007, 238(1-2): 94-106.
    112. Post J E. Manganese oxide minerals: Crystal structures and economic and environmental significance. PNAS, 1999, 96(7): 3447-3454.
    
    113. Post J E, Veblen D R. Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method. Am Mineral, 1990, 75(5-6): 477-489.
    
    114. Potter R M, Rossman G R. The tetravalent manganese oxides; identification, hydration, and structural relationships by infrared spectroscopy. Am Mineral, 1979, 64(11-12): 1199-1218.
    
    115. Scott M J, Morgan J J. Reactions at oxide surfaces 1.oxidation of As(III) by synthetic birnessite. Environ Sci Technol, 1995, 29: 1898-1905.
    
    116. Sharma P K, Whittingham M S. The role of tetraethyl ammonium hydroxide on the phase determination and electrical properties of [gamma]-MnOOH synthesized by hydrothermal. Materials Letters, 2001,48(6): 319-323.
    
    117. Shaughnessy D A, Nitsche H, Booth C H, Shuh D K, Waychunas G A, Wilson R E, Gill H, Cantrell K J, Serne R J. Molecular interfacial reactions between Pu(VI) and manganese oxide minerals manganite and hausmannite. Environ Sci Technol, 2003, 37: 3367-3374.
    
    118. Shen Y F, Suib S L, O'Yang C L. Effects of inoganic cation templates on octahedral molecular sieves of manganese oxide. J Am Chem Soc, 1994,116: 11020-11029.
    
    119. Shen Y F, Zerger R P, Suib S L, McCurdy L, Potter D I, O'Yang C L. Manganese oxide octahedral molecular sieves: Preparation, characterization and application. Science, 1993, 260: 511-515.
    
    120. Shindo H, Huang P M. Comparison of the influence of manganese(IV) and typrosinase on the formation of humic substance in the environment. Sci Total Environ, 1992, 117/118: 103-110.
    
    121. Shuman L M. Separating soil iron- and manganese-oxide fractions for microelement analysis. Soil Sci Soc Am J, 1982,46: 1099-1102.
    
    122. Silvester E, Manceau A, Drits V A. Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite; II, Results from chemical studies and EXAFS spectroscopy. Am Mineral, 1997, 82(9-10): 962-978.
    
    123. Silvester E J, Manceau A. The mechanism of chromium(III) oxidation by Na-buserite. J Phys Chem, 1995,99: 16662-16772.
    
    124. Spark K M, Johnson B B, Wells J D. Characterizing heavy-metal adsorption on oxides and oxyhydroxides. European Journal of Soil Science, 1995,46: 621-631.
    
    125. Suarez D L, Langmuir D. Heavy metal relationship in Pennsylvania soil. Geochim Cosmochim Acta, 1976,40:589-598.
    
    126. Taylor R M, McKenzie R M. The association of trace elements with manganese minerals in Australian soils. Aust J Soil Res, 1966, 4: 29-39.
    
    127. Tebo B M, Bargar J R, Clement B, Dick G, Murray K J, Parker D, Verity R, Webb S. Manganese biooxides: properties and mechanisms of formation. Annual Review of Earth and Planetary Science, 2004, 32: 287-328.
    
    128. Toner B, Manceau A, Webb S M, Sposito G Zinc sorption by biogenic hexagonal birnessite particles within a hydrated biofilm. Geochim Cosmochim Acta, 2006, 70: 27-43.
    
    129. Traina S J, Doner H E. Copper-manganese(II) exchange on a chemically reduced birnessite. Soil Sci Soc Am J, 1985a, 49: 307-313.
    
    130. Traina S J, Doner H E. Heavy metal induced releases of manganese(II) from a hydrous manganese dioxide. Soil Sci Soc Am J, 1985b, 49: 317-321.
    
    131. Trivedi P, Axe L. A comparison of strontium sorption to hydrous aluminum, iron, and manganese oxides. J Colloid Interf Sci, 1999,218: 554-563.
    
    132. Tsuji M, Tamaura Y. Yhermodynamic study of M~+/H~+ exchanges on a cryptomelane-type manganic acid. Solvent extraction and ion exchange, 2000, 18: 187-202.
    
    133. Tu S, Racz G J, Goh T B. Transformations of synthetic birnessite as affected by pH and manganese concentration. Clays Clay Miner 1994, 42(3): 321-330.
    
    134. Tu S, Racz G J, Goh T B. Transformations of synthetic birnessite as affected by pH and manganese concentration. Clays Clay Miner, 1994,42(3): 321-330.
    
    135. Usui A. Nickel and copper accumulation as essential elements in 10 A manganite of deep-sea manganese nodules. Nature, 1979, 279: 411-413.
    
    136. Usui A, Mita N. Geochemistry and mineralogy of a modern buserite deposit from a hot spring in Hokkaido, Japan. Clays Clay Miner, 1995, 43: 116-172.
    
    137. Vantelon D, Pelletier M, Michot L J, Barres O, Thomas F. Fe, Mg and A1 distribution in the octahedral sheet of montmorillonites. An infrared study in the OH-bending region. Clay Minerals, 2001, 36(3): 369-379.
    
    138. Villalobos M, Bargar J, Sposito G Mechanisms of Pb(II) Sorption on a Biogenic Manganese Oxide. Environ Sci Technol, 2005, 39(2): 569-576.
    
    139. Villalobos M, Lanson B, Manceau A, Toner B, Sposito G Structural model for the biogenic Mn oxide produced by Pseudomonas putida. Am Mineral, 2006, 91(4): 489-502.
    
    140. Villalobos M, Toner B, Bargar J, Sposito G Characterization of the manganese oxide produced by pseudomonas putida strain MnB1. Geochim Cosmochim Acta, 2003, 67(14): 2649-2662.
    
    141. Wadsley A D. Synthesis of some hydrated manganese minerals. Am Mineral, 1950, 35: 485-488.
    
    142. Weaver R M, Hochela M F, Ilton E S. Dynamic processes occurring at the Cr(III)_(aq)-manganite ( Y-MnOOH) interface: Simultaneous adsorption, microprecipitation, oxidation/reduction, and dissolution. Geochim Cosmochim Acta, 2002, 66: 4119-4132.
    
    143. Webb S M, Tebo B M, Bargar J R. Structural characterization of biogenic Mn oxides produced in seawater by the marine bacillus sp. strain SG-1. Am Mineral, 2005, 90(8-9): 1342-1357.
    144.Yang D S,Wang M K.Syntheses and characterization of birnessite by oxidizing pyrochroite in alkaline conditions.Clays Clay Miner,2002,50(1):63-69.
    145.Zhao W,Cui H,Feng X,Tan W,Liu F.Relationship between Pb~(2+) adsorption and average mn oxidation state in synthetic birnessites.Clays Clay Miner,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700