AZ91D镁合金表面硅氧化物、高聚物膜层的制备工艺及耐蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金因具有密度低,比强度、比刚度、比弹性模量高且易于回收以及很好的铸造、切削加工性能等特点,被誉为“21世纪绿色工程材料”。然而,镁合金的化学稳定性差,在使用环境中容易发生氧化,在湿热条件下会发生严重的电化学腐蚀,其应用范围受到极大限制。镁合金的的耐蚀性已成为国内外关注的焦点,因为它直接关系到镁合金的发展及应用。因此研究镁合金的表面防护具有十分重要理论价值和实际意义。
     论文在综述了镁合金腐蚀机理及近年来镁合金表面防护技术的基础上,采用动电位极化、电化学阻抗谱等电化学测试方法;并辅以傅立叶红外、扫描电镜等材料表征技术,研究了AZ91D镁合金表面的几种防护技术及相关机理探讨。论文的主要研究内容如下:
     1、研究氧化硅膜层对AZ91D镁合金的耐蚀保护作用。利用有机醇盐水解法开发了可以直接涂覆在镁合金表面的SiO_2溶胶,采用浸渍提拉法在AZ91D镁合金表面制备了氧化硅膜层。以正硅酸乙酯和乙烯基三乙氧基硅烷为前驱体,乙醇为溶剂,采用醋酸作水解反应催化剂、氨水作缩聚反应催化剂的两步法制备了均匀、透明的SiO_2(TV)溶胶。同时以正硅酸乙酯为前驱体制备SiO_2(T)溶胶作为对比。采用傅立叶红外、扫描电镜表征膜层的结构和表面形貌。通过动电位极化、电化学阻抗等电化学测试方法研究氧化硅膜层在3.5 wt.%NaCl溶液中的腐蚀电化学行为。结果表明,SiO_2(TV)溶胶得到的氧化硅膜层耐蚀性能大大优于SiO_2(T)溶胶得到的氧化硅膜层。
     2、研究高聚物涂层对AZ91D镁合金的耐蚀保护作用。硅烷上所带官能团的化学结构对溶胶制备过程中的水解缩聚反应会产生很大影响,从而会进一步影响到溶胶的均匀性和相应膜层对AZ91D镁合金的耐蚀性能。论文通过正硅酸乙酯(TEOS)、乙烯基三乙氧基硅烷(VTEO)、γ-氨丙基三乙氧基硅烷(APTS)和γ-(2,3环氧丙氧)丙基三甲氧基硅烷(GPTMS)四种硅烷前驱物之间的相互组合,制备了几种不同组分的硅溶胶。采用旋转涂膜法在AZ91D镁合金表面制备了相应的高聚物涂层。利用傅立叶红外、扫描电镜、接触角测试以及JB-5C技术对不同组分的高聚物涂层的结构和性质进行表征与检测。研究表明硅烷中吸电子性质的官能团使硅溶胶中Si-O-Si反对称伸缩振动发生红移,而给电子性质的官能团使硅溶胶中的Si-O-Si反对称伸缩振动发生蓝移;涂层的平均厚度为2μm。通过动电位极化、电化学阻抗等电化学测试方法对这些高聚物涂层的耐蚀性能进行了研究。结果表明硅烷前驱体中较小的空间位阻可使硅烷的水解缩聚反应进行得较为完全,相应涂层的耐蚀性能较好。
     3、论文在充分考虑环境友好、工艺成本低廉和操作工艺简单的前提下,在AZ91D镁合金表面制备了钼酸盐转化膜。讨论了转化液组成、成膜温度、成膜时间等实验参数对转化膜层形貌和性能的影响。通过扫描电镜、动电位极化、电化学阻抗等测试手段确定了钼酸盐转化体系的实验参数。结果表明在pH值等于5、(NH_4)_6Mo_7O_(24)·6H_2O浓度为7.3 g/L的钼酸盐转化液中反应30 min,可得到耐蚀性能较好的钼酸盐转化膜层。在优化的钼转化膜层基础上,结合溶胶凝胶技术,得到了耐蚀性能更优的钼/硅复合膜层。
     4、镁合金在氢氟酸溶液中可以得到一层薄的钝化膜层,但该钝化膜层表面不致密,有孔洞等缺陷,因此限制了镁合金耐蚀能力的进一步提高。为此,论文研究了钝化膜层与溶胶复合技术对镁合金的保护作用。采用动电位极化和电化学阻抗技术研究了钝化膜与硅溶胶以及钝化膜与镧溶胶对AZ91D镁合金的保护作用。结果表明,由于镧溶胶的不均匀性,F/La复合膜层对AZ91D镁合金的耐蚀保护能力有限,而F/Si复合膜层对AZ91D镁合金提供了优异的保护。
Magnesium alloys,which are considered as green engineering materials of 21 century,have unique characteristics of low density,high strength-to-weight ratio,high rigidity and elastic modulus,good recyclability,excellent castability and cutting properties.Unfortunately,magnesium and its alloys are highly susceptible to corrosion,particularly in salt-spray conditions.This has limited its use in the automotive and aerospace industries,where exposure to harsh service conditions is unavoidable.As relation to the development span of the magnesium and its alloy,the corrosion resistance of the magnesium alloy has become the focus of the worldwide.Thus it is of great significance to investigate the surface modification technology of magnesium alloy.
     Based on the summary of corrosion mechanism and the currently surface modification technologies of magnesium alloy,several protection technology on AZ91D magnesium alloy and its relation mechanism were investigated using electrochemical impedance spectroscopy, potentiodynamie polarization test,fourier transform infrared spectrum as well as scanning electron microscope in this paper.The major research efforts of the present study are as follows:
     1.The SiO_2 film was studied for AZ91D magnesium alloy.Silicon dioxide sols which can be directly applied on the surface of AZ91D magnesium alloy to improve its corrosion resistance were prepared by hydrolyzing organic alkoxide,the dipping-costing method was employed to prepare the SiO_2 coating.In this study,tetraethyl orthosilicate(TEOS) and triethoxyvinylsilane(VTEO) were employed as the precursors to prepare SiO_2(TV) sol,as a comparison,the other SiO_2(T) sol prepared using only tetraethyl orthosilicate(TEOS) as precursor was also investigated.Fourier transform infrared(FT-IR) spectrum and scanning electron microscope(SEM) were performed to analyze the structure and the surface morphology of the SiO_2(TV) sol and SiO_2(T) sol.The corrosion resistance of the AZ91D magnesium alloy coated by silicon dioxide coatings was examined using electrochemical impedance spectroscopy(EIS) and potentiodynamic polarization tests in 3.5 wt.%NaCl aqueous solution.The results indicate that the corrosion resistance of the substrate is greatly improved by the silicon dioxide coatings obtained from SiO_2(TV) sol.
     2.Polymer coating based silicon was explored.To investigate the effect of functional groups in the silicon polymer coating on the corrosion resistance of AZ91D magnesium alloy,various polymer coatings were prepared from the precursor's intercombination among tetraethyl orthosilicate(TEOS),triethoxyvinylsilane(VTEO),3-glycidoxypropyltrimethoxysilane(GPTMS) and 3-aminopropyltriethoxysilane(APTS) via sol-gel method.The surface morphology,the hydrophobic property and the thickness of these coatings were characterized by scanning electron microscope(SEM),contact angle goniometer and JB-5C system,respectively.The result shows that the coating thickness was about 2μm.The Fourier transform infrared(FT-IR) spectra were used to analyze the structure differences among the various gels.It demonstrated that electron with drawing group made the v_(as)(Si-O-Si) shift to shorter wave number while electron donating group made the peak shift to higher wave number.Electrochemical impedance spectroscopy(EIS) and potentiodynamic polarization tests were employed to confirm the corrosion resistance ability of these sol-gel films.The results showed that the smaller steric hindrance of the functional groups on the silica precursor made the hydrolysis and condensation reaction easily and the relevant film had a better corrosion resistance.
     3.Considering the environmental friendly and cost-effective,molybdate conversion coatings have been successfully prepared on magnesium alloy to improve its corrosion resistance.For molybdate conversion treatment,various conditions including the pH of the molybdate baths, immersion time and bath temperature were investigated using electrochemical measurements.The corrosion resistance of the AZ91D magnesium alloy was improved to some extent by the conversion coating with the optimal conversion parameters(7.3 g/L(NH_4)_6Mo_7O_(24)·6H_2O solution with pH 5 for 30 min at 30℃).In order to get a further improvement of corrosion protection for AZ91D magnesium alloy,three layers of silicon sol-gel coatings were successfully deposited on the molybdate conversion coating pre-applied to AZ91D alloy.
     4.Take use of the passivation of magnesium and its alloy in contact with the HF solution,the composite technology-passivation layer and sol-gel film-was used to improve the corrosion resistance of magnesium alloy.The electrochemical impedance spectroscopy "(EIS) and potentiodynamic polarization tests in 3.5 wt.%NaCl aqueous solution were used to test the corrosion resistance of passivation layer and silica sol(F/Si),as well as passivation layer and lanthanum sol(F/La) composite film.The results showed that the F/La film had limited protection effect because of its non- uniformity.However,the F/Si film could offer better corrosion resistance to magnesium alloy.
引文
[1]戴起勋.金属材料学.化学工业出版社.2005.
    [2]史文方,周昆.我国镁合金的开发应用现状及展望.汽车工艺与材料.2004,6:32-37.
    [3]师瑞霞,尹衍升,谭训彦.镁合金的研究进展.山东冶金.2003,25(2):53-55.
    [4]徐关庆,赵晓宏,付蓉,高宏伟.镁合金汽车零件表面处理技术研究.汽车工艺与材料.2004,7:57-59.
    [5]张永君,严川伟,王福会,曹楚南.镁的应用及其腐蚀与防护.材料保护.2002,4:4-6.
    [6]Froes F H,Eliezer D.The Science,Technology and Application of Magnesium.J Mine Metals and Mater Soc.1998,5(9):30-34.
    [7]Raymond F,Decker.The Renaissance in magnesium.Adv Mate Pro.9/1998.154(3):31-33.
    [8]A.Yfantis,I.Paloumpa.Novel corrosion-resistant films for Mg alloys.Surface and Coatings Technology.2002,(151-152):400-404.
    [9]Enley E F.Principles of Magnesium Technology.Headington HillHall,Oxford:Pergamon Press Ltd,1966.
    [10]宋光铃.镁合金腐蚀与防护.化学工业出版社.2006.
    [11]李玉兰,刘江,彭晓东.镁合金压铸件在汽车上的应用.特种铸造及有色合金.1999,1:120-122.
    [12]H.WATANABE,T.MUKAI,K.ISHIKAWA.Differential speed rolling of an AZ31magnesium alloy and the resulting mechanical properties.Journal of Materials Science.2004,39:1477-1480.
    [13]郭洪河,刘生发,黄尚宇等.镁合金在汽车中的应用与发展.汽车工艺与材料.2001,10:34-36.
    [14]Raymond F,Decker.The Renaissance in Magnesium.Advanced Materials & Processes.1998,9:31-33.
    [15]Benjamin Landkof.Magnesium Applications in the Electronic dustries Magnesium.Israeli.2000,20:50-56.
    [16]Robert L,Edgar.Global Overview on Demand and Applications for Magnesium Alloys.Magnesium Alloys and Their Applications.New York.2000,26:3-8.
    [17]Kaikun Wang,Yonglin Kang and Kui Zhang.Effects of rare earth elements on the microstructure and properties of magnesium alloy AZ91D.Journal of University of Science and Technology.2002,9(5):363-366.
    [18]M.Svoboda,M.Pahutov(?),K.Kucharov(?),V.Sklenika and T.G.Langdon.The role of matrix microstructure in the creep behaviour of discontinuous fiber-reinforced AZ91 magnesium alloy.Materials Science and Engineering A.2002,324(1-2):151-156.
    [19]M.Greger,L.Pawlica,L.A.Dobrzafiski,T.Tafiski.Study of selected properties of magnesium alloy AZ91 after heat treatment and forming.Journal of Materials Processing Technology.2004,157-158:466-471.
    [20]A.Lindemann,J.Schmidt,M.Todte and T.Zeuner.Thermal analytical investigations of the magnesium alloys AM 60 and AZ 91 including the melting range.Thermochimica Acta.2002,382(1-20):269-275.
    [21]MORDIKE B L,EBERT T.Magnesium:properties application potential.Materials Science & Engineering.2001,A302:37-45.
    [22]霍宏伟,李瑛,王赫男,王福会.镁合金的腐蚀与防护.材料导报.2001,15(7):25-27.
    [23]Makar G L,Kruger J.Corrosion of magnesium.International Material Reviews.1993,38(3):138-153.
    [24]C.S.Lin,H.C.Lin,K.M.Lin,W.C.Lai.Formation and properties of stannate conversion coatings on AZ61 magnesium alloys.Corrosion Science.2006,48:93-109.
    [25]G.Ballerini,U.Bardi,R.Bignucolo,G.Ceraolo.About some corrosion mechanisms of AZ91D magnesium alloy.Corrosion Science.2005,47:2173-2184.
    [26]Tao Zhang,Ying Li,Fuhui Wang.Roles of β phase in the corrosion process of AZ91D magnesium alloy.Corrosion Science.2006,48:1249-1264.
    [27]L.Y.Niu,Z.H.Jiang,G.Y.Li,C.D.Gu,J.S.Lian.A study and application of zinc phosphate coating on AZ91D magnesium alloy.Surface and Coatings Technology.2006,200:3021-3026.
    [28]Lars-Gunnar Johansson,Peter Skeldon,George E.Thompson,Jan-Erik Svensson.Corrosion of magnesium in humid air.Corrosion Science.2004,46:1141-1158.
    [29]Guangling Song,Birgir Johannesson,Sarath Hapugoda,David St John.Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy,steel and zinc.Corrosion Science.2004,46:955-977.
    [30]Zhiming Shi,Guangling Song,Andrej Atrens.Influence of anodising current on the corrosion resistance of anodised AZ91D magnesium alloy.Corrosion Science.2006,48:1939-1959.
    [31]H.Hiraga,T.Inoue,Y.Kojima,S.Kamado,S.Watanabe,Materials Science Forum.2000,253:350-351.
    [32]李金桂,吴再思.防腐蚀表面工程.化学工业出版社.2002.
    [33]P.L.Hagans,C.M.Haas,Chromate conversion coatings,in:ASM Handbook,Surface Engineering.Vol.5:ASM International,1994,p.405.
    [34]Fumihiro S,Yoshihiko A,Takenori N.Corrosion Behavior of Magnesium Alloys with Different Surface Treatments.Journal of Japan Institute of Light Metals.1992,42(12):752-758.
    [35]Mordike B.L.,Ebert T.,Magnesium Properties-applications-potential.Materials Scienceand Engineering A.2001,302:37-45.
    [36]Chong K.Z.,Shih T.S.Conversion-coating treatment for magnesium alloys by a permanganate-phossphate solution.Materials Chemistry and Phisics.2003,80:191-200.
    [37]P.L.Hagans,C.M.Hass.Chromate conversion coating.Surface Engineering.1994,No.5:10-13.
    [38]Twite R.L.,Bierwagen G.P..Review of Alternatives to Chromate for Corrosion Protection of Aluminum Aerospace Alloys.Progress in Organic Coatings.1998,33:91-100.
    [39]蔡启舟,王立世,魏伯康.镁合金防蚀处理的研究现状及动向.特种铸造及有色合金.2003.No.3:33-35
    [40]钱建刚,李荻,郭宝兰.镁合金的化学转化膜.材料保护.2002,Vol35.No.3:5-6.
    [41]J.E.Gray,Luan B.Protective coatings on magneisum and its alloy-a critical review..Journal of Alloys and Compounds.2002,Vol.336:88-113.
    [42]Ming Zhao,Shusen Wu,JiRong Luo,Y.Fukuda,H.Nakae.A chromium-free conversion coating of magnesium alloy by a phosphate-permanganate solution.Surface and Coatings Technology.2006,200:5407-5412.
    [43]Wanqiu Zhou,Dayong Shan,En-Hou Han,Wei Ke.Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy.Corrosion Science.2008,50:329-337.
    [44]G.Y.Li,J.S.Lian,L.Y.Niu,Z.H.Jiang,Q.Jiang.Growth of zinc phosphate coatings on AZ91D magnesium alloy.Surface and Coatings Technology.2006,201:1814-1820.
    [45]Hassan H.Elsentriecy,Kazuhisa Azumi,Hidetaka Konno.Improvement in stannate chemical conversion coatings on AZ91D magnesium alloy using the potentiostatic technique.Electrochimica Acta.2007,53:1006-1012.
    [46]Hassan H.Elsentriecy,Kazuhisa Azumi,Hidetaka Konno.Effect of surface pretreatment by acid pickling on the density of stannate conversion coatings formed on AZ91D magnesium alloy.Surface and Coatings Technology.2007,202:532-537.
    [47]Manuele Dabal(?),Katya Brunelli,Enrico Napolitani,Maurizio Magrini.Cerium-based chemical conversion coating on AZ63 magnesium alloy.Surface and Coatings Technology.2003,172:227-232.
    [48]L.YuanGang,Z.Wei and L.JiuQing.Microarc Electrodeposition of Ceramic Films on Double Electrodes of AZ91D Magnesium Alloy by Symmetrical AC Pulse Method.Surface Engineering.2003,19(5):345-350.
    [49]Katya Brunelli,Manuele Dabala,Irene Calliari,Maurizio Magrini.Effect of HCI pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys.Corrosion Science.2005,47:989-1000.
    [50]Ming Zhao,Shusen Wu,JiRong Luo,Ping An.Study on the deterioration process of a chromium-free conversion coating on AZ91D magnesium alloy in NaCl solution.Applied Surface Science.2006,253:468-475.
    [51]Xiaoming Chen,Guangyu Li,Jianshe Lian,Qing Jiang.An organic chromium-free conversion coating on AZ91D magnesium alloy.Applied Surface Science.2008,255:2322-2328.
    [52]Zhiming Shi,Guangling Song,Andrej Atrens.The corrosion performance of anodized magnesium alloys.Corrosion Science.2006,48:3531-3546.
    [53]Zhiming Shi,Guangling Song,Andrej Atrens.Influence of anodizing current on the corrosion resistance of anodized AZ91D magnesium alloy.Corrosion Science.2005,139:1939-1959.
    [54]向阳辉,胡文彬,沈彬,赵昌正,丁文江.镁合金直接化学镀镍的初始沉积机制.上海交通大学学报.2004,12:1638-1640.
    [55]Hongwei Huo,Ying Li,Fuhui Wang.Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer.Corrosion Science.2004,46:1467-1477.
    [56]Zhenmin Liu,Wei Gao.The effect of substrate on the electroless nickel plating of Mg and Mg alloys.Surface and Coatings Technology.2006,200:3553-3560.
    [57]W.X.Zhang,Z.H.Jiang,G.Y.Li,Q.Jiang,J.S.Lian.Electroless Ni-Sn-P coating on AZ91D magnesium alloy and its corrosion resistance.Surface and Coatings Technology.2008,202:2570-2576.
    [58]W.X.Zhang,N.Huang,J.G.He,Z.H.Jiang,Q.Jiang,J.S.Lian.Electroless deposition of Ni-W-P coating on AZ91D magnesium alloy.Applied Surface Science.2007,253:5116-5121.
    [59]王茂林,刘金海,李国禄,刘根生.镁合金(Ni_2P)_2SiC纳米颗粒化学复合镀层硬度及耐磨性的研究.化工机械.2006,4(32):199-202.
    [60]Dale W Schaefer.Polymers,Fractals,and Ceramic Materials.Science.1989,24:1023-1027.
    [61]罗伍文.溶胶凝胶法简介 第二讲:用于溶胶凝胶法的主要原理--金属醇盐.硅酸盐通报.1993,4:60-68.
    [62]黄剑锋.溶胶凝胶原理与技术.化学工业出版社.2005.
    [63]李东风.溶胶凝胶法制备SiO_2体系有机.无机复合材料的研究.吉林大学博士论文.2000年5月.
    [64]张勤俭,张建华,李敏,张勤河,毕进子.溶胶凝胶工艺制备ZrO_2涂层对工程陶瓷表面改性的研究.中国陶瓷.2002,38(1):30-32.
    [65]李青.材料表面改性技术.功能材料.1997,28(1):99-103.
    [66]S.Ueno,D.D.Jayaseelan,N.Kondo,T.Ohji,S.Kanzaki.Corrosion behavior of Al_2O_3 in static state water vapor environment at high temperature.Journal of materials science.2004,39:6627-6629.
    [67]Y.Takahashi,A.Ohsugi,T.Arafuka.T.Ohya.Development of NewModifiers for Titanium Alkoxide-Based Sol-Gel Process.Journal of sol-gel science and technology.2000,17:227-238.
    [68]G.P.Thim,M.A.S.Oliveira,E.D.A.Oliveira.Sol-gel silica film preparation from aqueous solutions for corrosion protection.Journal of Non-Crystalline Solids.2000,273:124-128.
    [69]Zhou Feng,Liang Kaiming,Wang Guoliang,Shao Hua,Hu Anmin.Crystallization behavior of Li~+-doped SiO_2-TiO_2 films prepared by sol-gel dip coating.Journal of Crystal Growth.2004,264:297-301.
    [70]Mikael A.Khan,Rajnish Kurchania,Silvana Corkovic,Qi Zhang,Steven J.Milne.Compaction of lead zirconate titanate sol-gel coatings.Materials Letters.2006,60:1463-1465.
    [71]A.R.Phain,F.J.Gammel,T.Hack.Enhanced corrosioon resistance by sol-gel-based ZrO_2-CeO_2 coatings on magnesium alloys.Materials and Corrosion.2005,56,No.2.
    [72]A.R.Phain,F.J.Gammel,T.Hack.Structural,mechanical and corrosion resistance properties of Al_2O_3-CeO_2 nanocomposites in silica matrix on Mg alloys by a sol-gel dip.coating technique.Surface and Coatings Technology.2006,201:3299-3306.
    [73]Ralf Supplit,Thomas Koch,Ulrich Schubert.Evaluation of the anti-corrosive effect of acid pickling and sol-gel coating on magnesium AZ31 alloy.Corrosion Science.2007,49:3015-3023.
    [74]A.L.K.Tan,A.M.Soutar,I.F.Annergren,Y.N.Liu.Multilayer sol-gel coatings for corrosion protection of magnesium.Surface and Coatings Technology.2005,198:478-482.
    [75]朱立群,李卫平,刘慧丛.溶胶作用下的镁合金基体表面阳极氧化处理方法.P:CN1724719.2006.
    [1]李炯辉.金属材料金相图谱.第一版.北京:机械工业出版社.2006.7:1863,1929.
    [2]委福祥,曲彦平,苑玮琦.镀层腐蚀形貌图像颜色特征的提取与分析.仪器仪表学报.2003,24(4):477-478.
    [3]张晓丽.仪器分析实验.化学工业出版社.2006.
    [4]徐荣,孙素琴,刘友刚,陈君,周峰.红外光谱法对肉苁蓉径向不同部位的分析与评价.分析化学.2009,37(2):221-226.
    [5]常建华,董绮功.科学出版社.2005.
    [6]李伟,肖爱平,冷娟.近红外光谱技术及其在农作物中的应用.中国农学通报.2009,25(3):56-59.
    [7]赵玉清,杨天鸣,罗源,孙丽英.近红外透射光谱法测定黄芪提取液中总皂苷含量.化学与生物工程.2009,26(2):73-75.
    [8]周玉,武高辉.材料分析测试方法.哈尔滨工业大学出版社.2007.
    [9]伍越寰,沈晓明.有机化学.中国科学技术大学出版社.2003.
    [10]林碧兰,卢锦堂,孔纲.磷化膜电化学测试技术的研究进展.腐蚀科学与防护技术.2006,18(6):429-432.
    [11]贾铮,戴长松,陈玲.电化学测量方法.化学工业出版社.2006.
    [12]曹楚南.腐蚀电化学原理.化学工业出版社.2002.
    [1]黄剑锋.溶胶凝胶技术与原理.化学工业出版社.2005.
    [2]李青,黄元龙.溶胶凝胶法与金属表面改性.电镀与涂饰.1997,16(1):47-55.
    [3]曾爱香,唐绍裘.金属基陶瓷涂层的制备、应用及发展.陶瓷研究.1998.13(4):7-10.
    [4]杨南如,余桂郁.溶胶凝胶法简介 第三讲:溶胶凝胶法工艺过程.硅酸盐通报.1993,6:60-66.
    [5]Jiao J.X.,Xu Q.,Li L.M..Porous TiO_2/SiO_2 composite prepared using PEG as template direction reagent with assistance of supercritical CO_2.Journal of Colloid and Interface Science.2007,316:596-603.
    [6]Fu X.R.,Song Z.T.,Wu G.M.,Huang J.P.,Duo X.Z.,Lin C.L..Preparation and Characterization of MgO Thin Films by a Novel Sol-Gel Method.Journal of Sol-Gel Science and Technology.1999,16(3):277-281.
    [7]黄勇,郭亚昆,路学成,邹东利.纳米二氧化硅的表面及其应用进展.塑料助剂.2006,6:1-6.
    [8]Satomi Ono,Hiroyasu Tsuge,Yasuo Nishi.Improvement of Corrosion Resistance of Metals by an Environmentally Friendly Silica Coating Method.Journal of Sol-Gel Science and Technology.2004,29:147-153.
    [9]尚雪梅.纳米SiO_2类流体的制备及性能研究.硕士论文.武汉理工大学.2008.
    [10]A.N.Khramov,N.N.Voevodin,V.N.Balbyshev,M.S.Donley.Hybrid organo-ceramic corrosion protection coatings with encapsulated organic corrosion inhibitors.Thin Solid Films.2004,447-448:549-557.
    [11]刘亚群.碳系填充型高分子聚合物材料的研究.硕士论文.浙江大学.2003。
    [12]C.C.Chang,W.C.Chen.Synthesis and Optical Properties of Polyimide-Silica Hybrid Thin Films.Chemistry of Materials.2002,14:4242-4248.
    [13]陈艳,王新宇,高宗明等.聚酰亚胺/二氧化硅纳米尺度复合材料的研究.高分子学报.1997,1(2):73-78.
    [14]Takagi H,Ogawa H,Yamazaki Y,Ishizaki A,Nakagiri T.Quantum size effects on photoluminescence in ultrafine Si particles.Applied.Physics.Letter.1990,56:2379-2380.
    [15]Shao-Ping Tong,Chun-An Ma,Hui Feng.A novel PbO2 electrode preparation and its application in organic degradation.Electrochimica Acta.2008,53:3002-3006.
    [16]Chang-Hong Ho,Chau-Hui Wang,Chin-I Lin,Yu-Der Lee.Synthesis and characterization of TPO-PLA copolymer and its behavior as compatibilizer for PLA/TPO blends.Polymer.2008,49:3902-3910.
    [17]Tzung-shian Lee,Y.Oliver Su.Electrocatalytic oxygenation of alkenes by a sterically hindered water-soluble iron porphyrin in aqueous solutions.Journal of Electroanalytical Chemistry.1996,414:69-73.
    [18]李艳,付绍云,林大杰等.二氧化硅/聚酰亚胺纳米杂化薄膜室温及低温力学性能.复合材料学报.2005,22(2):11-14.
    [19]周幸福,褚道葆,林昌健.不锈钢表面纳米TiO_2薄膜的制备及其耐蚀性能.材料保护.2002,35(7):45.
    [20]俞冰,梁开明,顾守仁等.铜合金表面溶胶凝胶涂层抗腐蚀性能的研究.材料保护.2001,34(12):12-13.
    [21]黄明珠,李澄,周一扬等.溶胶凝胶法在金属表面制备SiO_2系薄膜的研究.功能材料.1994,25(1):82.
    [22]李澄,周一扬,黄明珠,SiO_2-TiO_2-ZrO_2系涂层的制备及其特性.材料保护.2002,35(5):7-9.
    [23]李海滨,梁开明,梅乐夫等.溶胶凝胶法制备的ZrO_2涂层对低碳钢腐蚀的防护.腐蚀科学与防护技术.2002,14(2):92-94.
    [24]Xiaohong Wang,Yun Guo,Guanzhong Lu,Yu Hu,Liangzhu Jiang.An excellent support of Pd catalyst for methane combustion:Thermal-stable Si-doped alumina.Catal.Today.2007,126:369-374.
    [25]Ji-Ming Hu,Liang Liu,Jian-Qing Zhang,Chu-Nan Cao.Electrodeposition of silane films on aluminum alloys for corrosion protection.Progress in Organic Coatings.2007,58:265-369.
    [26]C.M.Bertelsen,F.J.Boerio.Linking mechanical properties of silanes to their chemical structure:an analytical study of γ-GPS solutions and films.Progress in Organic Coatings.2001,41:239-245.
    [27]曹楚南,张鉴清.电化学阻抗普导论.科学出版社.2005.
    [28]贾铮,戴长松,陈玲.电化学测量方法.化学工业出版社.2006.
    [1]Mikhail L.Zheludkevich,Dmitry G.Shchukin,Kiryl A.Yasakau.Anticorrosion Coatings with Self-Healing Effect Based on Nanocontainers Impregnated with Corrosion Inhibitor.Chemistry Materials.2007,19:402-411.
    [2]尚雪梅.纳米SiO_2类流体的制备及性能研究.硕士论文.2008.武汉理工大学.
    [3]尚修勇,朱子康,印杰等.偶联剂对PI/SiO_2纳米复合材料形态结构及性能的影响.复合材料学报.2000,17(4):15-19.
    [4]李元庆,张以河,李明等.PI/T-SiO_2杂化膜的制备及偶联剂的影响.加工与应用.2004, 21(5):61-64.
    [5]Pei-Chun Chiang,Wha-Tzong Whang.The Synthesis and Morphology Characteristic Study of BAO-ODPA Polyimide/TiO_2 Nano Hybrid Films.Polymer.2003,44:2249-2254.
    [6]Haitao Wang,Wei Zhong Peng Xu..Polyimide/silica/titania Nanohybrids Via a novel Non-hydrolytic Sol-gel Route.Composites.2005,36:909-914.
    [7]陈艳,王新宇,高宗明等.聚酰亚胺/二氧化硅纳米尺度复合材料的研究.高分子学报.1997,1:73-79.
    [8]崔冬梅,宋昌颖,刘雪雁等.硅氧烷成分对PI/SiO_2纳米杂化材料性能的影响.吉林工学院学报.2001,22(3):33-35.
    [9]徐一琨,詹茂盛.纳米二氧化硅目标杂化聚酰亚胺复合材料膜的制备与性能表征.航空材料学报.2003,23(2):33-39.
    [10]T.A.Shantalii,I.L.Karpova,K.S.Dragan.Synthesis and Thermomechanical Characterization of Polyimides Reinforced with the Sol-Gel derived Nanoparticles.Science and Technology of Advanced Materials.2003,4:115-119.
    [11]V.Y.Kramarenko,T.A.Shantalil,I.L.Karpova,et al.Polyimides Reinforced with the Sol-Gel Derived Organosilicon Nanophase as Low Dielectric Permittivity Materials.Polymers for Advanced Technologies.2004,15:144-148.
    [12]F.Zucchi,V.Grassi,A.Frignani,C.Monticelli,G.TrabanellI.Influence of a silane treatment on the corrosion resistance of a WE43 magnesium alloy.Surface and Coatings Technology.2006,200:4136-4143.
    [13]A.L.K.Tana,A.M.Soutar,I.F.Annergren,Y.N.Liu.Multilayer sol-gel coatings for corrosion protection of magnesium.Surface and Coatings Technology.2005,198:478-482.
    [14]M.F.Montemor,M.G.S.Ferreira.Electrochemical study of modified bis-[triethoxysilylpropyl]tetrasulfide silane films applied on the AZ31 Mg alloy.Electrochimica Acta.2007,52:7486-7495.
    [15]A.N.Khramov,V.N.BAlbyshev,N.N.Voevodin.Nanostructured sol-gel derived conversion coatings based on epoxy-and amino-silanes.Progress in Organic Coatings.2003,47:207-213.
    [16]R.Selvaraj,M.Selvaraj,S.V.K.Iyer.Studies on the evaluation of the performance of organic coatings used for the prevention of corrosion of steel rebars in concrete structures.Progress in Organic Coatings.2009,64:454-459.
    [17]S.V.Lamaka,M.F.Montemor,A.F.Galio,M.L.Zheludkevich.Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy.Electrochimica Acta.2008,53:4773-4783.
    [18]F.Zucchi,V.Grassi,A.Frignani,C.Monticelli,G.Trabanelli.Influence of a silane treatment on the corrosion resistance of a WE43 magnesium alloy.Surface and Coatings Technology.2006,200:4136-4143.
    [19]A.N.Khramov,V.N.Balbyshev,L.S.Kasten,R.A.Mantz.Sol-gel coatings with phosphonate functionalities for surface modification of magnesium alloys.Thin Solid Films.2006,514: 174-181.
    [20]Phosphonate-functionalized ORMOSIL coatings for magnesium alloys.Progress in Organic Coatings.2009.In Press.
    [21]Xiaohong Wang,Yun Guo,Guanzhong Lu,Yu Hu,Liangzhu Jiang.An excellent support of Pd catalyst for methane combustion:Thermal-stable Si-doped alumina.Catal.Today.2007,126:369-374.
    [22]Ji-Ming Hu,Liang Liu,Jian-Qing Zhang,Chu-Nan Cao.Electrodeposition of silane films on aluminum alloys for corrosion protection.Progress in Organic Coatings.2007,58:265-271.
    [23]C.M.Bertelsen,F.J.Boerio.Linking mechanical properties of silanes to their chemical structure:an analytical study of γ-GPS solutions and films.Progress in Organic Coatings.2001,41:239-246.
    [24]B.Japelj,B.Orel.Sol.Preparation of a TiMEMO nanocomposite by the sol-gel method and its application in coloured thickness insensitive spectrally selective(TISS) coatings.Energy Mater.Sol.Cells.2008.92:1149-1161.
    [25]A.-P.Romano.M.-G.Olivie.C.Vandermiers.M.Poelman.influence of the curing temperature of a cataphoretic coating on the development of filiform corrosion of aluminium.Progress in Organic Coatings.2006,57:400-407.
    [26]曹楚南.电化学阻抗谱导论.化学工业出版社.2002.
    [27]贾铮,戴长松,陈玲.电化学测量方法.化学工业出版社.2006.
    [28]Y.Castro,A.Duran,J.J.Damborenea,A.Conde.Electrochemical behaviour of silica basic hybrid coatings deposited on stainless steel by dipping and EPD.Electrochimica Acta.2008,53:6008-6017.
    [1]J.E.Gray,Luan B.Protective coatings on magneisum and its alloy- a critical review.Journal of Alloys and Compounds.2002,Vol.336:88-113.
    [2]Chong K.Z.,Shih T.S.Conversion-coating treatment for magnesium alloys by a permanganate-phossphate solution.Materials Chemistry and Phisics.2003,80:191-200.
    [3]钱建刚,李荻,郭宝兰.镁合金的化学转化膜.材料保护.2002,Vol.35.No.3:5-6.
    [4]Ming Zhao,Shusen Wu,JiRong Luo,Y.Fukuda,H.Nakae.A chromium-free conversion coating of magnesium alloy by a phosphate-permanganate solution.Surface and Coatings Technology.2006,200:5407-5412.
    [5]Hongwei Huo,Ying Li,Fuhui Wang.Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer.Corrosion Science.2004,46:1467-1477.
    [6]Hassan H.Elsentriecy,Kazuhisa Azumi,Hidetaka Konno.Improvement in stannate chemical conversion coatings on AZ91 D magnesium alloy using the potentiostatic technique.Electrochimica Acta..2007,53:1006-1012.
    [7]Hassan H.Elsentriecy,Kazuhisa Azumi,Hidetaka Konno.Effect of surface pretreatment by acid pickling on the density of stannate conversion coatings formed on AZ91 D magnesium alloy.Surface and Coatings Technology.2007,202:532-537.
    [8]G.Y.Li,J.S.Lian,L.Y.Niu,Z.H.Jiang,Q.Jiang.Growth of zinc phosphate coatings on AZ91D magnesium alloy.Surface and Coatings Technology.2006,201:1814-1820.
    [9]Manuele Dabal(?),Katya Brunelli,Enrico Napolitani,Maurizio Magrini.Cerium-based chemical conversion coating on AZ63 magnesium alloy.Surface and Coatings Technology,2003,172:227- 232.
    [10]Wanqiu Zhou,Dayong Shan,En-Hou Han,Wei Ke.Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy.Corrosion Science.2008,50:329-337.
    [11]H.Konno,K.Narumi,H.Habazaki.Molybdate/Al(Ⅲ) composite films on steel and zinc-plated steel by chemical conversion.Corrosion Science.2002,44:1889-1900.
    [12]A.A.O.Magalha(?)es,I.C.P.Margarit,O.R.Mattos.Molybdate conversion coatings on zinc surfaces.Journal of Electroanalytieal Chemistry,2004,572:433-440.
    [13]E.Almeida,L.Fedrizzi,T.C.Diamantinio.Oxidising alternative species to chromium Ⅵ in zinc-galvanised steel surface treatment.Part 2- An electrochemical study.Surface and Coatings Technology.1998.105:97-101.
    [14]F.Zucchi,A.Frignani,V.Grassi,G.Trabanelli,C.Monticelli.Stannate and permanganate conversion coatings on AZ31 magnesium alloy.Corrosion Science.2007,101:480-485.
    [15]Elisabete Almeida,T.C.Diamantino,M.O.Figueiredo,Carlos S(?).Oxidising alternative species to chromium Ⅵ in zinc galvanised steel surface treatment.Part 1-A morphological and chemical study.Surface and Coatings Technology.1998,106:8-17.
    [16]J.D.Wilcox,D.R.Gabe,M.E.Warwick.The development of passivation coatings by cathodic reduction in sodium molybdate solutions.Corrosion Science.1988,28:577-585.
    [17]唐望磊,唐聿明,左禹.稀土转化膜钼酸盐后处理工艺研究.材料保护.2006,39:27-28.
    [18]K.H.Yang,M.D.Ger,W.H.Hwu,Y.Sung,Y.C.Liu.Study of vanadium-based chemical conversion coating on the corrosion resistance of magnesium alloy.Materials Chemistry and Physics.2007,101:480-485.
    [19]Xiaohong Wang,Yun Guo,Guanzhong Lu,Yu Hu,Liangzhu Jiang.An excellent support of Pd catalyst for methane combustion:Thermal-stable Si-doped alumina.Catal.Today.2007,126:369-374.
    [20]Ji-Ming Hu,Liang Liu,Jian-Qing Zhang,Chu-Nan Cao.Electrodeposition of silane films on aluminum alloys for corrosion protection.Progress in Organic Coatings.2007,58:265-369.
    [21]C.M.Bertelsen,F.J.Boerio.Linking mechanical properties of silanes to their chemical structure:an analytical study of γ-GPS solutions and films.Progress in Organic Coatings.2001,41:239-245.
    [22]戴起勋.金属材料学.化学工业出版社.2005.
    [1]杨德钧.金属腐蚀学.冶金工业出版社.2003.
    [2]梁成浩.金属腐蚀学导论.机械工业出版社.1999.
    [3]宋光铃.镁合金的腐蚀与防腐.化学工业出版社.2006.
    [4]M.H.Wong,F.T.Cheng,H.C.Man.Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants.Surface and Coatings Technology.2007,202:590-598.
    [5]S.Verdier,N.van der Laak,F.Dalard,J.Metson,S.Delalande.An electrochemical and SEM study of the mechanism of formation,morphology,and composition of titanium or zirconium fluoride-based coatings.Surface and Coatings Technology.2006,200:2955-2964.
    [6]Seon-Ah Jin,Jae-Hyeok Shim,Young Whan Cho,Kyung-Woo Yi,Dehydrogenation and hydrogen.ation characteristics of MgH_2 with transition metal fluorides.Journal of Power Sources.2007,172:859-862.
    [7]Hongping Duan,Chuanwei Yan,Fuhui Wang.Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D.Electrochimica Acta.2007,52:3785-3793.
    [8]Shu-Hong Nie,Shou-Mei Xiong,Bai-Cheng Liu.Effects of residual F content in a sealed melting furnace on experimental results of cover gas research for magnesium alloys.Materials Science and Engineering A.2006,422:346-351.
    [9]Won Ha,Young-Jig Kim.Effects of cover gases on melt protection of Mg alloys.Journal of Alloys and Compounds.2006,422:208-213.
    [10]H.F.Guo,M.Z.An.Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance.Applied Surface Science.2005,246:229-238.
    [11]Ming Zhao,Shusen Wu,Ping An,Jirong Luo.Influence of surface pretreatment on the chromium-free conversion coating of magnesium alloy.Materials Chemistry and Physics.2007,103:475-483.
    [12]S.Verdier,N.van der Laak,S.Delalande,J.Metson,F.Dalard.The surface reactivity of a magnesium-aluminium alloy in acidic fluoride solutions studied by electrochemical techniques and XPS.Applied Surface Science.2004,235:513-524.
    [13]Cowan.K.G,Harrison J A.The dissolution of magnesium in Cl~- and F~- containing aqueous solution.Electrochem Acta.1979,24:301-308.
    [14]李金桂.防腐蚀表面工程技术.化学工业出版社.2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700