具有缺陷的超弹性材料球体中的空穴分岔
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于材料内部空穴的生成、增长以及相邻空穴的贯通是材料损伤和破坏的重要机理,因此如何预测材料内部的空穴生成和增长引起了广泛关注。本文利用分岔理论和动力学理论中的基本观点、方法和结论,对具有缺陷的超弹性材料组成的球体内部的空穴生成和增长的拟静态问题以及空穴生成后随时间的运动规律等方面进行了系统的研究,得到了一些新的结论,同时给出了相应的数值分析。
     本文的主要工作如下:
     1.第三章中,研究了具有缺陷的不可压超弹性材料组成的球体在表面均布的拉伸死载荷作用下的空穴分岔问题。得到了描述球体内部的空穴生成和增长的空穴分岔方程。证明了空穴分岔方程的平凡解支上存在唯一的分岔点;给出了左分岔和右分岔的判别条件,并指出了向左分岔的空穴分岔解还会发生二次转向点分岔。利用奇点理论给出了空穴分岔方程在分岔点的等价正规形。将缺陷参数分成若干个区域,证明了当缺陷参数属于某些区域时,具有缺陷的超弹性材料球体发生空穴分岔时的临界载荷比无缺陷的小;并利用最小势能原理讨论了空穴分岔方程的解在各个参数区域内的稳定性,解释了空穴生成的突变现象。
     2.第四章中,分别研究了两类具有缺陷的可压缩超弹性材料球体在表面均布的径向拉伸作用下的空穴分岔问题。得到了两类材料球体的径向变形函数的参数型解析解和参数型空穴分岔解,同时指出了本章中给出的第一种缺陷材料组成的球体与无缺陷材料的相比会提前发生空穴分岔。最后讨论了空穴分岔方程的解的稳定性。
     3.第五章中,研究了具有缺陷的不可压超弹性材料组成的球体在表面均布的拉伸死载荷作用下的径向运动问题。得到了与时间相关的空穴运动方程。以一类具有缺陷的不可压超弹性材料组成的球体为例,研究了材料缺陷对空穴运动方程的非平凡解的存在性及其定性性质的影响。证明了当拉伸载荷超过其临界值时,球体内部就会有空穴生成,并且证明了空穴生成后随时间的运动是它的导数具有第一类间断点的周期运动。
     4.第六章中,研究了具有缺陷的不可压超弹性材料球壳在内、外表面分别受到突加死载荷作用的径向运动问题。得到了描述球壳内表面的径向运动的二阶非线性常微分方程。对微分方程进行了动力学行为的分析,讨沦了各个参数对方程解的定性性质的影响。给出了球壳产生周期振动和最终被破坏的数值算例。讨论了材料的缺陷参数对球壳产生周期振动的影响。同时给出了相应的数值模拟。
     5.第七章中,研究了周期阶梯加载时各向同性的neo-Hookean材料组成的球体
    
    内部的空穴生成和运动.‘首先对给定的常值拉仲载荷作用的问题进行了动力学行为
    分析,并且指出了不同初始条件下的(广义)周期解的存在性.然后对周期阶梯加载
    函数,研究了空穴运动方程的解的定性性质,指出了在不同的加载形式和不同初始
    条件下的(广义)周期解的存在性.同时给出了相应的数值模拟.
Generally, cavity formation, growth and run-through of the adjacent cavities in solid materials are considered as important mechanisms of failure and fracture. Thus, prediction of cavity formation and growth in materials has long attracted much attention. In this dissertation, by means of the basic viewpoints, methods and conclusions of bifurcation theory and dynamical theory, the quasi-static problems of cavity formation and growth, motion rules of the formed cavity along with time in the interior of the spheres that are composed of imperfect hyper-elastic materials are discussed systemically. Some new results are obtained and the corresponding numerical analyses are carried out. The main works are as follows:
    1. In Chapter 3, problems of cavitated bifurcation for a solid sphere composed of imperfect incompressible hyper-elastic materials, subjected to a surface tensile dead load, are examined. The cavitated bifurcation equation that describes cavity formation and growth in the interior of the sphere is obtained. It is proved that there exists a unique bifurcation point on the trivial solution of the cavitated bifurcation equation. And the distinguished conditions of left-bifurcation and right-bifurcation are carried out. It is presented that secondary turning point can be occurred on the cavitated bifurcation solution which bifurcates locally to the left. Equivalent normal forms of the cavitated bifurcation equation at the bifurcation point were presented by using singularity theory. The imperfect parameters' plane is divided into several regions, and it is proved that the critical dead load for the sphere composed of imperfect hyper-elastic materials is less than that for perfect hyper-elastic materials as
     the imperfect parameter belongs to some regions. Stability of solutions of the cavitated bifurcation equation is discussed in each region by using the minimal potential principle, and the catastrophic phenomenon of cavity formation is explained.
    2. In Chapter 4, problems of cavitated bifurcation for two spheres, which are composed of two different kinds of imperfect compressible hyper-elastic materials, were examined, respectively. The parametric analytic solutions of the radially deformed function and the parametric cavitated bifurcation solutions are all obtained for the two spheres. It is pointed out that the critical stretch of the sphere composed of the first kind of materials given in this chapter is less than that for the perfect materials. Finally, stability of solutions of the cavitated bifurcation equation is discussed.
    3. In Chapter 5, problem of radial motion for a solid sphere composed of an imperfect incompressible hyper-elastic material, subjected to a surface tensile dead load, is examined. And a cavity motion equation with respect to time is obtained. As an example that the sphere is composed of an imperfect incompressible hyper-elastic material, effects of material imperfection on the existence and the qualitative properties of the nontrivial solutions of the cavity motion equation were studied. It is proved that a cavity forms in the interior of the sphere as the surface tensile dead load exceeds certain critical value, and the motion of the formed cavity along
    
    
    
    with time is periodic motion which the derivative of the solution has the first kind of discontinuous point.
    4. In Chapter 6, problem of radial motion for a spherical shell composed of an imperfect incompressible hyper-elastic material under sudden dead loads at the inner- and outer-surface respectively, is examined. And a second-order nonlinear differential equation that describes radial motion of the inner-surface of the sphere is obtained. Dynamical behavior of the differential equation is analyzed, and effects of each parameter on the qualitative properties of the solutions of the equation are discussed in detail. After that, numerical examples of period vibration and destroy of the spherical shell are presented. The effects of material imperfection on period vibration of the spherical shell are discussed.
引文
[1] 杨清芝.现代橡胶阿艺学[M].中国石化出版社,1997
    [2] 王作龄.橡胶材料科学的发展[J],世界橡胶工业,1998,25:41-47
    [3] 于清溪.20世纪末21世纪初全球橡胶工业概况(一)—世界橡胶工业一瞥[J],世界橡胶工业,2003,1:29-52
    [4] 沃德.固体高分子聚合物的力学性能[M]_科学出版社,1980
    [5] Sommer J.G.橡胶的物理性能及其意义[J],橡胶参考资料,1991,27:6-11
    [6] 克里斯坦森.粘弹性力学引论[M].郝松林,老亮译,科学出版社,1990
    [7] 徐立.有限元分析中橡胶应变能函数的若干形式[J],橡胶工业,1999,46:707-710
    [8] 郭仲衡.非线性弹性力学[M].科学出版社,1980
    [9] Fu Y.B., Ogden R.W. Nonlinear Elasticity[M], Cambridge University Press, 2001
    [10] 爱林根.连续统力学[M].程昌钧,俞焕然译,科学出版社,1990
    [11] 德冈辰雄.理性连续介质力学入门[M].赵镇,苗天德,程昌钧译,科学出版社,1982
    [12] 高玉臣,固体力学基础[M].中国铁道出版社,1999
    [13] 尚新春.类橡胶材料和结构的不稳定性理论及分岔问题[D].博士学位论文,兰州大学,1994
    [14] 郭兴明,程昌钧.超弹性材料的几何缺陷和不稳定性理论[J],自然杂志,1999,21:311-314
    [15] 王自强.理性力学基础[M].科学出版社,2000
    [16] 匡震邦.非线性连续介质力学[M].上海交通大学出版社,2002
    [17] Treloar, L. R. G. The physics of rubber elasticity [M]. 3rd ed, Claredon, Oxford, 1975
    [18] Chalton D. T., Yang J. A review of methods to characterize rubber elastic behavior for use in finite element analysis [J], Rubber Chemistry and Technology, 1994, 67: 481-503
    
    
    [19] Boyce M.C., Arruda E.M. Constitutive models of rubber elasticity: A review [J], Rubber Chemistry and Technology, 2000, 73:504-523
    [20] Gent A.N.橡胶工业[M].张立群等译,化学工业出版社,2002
    [21] Valanis, K.C., Landel, R.F. The strain energy function of a hyperelastic material in terms of the extension rations [J], J. Applied Physics, 1967, 38:2997-3002
    [22] Ogden R.W. Large deformation isotropic elasticity: on the correlation of theory and experiment of compressible rubberlike solids [J], Proc. R. Soc. London, 1972, A328: 567-583
    [23] 任九生.非线性材料中的空穴生成与增长问题[D].博士学位论文,上海大学,2003
    [24] Shield, R.T. Equillibria solutions in finite elasticity [M]. ASME, J. Appl. Mech., 1983
    [25] Ericksen J.L. Deformations possible in every compressible, isotropic, perfectly in elastic material [J], J. of Math. Phys., 1955, 34:126-128
    [26] Carroll M.M. Finite strain solutions in compressible isotropic elasticity [J], J. Elasticity, 1988, 20:65-92
    [27] Carroll M.M. Finite strain solutions for a compressible elastic solids [J], Q. of Applied Mathematics, 1990, 58:767-780
    [28] William W.F. Extension and torsion of hyperelastic cylinders [J], Int. J. Nonlin. Mech., 1992, 27:329-335
    [29] Hill J. M., Arrigo D. J. Transformations and equation reductions in finite elasticity Ⅰ: plane strain deformations [J], Mathematics and Mechanics of Solids 1996, 1:155-175
    [30] Hill J.M. Finite deformation of thick walled inner tubes and tyres under inflation and rotation [J], J. Engin. Math., 1995, 29:211-235
    [31] Hill J.M. Closed form solution for small deformations super-imposed upon the simultaneous inflation and extension of a cylindrical tube [J], J. of Elasticity, 1976,6: 113-123
    [32] Murphy J.G. Some new closed form solutions describing spherical inflation in compressible finite elasticity [J], J. of Appl. Mech., 1992, 48:306-316
    
    
    [33] Zidi M. Large shearing of a prestressed tube [J], J of Applied Mechanics, 2000, 67: 209-211
    [34] Zidi M., Cheref M. Finite deformation of a hyperelastic, compressible and fiber rein-forced tube [J], European J of Mechanics A/Solids, 2002, 21:971-980
    [35] Oden T.J. Finite element methods of nonlinear continua [M]. McGraw-Hill, New York, 1972
    [36]危银涛.橡胶材料大变形本构关系及其有限元方法[J],固体力学学报,1999,20:281-289
    [37] 史守峡.平面应变不可压缩橡胶圆柱的大变形[J],固体力学学报,1999,20:290-296
    [38] 武际可,苏先樾.弹性系统的稳定性[M].科学出版社,1994
    [39] 朱兆祥等.材料和结构的不稳定性[C],科学出版社,1994
    [40] Gent A.N., Lindley P.B. Internal rupture of bonded rubber cylinders in tension [J], Proc. R. Soc. London Set A, 1958, 249:195-205
    [41] Oberth A.E., Bruenner R.S. Tear phenomena around solid inclusions in castable elastomers [J], Transactions of the Society of RheoIogy, 1965, 9:165-185
    [42] Beahan P., Thomas A., Bevis M. Some observations on the micro-morphology of deformed ABS and HIPS rubber-modified materials [J], Journal of Materials Science, 1976, 11:1207-1214
    [43] Lazzeri A., Bucknall C.B. Dilatational bands in rubber-toughened polymers [J], Journal of Materials Science, 1993, 28:6799-6808
    [44] Bucknall C.B., et al. A model for particle cavitation in rubber toughened plastics [J], Journal of Materials Science, 1994, 29:3377-3383
    [45] Gent A.N. Cavitation in rubber: a cautionary tale [J], Rubber Chem. Thech., 1990, 63:G49-G53
    [46] Ball J. M. Discontinuous equilibrium solutions and cavitations in nonlinear elasticity [J], Philos Trans Roy Soc Lond Ser A, 1982, 306:557-610
    
    
    [47] Chung D.T., Horgan C.O., Abeyaratne R. A note on a bifurcation problem in finite plasticity related to void nucleation [J], Int. J. Solids and Structures, 1987, 23: 983-988
    [48] Chou-Wang M. -S, Horgan C. O. Void nucleation and growth for a class of incom-pressible nonlinearly elastic materials: An example [J], Int. J. Solids and Structures, 1989, 25:1239-1254
    [49] Horgan C.O., Pence T.J. Void nucleation in tensile dead-loading of a composite incompressible nonlinearly elastic sphere [J], J. Elasticity, 1989a, 21:61-82
    [50] Horgan C.O., Pence T.J. Cavity formation at the center of a composite incompressible nonlinearly elastic sphere [J], J. Appl. Mech., 1989b, 56:302-308
    [51] Horgan C.O., Pence T.J. Void nucleation due to large deformations in nonlinearly elastic composites [C], Proceedings of the 4th Japan-US Conference, Washington DC, 1988, 232-241
    [52] Horgan C.O., Polignone D.A. Cavitation in nonlinearly elastic solids: A review [J], Applied Mechanics Review, 1995, 48:471-485
    [53] Ren Jiu-sheng, Cheng Chang-jun. Cavity bifurcation for incompressible hyperelastic material [J], Applied Mathematics and Mechanics, 2002, 23:881-888
    [54] Ren Jiu-sheng, Cheng Chang-jun. Bifurcation of cavitation solutions for incompressible transversely isotropic hyper-elastic materials [J], Int. J. Engin. Math., 2002, 44: 245-257
    [55] Ren Jiu-sheng, Cheng Chang-jun. Cavitation for incompressible anisotropic hyper-elastic materials [J], Journal of Shanghai University (English Edition), 2002, 6: 185-190
    [56] Ren Jiu-sheng, Cheng Chang-jun. Cavitated bifurcation for incompressible anisotropic hyper-elastic spheres [C], Proceedings of ICNM-Ⅳ, by Chien Wei-zang, Cheng Chang-jun et al., 2002, 303-308
    [57] Sivaloganathan J. Uniqueness of regular and singular equilibria for spherically symmetric problems of nonlinear elasticity [J], Arch. Rat. Mech. Anal. 1986, 96:97-136
    
    
    [58] Horgan C. O., Abeyaratne R. A bifurcation problem for a compressible nonlinear. elastic medium: growth of a micro-void [J], J. Elasticity, 1986, 16:189-200
    [59] Huaghton D.M. Cavitation in compressible elastic membranes [J], Int. J. Eng. Sci., 1990, 28:162-180
    [60] Mernard F. Exsitence and nonexistence results on the radially symmetric cavitation problem [J], Quart. Appl. Math., 1992, 50:201-226
    [61] Biwa, S., Matsumoto E., Shibata T. Effect of constitutive parameters on formation of a spherical void in a compressible nonlinear elastic material [J], Trans. ASME J. Appl. Mech., 1994, 61:395-401
    [62] Horgan C. O. Void nucleation and growth for compressible non-linearly elastic materials: an example [J], Int. J. Solids and Structures, 1992, 29:279-291
    [63] Murphy, J. G., Biwa S. Nonmontonic cavity growth in finite, compressible elasticity [J], Int. J. Solids and Structures, 1997, 34:3859-3872
    [64] 尚新春,程昌钧.非线性弹性材料中的球形空穴分岔[J],力学学报,1996,28:751-755
    [65] Shang Xin-chun, Cheng Chang-jun. Exact Solution for cavitated bifurcation for compressible hyper-elastic materials [J], Int. J. Engin. Sci., 2001, 39:1101-1117
    [66] Ren Jiu-sheng and Cheng Chang-jun. Cavitated bifurcation for composed compressible hyper-elastic materials [J], Acta Mechanica Solida Sinica, 2002, 15:208-213
    [67] Ren Jiu-sheng and Cheng Chang-jun, Zhu Zheng-you. Cavity formation at the center of a sphere composed of two compressible hyper-elastic materials [J], Appl. Math. and Mech., 2003, 9:892-898
    [68] 任九生,程昌钧.各向异性可压缩超弹性材料中的空穴分岔[C].全国固体力学会议,2002,8
    [69] Hao Tian-hu. A theory of the appearance and growth of the microspherical void [J], Int. J. of Fracture, 1990, 43:R54-R55
    [70] Hill J.M. Cylinderical and spherical inflation in compressible finite elasticity [J], J of Appl. Math., 1993, 50:195-201
    
    
    [71] Hou Hang-sheng. A study of combined asymmetric and cavitated bifurcation in neo-Hookey material under symmetric dead loading [J], J. Appl. Mech., 1993, 60:1-7
    [72] Biwa S. Critical stretch for formation of a cylindrical void in a compressible hyperelastic material [J], Int. J. Nonlinear Mech., 1995, 30:899-914
    [73] Lei H. C., Chang H. W. Void formation and growth in a class of compressible solids [J], J. Engin. Math., 1996, 30:693-706
    [74] 尚新春,程昌钧.弹性固体材料中的空穴萌生与增长[J],北京科技大学学报,2002,24:380-382
    [75] Kakavas P. A. Influence of the cavitation on the stress-strain fields of compressible Blatz-Ko materials at finite deformation [J], Int. J. Solids and Structures, 2002, 39: 783-795
    [76] 程昌钧,朱正佑.结构的屈曲与分叉[M],兰州大学出版社,1991
    [77] 尚新春,程昌钧.环向薄膜的膨胀失稳[J],应用数学和力学,1991,12:523-529
    [78] 尚新春.非线性球形薄膜的膨胀失稳[J],应用数学和力学,1991,12:927-933
    [79] 程昌钧,尚新春.超弹性矩形板单向拉伸时微孔的增长[J],应用数学和力学,1997,18:573-578
    [80] Ren Jiu-sheng, Cheng Chang-jun, Shang Xin-chun. The growth of a void in a rubber rectangular plate under uniaxial extension[J], Journal of Shanghai University (English Edition), 2001, 5:177-182
    [81] Koiter, W.T. On the stability of elastic equilibrium [D], Delft. Holland, English translation, NASA Tech. Trans., 1967
    [82] Hunt G.W. Imperfection-sensitivity of semi-symmetric branching [J], Proc. Royal. Soc. London, Set. A, 1977, 357:193-211
    [83] Wiwa Y., Watanabe E., Nakagawa N. Catastrophe and imperfection sensitivity of two-degree-of-freedom systems [J], Proc. Japan Society Civil Engineers, 1981, 307: 99-111
    [84] Huntchinson J.W., Koiter W.T., Postbuckling theory [J], Appl. Mech. Rev., 1970, 23:1353-1366
    
    
    [85] Thomson J.M.T., Hunt G.W. A general theory of elastic stability [M]. John Wiley, New York, 1973
    [86] Kiyohiro, Murota K. Computation of critical initial imperfection of truss structures [J], J. Engrg. Mech. Div., 1989, 116:2101-2117
    [87] Murota K., Ikeda K. Critical imperfection of symmetric structures [J], SIAM Appl. Math., 1991, 51:1222-1254
    [88] Murota K., Ikeda K. Critical initial imperfection of structures [J], Int. J. Solids and Structures, 1990, 26:865-886
    [89] 丛玉豪.缺陷分支理论的若干应用[D].博士学位论文,兰州大学,1995
    [90] 朱正佑,丛玉豪.缺陷对结构临界载荷的影响[J],应用数学和力学,1999,20:1033-1039
    [91] 丛玉豪,才佳宁,朱正佑.缺陷对音叉型结构临界载荷的影响(英文)[J],上海师范大学学报,2001,30:11-16
    [92] Polignone D. A., Horgan C. O. Cavitation for incompressible anisotropic nonlinearly elastic spheres [J], J. of Elasticity, 1993, 33:27-65
    [93] Golubitsky M, Schaeffer DG. Singularities and Groups in Bifurcation Theory [M]. Vol. Ⅰ, Spinger-Varlag, New York Berlin Heidelberg, 1985
    [94] Golubitsky M, Schaeffer DG. Singularities and Groups in Bifurcation Theory [M]. Vol. Ⅱ, Spinger-Varlag, New York Berlin Heidelberg, 1985
    [95] Chow S.-N, Hale J.K. Method of bifurcation theory [M]. Spinger-Varlag, New York Berlin Heidelberg, 1982
    [96] 程昌钧.当前理论和应用力学的重要发展方向[J],国际学术动态,1989,5:95-96
    [97] 艾龙根A.c.,舒胡毕E.S.弹性动力学[M].戈革译,石油工业出版社,1983
    [98] 郭兴明.非线性弹性动力学解的存在性[J],应用数学和力学,1997,18:223-229
    [99] Guo Xing-ming. The existence of solution to the finite elastodynamics with mixed boundary conditions [J], Appl. Math. and Mech., 1998, 19:27-35
    [100] 傅依铭.结构非线性动力学分析[M].暨南大学出版社,1997
    
    
    [101] 刘延柱,陈立群.非线性振动[M].高等教育出版社,2001
    [102] Cheng chang-jun, Zhang Neng-hui. Variational principles on static-dynamic analysis of viscoelastic thin plates with applications [J], Int. J. of Solids and Structures, 1998, 35:4491-4505
    [103] Zhang Neng-hui, Cheng chang-jun. Non-linear mathematical model of viscoelastic thin plates with its applications[J], Computer Methods in Appl. Mech. and Engin., 1998, 165:307-319
    [104] Zhang Neng-hui, Cheng chang-jun. Two-mode Galerkin approach in dynamic stability analysis of viscoelastic plates [J], Appl. Math. and Mech., 2003, 24:247-255
    [105] Fan Xiao-jun, Cheng Chang-jun. Buckled states of viscoelastic nonlinear circu-lar plates[C], Proceedings of the International Conference on Nonlinear Mechanics, ICNM, 1998, 196-200
    [106] Chen Li-qun, Cheng Chang-jun. Dynamical behavior of nonlinear viscoelastic columns based on 2-order Galerkin truncation [J], Mech. Research Commun., 2000, 27:413-419
    [107] Zhu Zheng-you, Li Gen-guo, Cheng Chang-jun. Quasi-static and dynamical analysis for viscoelastic Timoshenko beam with fractional derivative constitutive relation [J], Appl. Math. and Mech., 2002, 23:1-12
    [108] Zhu Zheng-you, Li Gen-guo, Cheng Chang-jun. Numerical method for fracional in-tegral with applications [J], Appl. Math. and Mech., 2003, 24::373-384
    [109] Li Gen-guo, Zhu Zheng-you, Cheng Chang-jun. Application of Galerkin method to dynamical behavior of viscoelastic Timoshenko beam with finite deformation [J], Mechanics Time-Dependent Materials, 2003, 7:175-188
    [110] Chen Li-qun. Chaos in perturbed planar non-Hamiltonian integrable systems with slowly-varying angle parameters [J], Appl. Math. and Mech., 2001, :22:1301-1305
    [111] Chen Li-qun. A general formalism for synchronization in finite dimensional dynam-ical systems [J], Chaos, Solitons and Fractals, 2004, 19:1239-1242
    
    
    [112] Chen Li-qun, Liu Yan-zhu, Cheng Gong. Chaotic attitude motion of a magnetic rigid spacecraft in a circular orbit near the equatorial plane [J], Journal of the Franklin Institute, 2002, 339:121-128
    [113] Knowles J.K. Large amplitude oscillations of a tube of incompressible elastic material [J], Q. Appl. Math., 1960, 18:71-77
    [114] Knowles J.K. On a class of oscillations in the finite deformation theory of elasticity [J], J. Appl. Mech., 1962, 29:283-286
    [115] Guo Z.H., Solecki R. Free and forced finite amplitude oscillations of an elastic thick-walled hollow sphere made of incompressible material[J], Arch. Mech. Stos., 1963,15:427-433
    [116] Calderer C. The dynamical behavior of nonlinear elastic spherical shells[J], J. Elas-ticity, 1983, 13:17-47
    [117] Chou-Wang M.-S, Horgan C.O. Cavitation in nonlinearly elastodynamics for neo-Hookean materials [J], Int. J. Eng. Sci., 1989, 27:967-973
    [118] 朱正佑,丁睿.音叉普适开折的若干动力学性质[J],固体力学学报,1996,16:329-335
    [119] 陈至达.有限变形力学基础[M].中国矿业大学出版社,2001
    [120] Ogden R. W. Nonlinear Elastic Deformations [M]. Ellis Horwood, Chichester, West Sussex, England 1984
    [121] Blatz P.J., Ko W.L. Application of finite elastic theory to the deformation of rubbery materials[J], Trans. Soc. Pheil., 1962, 6:223-251
    [122] 朱正佑,程昌钧.分支问题的数值计算方法[M].兰州大学出版社,1989
    [123] 张锦炎.常微分方程的几何方法与分岔[M].北京大学出版社,2001
    [124] 王联,王慕秋.非线性常微分方程定性分析[M].哈尔滨工业大学出版社,1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700