CTLA4Ig修饰树突状细胞诱导对氧化修饰低密度脂蛋白免疫耐受的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分CTLA4Ig诱导T细胞对氧化修饰低密度脂蛋白免疫无能的研究
     目的:目前研究认为,动脉粥样硬化是一种炎症性疾病,免疫应答是引起机体炎症反应的重要因素。树突状细胞(dendritic cell,DC)、T淋巴细胞和氧化修饰低密度脂蛋白(oxidized-loW density lipoprotein,ox-LDL)均参与了致动脉粥样硬化的免疫反应。本研究拟采用融合蛋白CTLA4Ig阻断DC上B7与T细胞上CD28结合而传递的共刺激信号,诱导T细胞对ox-LDL的免疫无能,并对机理进行初步探讨,以期发现防治动脉粥样硬化的新策略。
     方法:分离外周血单个核细胞,黏附法分离单核细胞,加入rhGM-CSF(500IU/ml)和rhIL-4(500 IU/ml)培养6天以诱导DC。在DC中分别加入PBS、LDL(10μg/ml)、ox-LDL(10μg/ml)和LPS(30 ng/ml),作用48小时,流式细胞法检测CD86、HLA-DR等细胞标志。ELISA法检测上清中IL-12的含量。取刺激后的DC与同种异体T淋巴细胞行混合淋巴细胞反应(mixed lymphocytereaction,MLR),ox-LDL组分别加入不同浓度的CTLA4Ig(0、0.31、0.62、1.25μg/ml),MTT法检测T细胞的增殖。分别以流式细胞法和酶联免疫斑点(ELISpot)法检测MLR中T细胞CD25的表达、T细胞的凋亡和细胞因子分泌情况。
     结果:1、LPS和ox-LDL可以促进DC分泌IL-12,较PBS和LDL有显著性差异。CD86(B7)荧光表达率在LPS和ox-LDL10μg/ml刺激后较对照组(PBS组)均有明显升高(P<0.05)。HLA-DR(MHC-Ⅱ)的表达中也有相同的表现。CD86和HLA-DR的MFI在oxLDL(10μg/ml)刺激后明显高于对照组(P<0.05)。2、ox-LDL负载的DC可明显刺激MLR中的T细胞增殖,SI与PBS组和LDL组比较,均有显著性差异(P<0.05)。3、ox-LDL能促进MLR中T细胞分泌IL-2和IFNV(Th1样细胞因子),较PBS组和LDL组明显升高(P<0.05)。ox-LDL也能促进MLR中T细胞分泌IL-4(Th2样细胞因子),较PBS组和LDL组明显升高(P<0.05)。4、CTLA4-Ig可抑制ox-LDL激发的同种异体MLR中T细胞增殖反应,与未应用CTLA4Ig组比较有显著性差异(P<0.05,P<0.01)。5、CTLA4-Ig可明显抑制ox-LDL激发的同种异体MLR中T细胞CD25的阳性率,与未应用CTLA4Ig组比较有显著性差异(P<0.05,P<0.01)。6、应用CTLA4Ig后,淋巴细胞出现一定程度的凋亡,与未用CTLA4Ig比较有显著性差异(P<0.01)。7、CTLA4Ig减少IL-2和IFN Y的ELISpot斑点数,较未应用组有显著性差异(P<0.05,P<0.01);CTLA4Ig增加IL-4的斑点数,较未应用组有显著性差异(P<0.05)。
     结论:1、ox-LDL可以促进DC的表型成熟,激发MLR,证明ox-LDL是一种抗原物质:2、ox-LDL负载的DC激发的MLR中既有Th1型免疫应答,也有Th2型免疫应答;3、CTLA4Ig可以在体外诱导T细胞对ox-LDL的免疫无能;4、CTLA4Ig可以促进ox-LDL负载的DC激发的MLR中的Th1/Th2偏移;5、CTLA4Ig可以抑制ox-LDL负载的DC激发的MLR中的T细胞活化;6、CTLA4Ig可以促进ox-LDL负载的DC激发的MLR中的T细胞凋亡。
     第二部分CTLA4Ig基因转染对树突状细胞针对氧化修饰低密度脂蛋白免疫功能的影响
     目的:目前研究认为,动脉粥样硬化是一种炎症性疾病,DC与动脉粥样硬化发生和发展的病理过程密切相关,干预DC功能可能成为防治动脉粥样硬化的重要措施。CTLA4Ig可与抗原递呈细胞的B7-1/2分子结合,阻断抗原递呈细胞和抗原特异性T淋巴细胞之间的共刺激信号传递。CTLA4Ig基因转染DC在移植实验中可以诱导机体对移植物抗原的免疫耐受。本研究拟采用人外周血单个核细胞诱导的DC为研究对象,研究含CTLA4Ig基因腺病毒(Ad-CTLA4Ig)转染DC对动脉粥样硬化相关抗原-ox-LDL免疫反应的影响,以期在体外诱导对ox-LDL的免疫耐受,为进一步的动物实验提供基础。
     方法:分离外周血单个核细胞,黏附法分离单核细胞,加入rhGM-CSF(500IU/ml)和rhIL-4(500 IU/ml)培养4天,用Ad-CTLA4Ig分别以感染指数(multiplicity of infection,MOI)=100,MOI=200和MOI=300感染DC,以含强化绿色荧光蛋白(Ad-EGFP)转染DC和未转染的DC为对照,继续培养4天。ELISA法检测上清CTLA4Ig的含量。荧光显微镜、流式细胞法和免疫印迹(Western blot)法检测CTLA4Ig的表达情况。取转染3天后的DC,加入ox-LDL(10ug/ml),继续培养48hr。ELISA法检测上清IL-12含量。流式细胞法检测CD86和HLA-DR的表达率。取ox-LDL刺激48hr的基因转染DC、未转染DC及加入10ug/mlCTLA4Ig的未转染DC,与同种异体淋巴细胞行MLR,MTT法检测T细胞的增殖。分别以流式细胞法和酶联免疫斑点(ELISpot)法检测MLR中T细胞CD25的表达、T细胞的凋亡和细胞因子分泌情况。
     结果:1、CTLA4Ig表达率随着时间逐渐增高,在转染后72小时达到高峰。MOI=200时转染率最高。2、CTLA4Ig基因转染DC经ox-LDL刺激后,IL-12的分泌量明显低于Ad-EGFP转染DC(P<0.05)和未转染DC(P<0.05)。3、CTLA4Ig基因转染DC CD86和HLA-DR的表达率明显降低,以CD86的降低明显(P<0.05)。4、CTLA4Ig基因转染DC在MLR中的SI均明显低于未转染DC和Ad-EGFP转染DC(分别P<0.05)。5、在ox-LDL负载的CTLA4Ig基因转染DC激发的MLR中,CD25的表达率较未转染DC和Ad-EGFP转染DC明显降低(P<0.05)。6、在ox-LDL负载的CTLA4Ig基因转染DC激发的MLR中,T细胞凋亡率较未转染DC和Ad-EGFP转染DC明显增高(P<0.01)。7、在CTLA4Ig基因转染DC激发的MLR中,T细胞分泌的IL-2和IFNγ较空白对照和Ad-EGFP转染DC明显降低(均P<0.05)。T细胞分泌的IL-4较空白对照和Ad-EGFP转染DC明显升高(P<0.05)。
     结论:1、Ad-CTLA4Ig转染人DC的最佳MOI=200,最佳表达时相为转染后72小时。2、Ad-CTLA4Ig转染可以降低DC负载ox-LDL后IL-12的分泌,降低CD86和HLA-DR的表达率和刺激MLR的能力,使DC保持一定的未成熟状态。3、Ad-CTLA4Ig转染DC可以在体外诱导对动脉粥样硬化抗原ox-LDL的免疫耐受。4、Ad-CTLA4Ig转染DC通过降低T细胞的激活、促进T细胞凋亡和促进免疫应答的Th1/Th2偏移等机制来诱导对ox-LDL的免疫耐受。
PartⅠCTLA4Ig induces immune anergy of T cells to oxidized-low density lipoprotein in vitro.
     Aim:Recently it is accepted that atherosclerosis is a disease of inflammation,and immune reaction is the most important element in inflammation.The immune elements related to atherosclerosis include dendritic cells(DC),T cells and oxidized-low density lipoprotein(ox-LDL).In this study,CTLA4Ig was used to block the co-stimulation signals between DCs and T cells to induce anergy of T cells to ox-LDL.
     Methods:Monocytes were separated from peripheral blood by adhension methods and cultured with rhGM-CSF 500IU/ml and rhIL-4 500IU/ml to get DCs.After 6 days culture,cells were treated with PBS,LPS(20ng/ml),LDL(10μg/ml)and ox-LDL(10μg/ml)for 48 hours.Phenotype(CD14,CD86 and HLA-DR)were analysed by flow cytometry(FCM).IL-12 secreted by DCs was assayed by ELISA method.The treated DC were mixed with allogeneic T lymphocytes for further 4 days.CTLA4Ig of different concentration(0、0.31、0.62、1.25μg/ml)were added at the beginning of the mix.The proliferation of Tlymphocytes was analysed by MTT method.
     Results:1.Ox-LDL stimulated DCs to secret IL-12 more than PBS and LDL significantly.Expression of CD86 and HLA-DR of DCs treated with LPS and ox-LDL were significantly higher than that with PBS and LDL(P<0.05, respectively).2.DCs treated with LPS and ox-LDL stimulated the allogenic lymphocyte mix reaction significantly than that treated with PBS and LDL(P<0.05, respectively).3.Ox-LDL and LPS treated DCs stimulated T cells in MLR to secret IL-2,IFNγand IL-4 significantly higher than those of PBS and LDL(P<0.05, respectively).4.CTLA4Ig suppressed the allogenic lymphocyte mix reaction significantly with significant dose-dependent effect(P<0.05,P<0.01,respectively).5. CTLA4Ig inhibited CD25 expression in MLR stimulated by ox-LDL treated DCs significantly compared with that in absence of CTLA4Ig(P<0.05,P<0.01, respectively).6.CTLA4Ig induced T cell apoptosis in MLR significantly compared with that in absence of CTLA4Ig(P<0.01,respectively).7.CTLA4Ig inhibited ELISpot counts of IL-2 and IFNγsignificantly compared with that in absence of CTLA4Ig,while increased ELISpot counts of IL-4(P<0.05,P<0.01,respectively).
     Conclusions:1.Ox-LDL is an antigen.2.Ox-LDL can stimulates both Thl immune reaction and Th2 immune reaction.3.CTLA4Ig can induced T cell anergy to ox-LDL in vitro.4.CTLA4Ig can induce Th1/Th2 deviation in MLR.5.CTLA4Ig can inhibit T cell activation in MLR.6.CTLA4Ig can induce T cell apoptosis in MLR.
     PartⅡInfluence of CTLA4Ig gene transfection on immune function of DCs to oxidized-low density lipoprotein.
     Aim:Now it is accepted that atherosclerosis is one kind of inflammation disease, and DCs are concerned with atherosclerosis.CTLA4Ig can combine with B7 on DCs to block costimulation signals conducted between DCs and T cells.In this study,DCs derived from peripheral mononuclear cells were transfected with CTLA4Ig gene by adenovirus,to detect the influence on immune function of DCs to oxidized-low density lipoprotein.
     Methods:Monocytes were separated from peripheral blood by adhension methods and cultured with rhGM-CSF 500IU/ml and rhlL-4 500IU/ml to get DCs.After 4 days culture,DCs were transfected with adenovirus with CTLA4Ig gene(Ad-CTLA4Ig)at different multiplicity of infection(MOI)(MOI=100,MOI=200 and MOI=300 respectively)and cultured for further 4 days.DCs transinfected with Ad-EGFP and non-transfected DCs were used as controls.CTLA4Ig expression was detected by ELISA,fluorescence microscope,flow cytometry and Western blot respectively. DCs transfected for 3 days were treated with ox-LDL(10ug/ml)for further 48 hours. IL-12 secretion was assayed by ELISA,and phenotypes(CD86,HLA-DR)were tested by flow cytometry.DCs(Ad-CTLA4Ig DC,Ad-EGFP DC,un-transfected DC, un-transfected DC with 10ug/ml CTLA4Ig)treated with ox-LDL were mixed with allogeniec T cells for further 4 days.CD25 expression of T cells in MLR and apoptosis of T cells in MLR were assayed by flow cytometry.Cytokine secretion (IL-2,IL-4 and IFNγ)were assayed by ELISpot.
     Results:1.The climax of CTLA4Ig expression is at the time after 3 days transfection at MOI=200.2.Secretion of IL-12 of DCs transfected with Ad-CTLA4Ig were lower than those of DCs transfected with Ad-EGFP and un-tranfected significantly(P<0.05,respectively).3.CTLA4Ig transfection inhibited expression of CD86 and HLA-DR significantly(P<0.05,respectively).4.SI of MLR stimulated with DC transfected with Ad-CTLA4Ig was inhibited significantly than those of DCs transfected with Ad-EGFP and un-tranfected(P<0.05,respectively).5.CD25 expression of T cells in MLR stimulated with DCs transfected with Ad-CTLA4Ig was lower than than those of DCs transfected with Ad-EGFP and un-tranfected significantly(P<0.05,respectively).6.Apoptosis of T cells in MLR stimulated with DCs transfected with Ad-CTLA4Ig was higher than than those of DCs transfected with Ad-EGFP and un-tranfected significantly(P<0.05,respectively).7.DCs transfected with Ad-CTLA4Ig inhibited seretion of IL-2 and IFNγsignificantly compared with DCs transfected with Ad-EGFP and un-tranfected significantly (P<0.05,respectively),while stimulated IL-4 secretion significantly(P<0.05, respectively).
     Conclusions:1.The appropriate transfection time of Ad-CTLA4Ig on DCs was 3 days,and the appropriate transfection MOI=200.2.Ad-CTLA4Ig transfection decreases expression of CD86 and HLA-DR on DCs,and attenuates function of DCs to stimulate MLR.So Ad-CTLA4Ig transfection retards maturation of DCs.3.DCs tranfected with Ad-CTLA4Ig can induce immune anergy ofT cells to ox-LDU 4.DCs tranfected with Ad-CTLA4Ig induce immune anergy to ox-LDL through mechanisms of inhibiting T cells activation,stimulation of T cells apoptosis and induction of Th1/Th2 deviation.
引文
[1] GK Hansson. Inflammation, Atherosclerosis, and Coronary Artery Disease. N Engl J Med 2005; 352: 1685-95.
    
    [2] Lipscomb MF, Masten BJ. Dendritic cells: immune regulators in health and disease. Physiol Rev 2002; 82: 97-130.
    
    [3] Steinman RK, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21: 685-711.
    
    [4] Heath WR, Belz GT, Behrens GM, et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 2004; 199: 9-26.
    
    [5] de Jong EC, Smits HH, Kapsenberg ML. Dendritic cell-mediated T cell proliferation. Springer Semin Immunopathol 2005; 26: 289-307.
    
    [6] Morel PA, Feili-Hariri M, Coates PT, et al. Dendritic cells, T cell tolerance and therapy of adverse immune reactions. Clin Exp Immunol 2003; 133: 1-10.
    
    [7] Lord RS, Bobryshev YV. Clustering of dendritic cells in athero-prone areas of aorta. Atherosclerosis 1999; 146: 197-198.
    
    [8] Lord RS, Bobryshev YV. Clustering of dendritic cells in athero-prone areas of aorta. Atherosclerosis 1999; 146: 197-198.
    
    [9] Millonig G, Malcom GT, Wick G.Early inflammatory-immunological lesions in juvenile atherosclerosis from the Pathobiological Determinants of Atherosclerosis inYouth(PDAY)-study. Atherosclerosis 2002; 160: 441-448.
    
    [10] Yilmaz A, Lochno M, Traeg F, et al. Emergence of dendritic cells in rupture-prone regions of vulnerable carotid plaques. Atherosclerosis 2004; 176: 101-110.
    
    [11] Ford PJ, Gemmell E, Chan A, et al. Inflammation, heat shoch priteins and periodontal pathogens in atherosclerosis in an immunohistologic study. Oral Microbiol Immunol 2006; 21(4): 206-211.
    
    [12] Bobryshev YV, Taksir T, Lord RS,et al. Evidence that dendritic cells infiltrate atherosclerotic lesions in apolipoprotein E-defient mice. Histol Histopathol 2001; 16:801-808.
    [13] Stemme S, Rymol L, Hansson GK. Polyclonal origin of T lymphocytes in human atherosclerotic plaques. Lab Invest 1991; 65: 654-660.
    [14] Swanson SJ, Rosenzweig A, Seidman JG, et al. Diversity of T-cell antigen receptor V gene utilization in advanced human atheroma. Arterioscl Thromb 1994; 14: 1210-1214.
    [15] Seko Y, Sato O, Takagi A, et al. Restricted usage of T-cell receptor Vα-Vβgenes in infiltrating cells in aortic tissue of patients with Takayasu's arteritis. Circulation 1996; 93: 1788-1790.
    [16] Oksenberg JR, Stavri GT, Jeong MC, et al. Analysis of the T-cell receptor repertoire in human atherosclerosis. Cardiovasc Res 1997; 36: 256-267.
    [17] van der Wal AC, Becker AE, van der Loos CM, et al. Site of imtimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994; 89: 36-44.
    [18] Frostegard J, Ulfgren AK, Nyberg P, et al. Cytokine expression in advanced-human atherosclerotic plaques: dominance of pro-inflammatory(Th1) and macrophage-stimulating cytokines. Atherosclerosis 1999; 145: 33-43.
    [19] Schonbeck U, Mach F, Sukova GK, et al. Regulation of matrix metalloproteinase expression in human vascular smooth muscle cells by T lymphocytes: a role for CD40 signaling in plaque rupture? Circ Res 1997; 81: 448-454.
    [20] de Boer OJ, Teeling P, Idu MM, et al. Epstein Barr virus specific T-cells generated from unstable human carotid atherosclerotic lesions: Implications for plaque inflammation. Atherosclerosis 2006; 184: 322-329.
    [21] Knoflach M, Kiechl S, Mayrl B, et al. T-cell reactivity against HSP60 relates to early but not advanced atherosclerosis. Atheosclerosis 2006; ???
    [22] Sonmez A, Kisa U, Uckaya G, et al. Asymptomatic kindred of patients with coronary events have increased peripheral T-cell activities. Heart Vessels 2006; 21: 242-246.
    [23] Caligiuri G, Nicoletti A, Zhou X, et al. Effects of sex and age on atherosclerosis and autoimmunity in apoE-deficient mice. Atherosclerosis 1999; 145: 301-308.
    [24] Zhou X, Stemme S, Hansson GK. Evidence for a local immune response in atherosclerosis: CD4+ T cells infiltrate lesions of apoE-deficient mice. Am J Pathol 1996; 149: 359-366.
    [25] Daugherty A, Pure E, Delfel-Bulteiger V, et al. The effects of total lymphocyte deficiency on the extent of atherosclerosis in apoliprotein E-/- mice. J Clin Invest 1997; 100: 1575-1580.
    [26] Zhou X, Nicoletti A, Elhage R, et al. Transfer of CD4+ cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 2000; 102:2919-2922.
    [27] Zhou X, Robertson AK, Rudling M, et al. Lesion development and response to immunization reveal a complex role for CD4 in atherosclerosis. Circ Res 2005; 96: 427-434.
    [28] Guerder S,Flavell RA.Costimulation in tolerance and autoimmunity.Int Rev Immunol, 1995,13(2): 135
    [29] Ellis JH,Burden MN,Vinogradov DV,et al.Interactions of CD80 and CD86 with CD28 and CTLA4.J Immunol, 1996,156(8):2700
    [30] Bunono C, Pang H, Uchida Y, et al. B7-1/B7-2 costimulation regulates plaque antigen-specific T-cell responses and atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation. 2004; 109; 2009-2015.
    [31] Linsley PS,Wallace PM,Johnson J,et al.Immunosuppression in vivo by a soluble form of the CTLA4 T cell activation molecule.Scicence, 1992,257(5701):792
    [32] Faries MB, Bedrosian I, Xu S, et al. Calcium signaling inhibits interleukin-12 production and activates CD83( + ) dendritic cells that include Th2 cell development. Blood ,2001, 98(8): 2489-2497.
    [33] Banchereau J, Steiman RM. Dendritic cells and the control of immunity. Nature, 1998; 392(19): 245-252.
    [34] Lukas.M,et al.Human cutaneous dendritic cells migrate through dermal lymphatic vessels in a skin organ culture model.J Invest Dermatol 1996; 106:1293-1299.
    [35] Furies MB , Bedrosian I , Xu S , et al . Calcium signaling inhibits interleukin -12 production and activates CD83(+) dendritic cells that induce Th2 cell development. Blood , 2001 ,98 (8): 2487-2497.
    [36] Genevieve DB , Veronique M , Francoise T, et al. Regulation T helper cell differentiation in vivo by soluble and membrane proteins provided by antigen-presenting cells . Eur J Immunol, 1998 ,28 : 3161
    [37] Gately MK , Wolitzky AG , Quinn PM , et al . Regulation of human cytolytic lymphocyte responses by interleukin 12 . Cell Immunol , 1992,143:127-142.
    [38] Podlaski FJ , Nanduri VB , Hulurs JD , et al. Molecular characterization of Interleukin-12 . Arch Biochem Biophys, 1992; 294(1 ):230-237
    [39] Chan SH , Kobayshi M , Santoli D ,et al . Mechanisms of IFN-gamma induction by natural killer cell stimulatory factor (NK-SF/IL-12) . Role of transcription and mRNA stability in the synergistic interaction between NKSF and IL-2 . J Immunol, 1992 ; 148: 92-98
    [40] Alzona M , Jack HM , Fisher RI, et al . IL-12 activates IFNγ production through the preferential activation of CD20+ T cells . J Immunol. 1995 ; 154 : 9-12
    [41] Nagy E , Bublmann JE , Henics J , et al . Selective modulation of IFN-gamma mRNA stability by IL-12/NKSF . Cell Immunol , 1994 ; 1159(2): 140-154
    [42] Trinchieri G . Interleukin-12 and its role in the generation of Th1 IFN-gamma mRNA stability by IL-12/NKSF . J Immunol Today , 1993 ; 14 (7) :335-338
    [43] Teruo I,Toshihiko U,Hirotoshi K,et al.Antibody against oxidized low density lipoprotein may predict progression or regression of atherosclerotic coronary artery disease.[J] J Am Coll Cardiol 2001 ;37:1871-1876.
    [44] Stemme S,Faber B,Holm J,et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein.[J] Proc Natl Acad Sci USA 1995;92:3893-3897.
    [45] Fredrikson GH, Andersson L, Soderberg I, et al. Atheroprotective immunization with MDA-modified apoB-100 peptide sequence was associated with zctivation of Th2 specific antibody expression. Autoimmunity 2005,38(2): 171 -179.
    [46] Mosmann TR, Sad S. The expading universe of T-cell subsets: Th1 ,Th2 and more. Immunol Today,1996;17:138-146.
    [47] Roth R, Spiegelberg HL. Activation of cloned human CD4~+ Th1 and Th2 cells by blood dendritic cells. Scand J Immunol, 1996;43:646-651.
    [48] Zhou X, Robertson AK, Rudling M, et al. Lesion development and response to immunization reveal a complex role for CD4 in atherosclerosis. Circ Res, 2005; 96: 427-434.
    [49] van Puijveide GH, Hauer AD, deVos P, et al. Induction of oral tolerance to oxidized low-density lipoprotein ameliorate atherosclerosis. Cieculation, 2006. 114: 1968-1976.
    [50] Whitman SC, Ravisankar P, Daugherty A. IFN-gamma deficiency exerts gender-specific effects on atherosclerosis in apolipoprotein E -/- mice. J Interferon Cytokine Res, 2002,22:661-70.
    [51] von ver Thusen JH, Kuiper J, et al. Attenuation of atherosclerosis by systemic and local adeno virus-mediated gene transfer of interleukin-10 in LDLr-/-mice. FASEB J, 2001,15:2730-2732.
    [52] Galigiuri G, Nicoletti A, Poirier B, et al. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest, 2002; 109:745-753.
    [53] Potteaux S, Esposito B, van Oostrom O, et al. Leukocyte-derived interleukin 10 is required for protection against atherosclerosis in low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol 2004; 24: 1474-1478.
    [54] Galigiuri G, Nicoletti A, Poirier B, et al. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest, 2002; 109: 745-753.
    [55]Boussiotis VA,Freeman CJ,Fibben JG,et al.The role of B7-1/B7-2:CD28/CTLA4 pathways in the prevention of anergy,induction of productive immunity and down-regulation of the immune response.Immunol Rev,1996;153:5.
    [56]Honak K,Alemseged T,Sweet RW.Analysis of the site of interaction of CD28 with its counter-receptors CD80 and CD86 and correlation with function.J Immunol,1996,157(1):29-38.
    [57]郑宇,黎燕,沈倍奋,等。CTLA4-Ig影响T细胞功能及机理的初步研究。分子与细胞免疫学,2001,17(9):455-462。
    [58]Abehsira-Amar O,Gibert M,Joliy M,Theze J,Jankovic D.IL-4 plays a dominant role in the differential development of Tho into Th1 and Th2 cells.J Immunol,1992;148:3820-3829.
    [59]Kato C,Sato K,Eishi Y,Nakamura K.The influence of initial exposure timing to β-lactoglobulin on oral tolerance induction.J Allergy Clin Immunol,1999;104(4 Pt 1):870-878.
    [60]Takeuchi T,Lowry RP,Konieczny B.Heart allografts in murine systems.Transplantation,1992;53:1281-1294.
    [61]Gao QL,Chen NX,Rouse TM,Field EH.The role of interleukin-4 in the induction phase of allogeneic neonatal tolerance.Transplantation,1996;62:1847-1854.
    [62]毕树雄,戴魁戎,汤亭亭。Il-4和IL-10联合诱导异种骨移植免疫耐受的实验研究。中国矫形外科杂志,2005,13(15):1174-1178。
    [63]Chang JT,Sheyach EM,Segal BM.Regulation of interleukin(IL)-12receptor β_2 subunit expression by endogenous IL-12:a critical step in the differentiation of pathogenic autoreactive T cells.J Exp Med,1999;189:969-978.
    [64]Szabo SJ,Dighe AS,Gubler U,et al.Regulation of the interleukin(IL)-12Rβ_2 subunit expression in developing T helper(Th1)and Th2 cells.J Exp Med,1997;185:817-824.
    [65]Lenschow DJ,Zeng Y,Thistlethwaite JR,et al.Long-term survival of zenogeneic pancreatic islet grafts induced by CTLA4Ig.Science,1992,257:789-792.
    [66]Sun W,Wang Q,Zhang L,et al.Blockade of CD40 pathway enhances the induction of immune tolerance by immature dendritic cells genetically modified to express cytotoxic T lymphocyte antigen 4 immunoglobulin.Transplantation,2003,76:1351-1359.
    [67]Guillot C,Mathieu P,Coathalem H,et al.Tolerance to cardiac allografts via local and systemic mechanisms after adenovirus-mediated CTLA4Ig expression.J Immunol,2000,164:5258-5268.
    [68]郑峻松,吴军,马兵,等。CTLA4Ig基因转染猪皮异种移植的体外研究。第三军医大学学报,2001,23(7):762-764。
    [69]Mihara M,Tan I,Chuzhin Y,et aI.CTLA4Ig inhibits T cell-dependent B-cell maturation in murine systemic lupus erythematosus.J Clin Invest,2000,106(1):91-101.
    [70]Mcintoxh KR,Linsley PS,Bacha PA,et al.Immunotherophy of experimental autoimmune myasthemia gravis:selective effects of CTLA4Ig and synergistic combination with an IL-12-diphtheria toxin fusion protein.J Neuroimmunol,1998,87(1-2):136-146.
    [71]Albram JR,Lebwohl MG,Guzzo CA,et al.CTLA4Ig-mediated blockade of T-cell costimulation in patient with psoriasis vulgars.J Clin Invest,1999,103(9).
    [72]Abrams JR,Kelly SL,Jegasothy BV,et al.J Exp Med,2000,192(5):681-694.
    [73]吕方芳。树突状细胞疫苗研究进展。中国癌症杂志,2004,14(1):86-89。
    [74]Guillot C,Ménoret S,Guillonneau C,et al.Active suppression of allogeneic proliferative responses by dendritic cells after induction of long-term allograft survival by CTLA4Ig.Blood,2003(101):3325-3333.
    [75]Takayama T,Morelli AE,Robbins PD,et al.Feasibility of CTLA4Ig gene delivery and expression in vivo using retrovirally transduced myeloid dendritic cells that induce alloantigen-specific T cell anergy in vitro.Gene Ther,2000;7(15):1265-1273.
    [76]Han B,HU Y.Effect of CTLA4-Ig gene-modified dendritic cells on the corneal allografts.J Huazhong Univ Sci Techonolog Med Sci.2006;26(3):366-368.
    [77]胡钰,肖波,杨欢等。树突状细胞负载Tα146-162对实验性自身免疫性重症肌无力的治疗作用。中华微生物和免疫学杂志,2006;26(4):308-311。
    [78]刘凤凡。树突状细胞与移植免疫耐受新进展。现代诊断与治疗,2006:17(3):156-160。
    [79]Lu L,Li W,Fu F,et al.Blokade of the CD 40-CMO ligand pathway potentiates the capacity of donor-derived dendritic cell progenerators to induce long-term cardiac allograft survival.Transplantation,1997,64:1808-1815.
    [80]Kalinski P,Hilkensa VI,Snijdeps A,et al.IL-12 deficient cells,generatal in the presence of prostag 1 and in E2,promote type 2 cytokine production in maturing human naive T helper cells.J Immunol,1997,109:28-35.
    [81]vev GM,Kurts C,MiIler JF,et al.Peripheral deletion of autoreactive CD8+T cell by cross presentation of self-antigen TS by a Bcl-2 inhibitabie pathway mediated by Bin.J Exp Med,2002,196(10):947-955.
    [82]Kurts C,Heath WR,Kosaka H,et al.The peripheral deletion of autoreactive CD8+ T cells induced by cross-presentation of self-antigens involves signaling through CD95(Fas,Apo-1).J Exp Med,1998,188(7):415-420.
    [83]Wu J,Zheng SS.Liver transplantation in china:problem an their solutions.Hepatobiliary Panereat Dis Int,2005,3:17-174.
    [84]Carl GF,Vries JM,Lesterhuis EJ,et al.Dendrite cell immunotherapy,mapping the way.Hature Med,2004,10(5):475-480.
    [85]Sun W,Wang Q,Zhang L,et al.Blockade of CD40 pathway enhances the induction of immune tolerance by immature dendritic cells genetically modified to express cytotoxic T lymphocyte antigen 4 immunoglobulin.Transplantation.2003;76(9):1351-1359.
    [86]Zhong L,Granelli-Piperno A,Choi Y,et al.Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells.Eur J Immunol,1999,29(3):964-972.
    [87]Lu L,Gambotto A,Lee WC,et al.Adenoviral delivery of CTLA4Ig into myeloid dendritic cells promotes their in vitro tolegenicity and survival in allogeneic recipients.Gene Ther.1999;6(4):554-563.
    [1] Bobryshev YV, Lord RSA. Ultrastructural recognition of cells with dendritic cell morphology in human aorta intima. Contacting interactions of vascular dendritic cells in athero-resistant and athero-prone areas of the normal aorta. Arch Histol Cytol 1995;58:307-322.
    [2] Lipscomb MF, Masten BJ. Dendritic cells: immune regulators in health and disease. Physiol Rev 2002; 82: 97-130.
    [3] Steinman RK, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21: 685-711.
    [4] Heath WR, Belz GT, Behrens GM, et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 2004; 199: 9-26.
    [5] de Jong EC, Smits HH, Kapsenberg ML. Dendritic cell-mediated T cell proliferation. Springer Semin Immunopathol 2005; 26: 289-307.
    [6] Morel PA, Feili-Hariri M, Coates PT, et al. Dendritic cells, T cell tolerance and therapy of adverse immune reactions. Clin Exp Immunol 2003; 133: 1-10.
    [7] Lord RS, Bobryshev YV. Clustering of dendritic cells in athero-prone areas of aorta. Atherosclerosis 1999; 146: 197-198.
    [8] Millonig G, Malcom GT, Wick G.Early inflammatory-immunological lesions in juvenile atherosclerosis from the Pathobiological Determinants of Atherosclerosis inYouth(PDAY)-study. Atherosclerosis 2002; 160: 441-448.
    [9] Yilmaz A, Lochno M, Traeg F, et al. Emergence of dendritic cells in rupture-prone regions of vulnerable carotid plaques. Atherosclerosis 2004; 176: 101-110.
    [10] Bobryshev YV, Lord RSA. Co-accumulation of dendritic cells and natural killer T cells within rupture-prone regions in human atherosclerotic plaques. J Histochem Cytochem 2005,????
    [11] Ford PJ, Gemmell E, Chan A, et al. Inflammation, heat shoch priteins and periodontal pathogens in atherosclerosis in an immunohistologic study. Oral Microbiol Immunol 2006; 21(4): 206-211.
    [12] Ranjit S, Dazhu L, Qiutang Z, et al. Differentiation of dendritic cells in monocyte cultures isolated from patients with unstable angina. Int J Cardiol 2004; 97: 551-555.
    [13] Bobryshev YV, Lord RSA. Mapping of vascular dendritic cells in atherosclerotic artories suggests their involvement in local immune-inflammatory reactions. Cardiovasc Res 1998; 37: 799-810.
    [14] Weis M, Schlichtimg CL, Engleman EG, et al. Endothelial determinants of dendritic cell ashension and migration: new implications for vascular diseases. Arterioscler Thromb Vasc Biol 2002; 22: 1817-1823.
    [15] Bobryshev YV, Taksir T, Lord RS,et al. Evidence that dendritic cells infiltrate atherosclerotic lesions in apolipoprotein E-defient mice. Histol Histopathol 2001; 16:801-808.
    [16] Wick G, Roman M, Amberger A, et al. Atherosclerosis, autoimmunity, and vascular-associated lymphoid tissue. FASEB J 1997; 11: 1199-1207.
    [17] Waltner-Romen M, Fackensammer G, Rabl W, et al. A previously unrecognized site of local accumulation of mononuclear cells. The vascular-associated lymphoid tissue. J Histochem Cytochem 1998; 46: 1347-1350.
    [18] Millonig G, Niederegger H, Rabl W, et al. Network of vascular- associated dendritic cells in intima of healthy young individuals. Arterioscler Thromb Vasc Biol 2001; 21: 503-508.
    [19] Yilmaz A, Reiss C, Tantawi O, et al. HMG-CoA reductase inhibitors suppress maturation of human dendreitc cells: new implications for atherosclerosis 2004; 172: 85-93.
    [20] Jonasson L, Holm J, Skalli O,et al. Regional accumulations of T cells , macrophages and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 1986; 6: 131-138.
    [21] Stemme S, Holm J, Hansson GK. T lymphocytes in human atherosclerotic plaques are memory cells expressing CD45R0 and the integrin VLA-1. Arterioscl Thromb 1992; 12:206-211.
    [22] Stemme S, Rymol L, Hansson GK. Polyclonal origin of T lymphocytes in human atherosclerotic plaques. Lab Invest 1991; 65: 654-660.
    [23] Swanson SJ, Rosenzweig A, Seidman JG, et al. Diversity of T-cell antigen receptor V gene utilization in advanced human atheroma. Arterioscl Thromb 1994; 14: 1210-1214.
    [24] Seko Y, Sato O, Takagi A, et al. Restricted usage of T-cell receptor Vα-Vβgenes in infiltrating cells in aortic tissue of patients with Takayasu's arteritis. Circulation 1996; 93: 1788-1790.
    [25] Oksenberg JR, Stavri GT, Jeong MC, et al. Analysis of the T-cell receptor repertoire in human atherosclerosis. Cardiovasc Res 1997; 36: 256-267.
    [26] van der Wal AC, Becker AE, van der Loos CM, et al. Site of imtimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994; 89: 36-44.
    [27] Frostegard J, Ulfgren AK, Nyberg P, et al. Cytokine expression in advanced-human atherosclerotic plaques: dominance of pro-inflammatory(Th1) and macrophage-stimulating cytokines. Atherosclerosis 1999; 145: 33-43.
    [28] Schonbeck U, Mach F, Sukova GK, et al. Regulation of matrix metalloproteinase expression in human vascular smooth muscle cells by T lymphocytes: a role for CD40 signaling in plaque rupture? Circ Res 1997; 81: 448-454.
    [29] de Boer OJ, Teeling P, Idu MM, et al. Epstein Barr virus specific T-cells generated from unstable human carotid atherosclerotic lesions: Implications for plaque inflammation. Atherosclerosis 2006; 184: 322-329.
    [30] Knoflach M, Kiechl S, Mayrl B, et al. T-cell reactivity against HSP60 relates to early but not advanced atherosclerosis. Atheosclerosis 2006; ???
    [31] Sonmez A, Kisa U, Uckaya G, et al. Asymptomatic kindred of patients with coronary events have increased peripheral T-cell activities. Heart Vessels 2006; 21 : 242-246.
    [32] Caligiuri G, Nicoletti A, Zhou X, et al. Effects of sex and age on atherosclerosis and autoimmunity in apoE-deficient mice. Atherosclerosis 1999; 145: 301-308.
    [33] Zhou X, Stemme S, Hansson GK. Evidence for a local immune response in atherosclerosis: CD4+ T cells infiltrate lesions of apoE-deficient mice. Am J Pathol 1996; 149: 359-366.
    [34] Daugherty A, Pure E, Delfel-Bulteiger V, et al. The effects of total lymphocyte deficiency on the extent of atherosclerosis in apoliprotein E-/- mice. J Clin Invest 1997; 100: 1575-1580.
    [35] Zhou X, Nicoletti A, Elhage R, et al. Transfer of CD4+ cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 2000; 102:2919-2922.
    [36] Zhou X, Robertson AK, Rudling M, et al. Lesion development and response to immunization reveal a complex role for CD4 in atherosclerosis. Circ Res 2005; 96: 427-434.
    [37] Zhou X, Robertson AK, Hjerpe C, et al. Adoptive transfer of CD4+ T cells reactive to modified low-density lipoprotein aggravates atherosclerosis. Arterioacler Thromb Vasc Biol 2006; 26: 864-870.
    [38] Potteaux S, Esposito B, van Oostrom O, et al. Leukocyte-derived interleukin 10 is required for protection against atherosclerosis in low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol 2004; 24: 1474-1478.
    [39] Fredrikson GH, Andersson L, Soderberg I, et al. Atheroprotective immunization with MDA-modified apoB-100 peptide sequence was associated with zctivation of Th2 specific antibody expression. Autoimmunity 2005,38(2): 171-179.
    [40] Stemme S, Faber B, Holm J, et al. T lymphocytes from human atherosclerotic plaques recognize oxidized LDL. Proc Natl Acad Sci USA 1995; 92: 3893-3897.
    [41] Teruo I,Toshihiko U,Hirotoshi K,et al.Antibody against oxidized low density lipoprotein may predict progression or regression of atherosclerotic coronary artery disease.J Am Coll Cardiol 2001 ;37:1871-1876.
    [42]Yla-Herttuala S,Palinski W,Butler SW,et al.Rabbit and human atherosclerotie lesions contain IgG that recognized epitopes of oxidized LDL.Arterioscl Thromb 1994;14:32-40.
    [43]Palinski W,Ord V,Pluup AS,et al.ApoE-deficient mice are a model of lipoprotein oxidation in atherogenesis:demonstration of oxidation-specific epitopes in lesions and high titers of autoantibodies to malondialdehyde-lysine in serum.Arterioscler Thromb 1994;14:605-616.
    [44]Galigiuri G,Nicoletti A,Tornberg I,et al.Effects of sex and age on atherosclerosis and autoimmunity in apoE-deficient mice.Atherosclerosis 1999;145:301-308.
    [45]Hansson GK,Zhou X,Tomquist E,et al.The role of adaptive immunity in atherosclerosis.Ann N Y Acad Sci 2000;902:53-62.
    [46]Palinski W,Miller E,Witztum JL.Immunization of low density lipoprotein(LDL)receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherosclerosis.Proc Natl Acad Sci USA 1995;92:821-825.
    [47]Freigang S,Horkko S,Miller E,et al.Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than inductions of high titers of antibodies to oxidative neoepitopes.Arterioscler Thromb Vase Biol 1998;18:1972-1982.
    [48]Ameli S,Hultgardh-Nilsson A,Regnstrom J,et al.Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemie rabbits.Arterioscler Thromb Vase Biol 1996;16:1074-1079.
    [49]肖云玲,高海青,刘向群,等。CTLA4Ig可在体外诱导T细胞对氧化修饰低密度脂蛋白的免疫无反应性。中国医药生物技术 2007;2:32-37。
    [50]Wielch WJ.Mammalian stress response:cell physiology,structure/function of stress protein,and implications for medicine and disease.Physiol Rev 1992;72:1063-1081.
    [51]Ausiello CM,Fedele G,Palazzo R,et al.60-kDa heat shock protein of Chlamydia pneumoniae promotes a T helper cell mediated immune response through IL-12/ IL-23 production in monocyte-derived dendritic cells. Microbes Infect 2006; 8: 714-720.
    [52] Benagiano M, D'Elios MM, Amedei A,et al. Human 60 kDa heat shock pritein is a target autoantigen of T cells derived from atherosclerotic plaques. J Immunol 2005; 174: 6509-6517.
    [53] Harats D, Yacov N, Gilburd B,et al. Oral tolerance with heat shock protein 65 attenuates Mycobacterium tuberculosis-induced and high-fat diet-driven atherosclerotic lesions. J Am Coll Cardiol 2002; 407: 1333-1338.
    [54] Maron R, Sukhova G, Faria M, et al. Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation 2002; 106: 1708-1715.
    [55] Romano C, Nuzzo I, Cozzolino D, et al. Relationship between Chlamydia pneumoniae infection, inflammation markers, and coronary heart disease. Int Immunopharmacol 2006; 6:848-853.
    [56] Azzouzi N, Elhataoui M, Bakhatar H, et al. Part of Chlamydia pnermoniae in atherosclerosis and exacerbation of chronic obstructive pulmonary disease and asthma. Ann Biol Clin 2005,63:179-184.
    [57] Zhou X, Paulsson G, Stemme S, et al. Hypercholesterolemia is associated with a T helper(Th)1/Th2 switch of the autoimmune response in atherosclerotic apoE-knockout mice.
    [58] Whitman SC, Ravisanker P, Elam H, et al. Exogenous interferon-γenhances atherosclerosis in apolipoprotein E-/- mice. Am J Pathol. 2000, 157:1819-1824.
    [59] Gupta S, Paslo AM, Jiang X, et al. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest. 1997;99: 2752-2761.
    [60] Whitman SC, Ravisankar P, Daugherty A. IFN-gamma deficiency exerts gender-specific effects on atherosclerosis in apolipoprotein E -/- mice. J Interferon Cytokine Res, 2002,22:661-70.
    [61] Fei GI, Huang YH, Swedenborg J, et al. Oxidized LDL modulates immune-activation by an IL-12 dependent mechanism. Atherosclerosis, 2003,169: 77-85.
    [62] Aicher A, Heeschen C, Mohaupt M, et al. Nicotine strongly zctiviates dendritic cell-mediated adaptive immunity: role for progression of atherosclerotic lesions. Circulation, 2003,107: 604-611.
    [63] Laurat E, Poirier B, Tupin E, et al. In vivo downregulation of T helper cell 1 immune responses reduces atherosclerosis in apolipoprotein E-knockout mice. Circulation, 2001,104:197-202.
    [64] von ver Thusen JH, Kuiper J, et al. Attenuation of atherosclerosis by systemic and local adeno virus-mediated gene transfer of interleukin-10 in LDLr-/-mice . FASEB J, 2001,15:2730-2732.
    [65] Pinderski LR, Fischbein MP, Subbanagounder G, et al. Overexpression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient mice by altering lymphocyte and macrophage phenotypes. Circ Res, 2002; 90: 1064-1071.
    [66] Galigiuri G, Nicoletti A, Poirier B, et al. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest, 2002; 109: 745-753.
    [67] Binder CJ, Hartvigsen K, Chang MK, et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest, 2004,114:427-437.
    [68] Zhou X, Robertson AK, Rudling M, et al. Lesion development and response to immunization reveal a complex role for CD4 in atherosclerosis. Circ Res, 2005; 96: 427-434.
    [69] van Puijveide GH, Hauer AD, deVos P, et al. Induction of oral tolerance to oxidized low-density lipoprotein ameliorate atherosclerosis. Cieculation, 2006. 114: 1968-1976.
    [70] Fridrikson GH, Andersson L, Soderberg I, et al. Atheroprotective immunization with MDA-modified apoB-100 peptide sequence was associated with activation of Th2 specific antibody expression. Autoimmunity, 2005,38:171-179.
    [71] Fridrikson GH, Sodrberg I, Lindholm M,et al. Inhibition of atherosclerosis in ApoE-nuu mice by immunization with apoB-100 peptide sequences. Arterioscler Thromb Vasc Biol, 2003,23:879-884.
    [72] George J, Afek A, Gilburd B, et al. Cellular and humoral immune responses to heat shock protein 65 are both involved in promoting fatty-streak formation in LDL-receptor deficient mice. J Am Coll Cardiol. 2001 ;38:900-905.
    [73] George J, Afek A, Gilburd B, et al. Induction of early atherosclerosis in LDL-receptor-deficient mice immunized with beta 2-glycoprotein I. Circulation, 1998:98:1108-1115.
    [74] Bunono C, Pang H, Uchida Y, et al. B7-1/B7-2 costimulation regulates plaque antigen-specific T-cell responses and atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation. 2004; 109; 2009-2015.
    [1] Jacques B, Ralph M.S. Dendritic cells and the control of immunity. Nature 1998; 392: 245-252.
    [2]Stemme S, Faber B, Holm J, et al. T lymphocytes from human atherosclerotic plaques recognize oxidized LDL. Proc Natl Acad Sci USA 1995; 92: 3893-3897.
    [3]Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol, 1996,14: 233.
    [4]Guerder S, Flavell RA. Costimulation in tolerance and autoimmunity. Int Rev Immunol, 1995,13 (2): 135
    [5]Croft M, Dubey C. Accessory molecule and costimulation requirements for CD4 T cell response. Crit Rev Immunol, 1997,17(1):89
    [6]Yoshinaga SK. T-cell co-stimulation through B7RP-1 and ICOS. Nature, 1999,402:827-832
    [7]Afek A, Harats D, Rith A, et al. Evidence for the involvement of T cell costimulation through the B-7/CD28 pathway in atherosclerotic plaques from apolipoprotein E knockout mice. Exp Mol Pathol, 2004, 76: 219-223
    [8]Buonoc, Pang H, Uchida Y, et al. B7-1/CD28 cotimulation regulates plaque antigen-specific T-cell response in atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation, 2004, 109(16):2009-2015
    [9]Goran K.H, Peter L, Uwe S, et al. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res 2002;91:281-291.
    [10]Bcbryshev YV. Dendritic cells in atherosclerosis: current status of the problem and relevance. Eur Heart J, 2006,27(1): 116-117
    [11]Sippo YH, Wulf P, Michael E, et al. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerosis lesions of rabbit and man. J Clin Invest 1989; 84: 1086-1095.
    [12]Teruo I, Toshihiko U, Hirotoshi K ,et al. Antibody against oxidized low density lipoprotein may predict progression or regression of atherosclerotic coronary artery disease. J Am Coll Cardiol 2001 ;37: 1871-1876.
    [13]Stemme S, Faber B, Holm J, et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci USA 1995; 92: 3893-3897.
    [14]Jacques B, Ralph M.S. Dendritic cells and the control of immunity. Nature 1998; 392: 245-252.
    [15]Lukas.M, et al. Human cutaneous dendritic cells migrate through dermal lymphatic vessels in a skin organ culture model. J Invest Dermatol 1996; 106: 1293-1299.
    [16]Reginald SA Lord. Clustering of dendritic cells in athero-prone areas of the aorta. Atherosclerosis 1999; 146: 197-198.
    [17]Yuri VB, Reginald SA Lord. Mapping of vascular dendritic cells in atherosclerotic arteries suggests their involvement in local immune-inflammatory reaction.Cardiovasc Res 1998; 37:799-810.
    [18]Yuri VB, Reginald SA. S-100 positive cells in human arterial intima and in atherosclerotic lesions. Cardiovasc Res 1995; 29: 689-696.
    [19]Yilmaz A, Lochno M, Traeg F, et al. Emergence of dendritic cells in rupture -prone regions of vulnerable carotid plaque. Atherosclerosis, 2004; 176 (1): 101-110
    [20]Guerder S, Flavell RA. Costimulation in tolerance and autoimmunity. Int Rev Immunol, 1995, 13(2): 135
    [21]Ellis JH, Burden MN, Vinogradov DV, et al. Interactions of CD80 and CD86 with CD28 and CTLA4.J Immunol, 1996,156(8):2700
    [22]Thurner B, Haendle I, Reoder C, et al. Vaccination with mage3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanomas. J Exp Med, 1999, 190(11): 1669-1678
    [23]Lin CL, Lo WF, Lee TH, et al. Immunization with Epstein-BarrVirus(EBV) peptide-pulsed dendritic cells induces functional CD8+ T-cell immunity and may lead to tumor regression in patients with EBV-positive nasopharyngeal carcinoma. Cancer Res, 2002, 62(23): 6952-6958
    [24] Mosmann TR, Sad S. The expading universe of T-cell subsets: Th1,Th2 and more. Immunol Today, 1996; 17: 138-146.
    [25]Ausiello CM, Fedele G, Palazzo R, et al. 60KDa heat shock protein of Chlamydia pneumoniae promotes a T helper 1 immune response through IL-12/IL-23 production in monocyte-derived dedritic cells. Microbes Infect, 2006; 8(3): 714-720
    [26]Zhou X, Robertson AK, Hjerpe C, et al. Adoptive transfer of CD4+ T cells reactive to modified low-density lipoprotein aggravates atherosclerosis. Arterioscler Thromb Vasc Biol, 2006; 26(4): 864-870
    [27]Baidya SG, Zeng QT. Helper T cells and atherosclerosis: cytokine web. Postgrad Med J, 2005; 81(962): 746-752
    [28]Fredrikson GN, Andrsson L, Soderberg I, et al. Atheroprotective immunization with MDA-modified apoB-100 peptide sequence associated with activation of Th2 specific antibody expression. Autoimmunity, 2005; 38(2): 171-179
    [29]Potteaux S, Esposito B, Van Oostrum O, et al. Leukocyte-derived interleukin 10 is required for protection against atherosclerosis in low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol, 2004; 24(8): 1474-1478
    [1]Jacques B, Ralph M.S. Dendritic cells and the control of immunity. Nature 1998; 392: 245-252.
    [2]Stemme S, Faber B, Holm J, et al. T lymphocytes from human atherosclerotic plaques recognize oxidized LDL. Proc Natl Acad Sci USA 1995; 92: 3893-3897.
    [3]Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol, 1996,14: 233.
    [4]Guerder S, Flavell RA. Costimulation in tolerance and autoimmunity. Int Rev Immunol, 1995,13 (2): 135
    [5]Croft M, Dubey C. Accessory molecule and costimulation requirements for CD4 T cell response. Crit Rev Immunol, 1997,17(1):89
    [6]Yoshinaga SK. T-cell co-stimulation through B7RP-1 and ICOS. Nature, 1999,402:827-832
    [7]Afek A, Harats D, Rith A, et al. Evidence for the involvement of T cell costimulation through the B-7/CD28 pathway in atherosclerotic plaques from apolipoprotein E knockout mice. Exp Mol Pathol, 2004, 76: 219-223
    [8]Buonoc, Pang H, Uchida Y, et al. B7-1/CD28 cotimulation regulates plaque antigen-specific T-cell response in atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation, 2004,109(16):2009-2015
    [9] Banchereau J, Steiman RM. Dendritic cells and the control of immunity. Nature, 1998; 392(19): 245-252.
    [10] Lukas.M,et al.Human cutaneous dendritic cells migrate through dermal lymphatic vessels in a skin organ culture model.J Invest Dermatol 1996; 106:1293-1299.
    [11] Takayama T, Morelli AE, Robbins PD, et al. Feasibility of CTLA4Ig gene delivery and expression in vivo using retrovirally transduced myeloid dendritic cells that induce alloantigen-specific T cell anergy in vitro. Gene Ther, 2000; 7 (15) : 1265-1273.
    [12]Zhong L, Granelli-Piperno A, Choi Y, et al. Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells. Eur J Immunol, 1999, 29 (3): 964-972.
    [13] Aicher A, Heeschen C, Mohaupt M, et al. Nicotine strongly zctiviates dendritic cell-mediated adaptive immunity: role for progression of atherosclerotic lesions. Circulation, 2003,107: 604-611.
    [14] Laurat E, Poirier B, Tupin E, et al. In vivo downregulation of T helper cell 1 immune responses reduces atherosclerosis in apolipoprotein E-knockout mice. Circulation, 2001,104:197-202.
    [15] von ver Thusen JH, Kuiper J, et al. Attenuation of atherosclerosis by systemic and local adeno virus-mediated gene transfer of interleukin-10 in LDLr-/-mice . FASEB J, 2001,15:2730-2732.
    [16] Pinderski LR, Fischbein MP, Subbanagounder G, et al. Overexpression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient mice by altering lymphocyte and macrophage phenotypes. Circ Res, 2002; 90: 1064-1071.
    [17] Galigiuri G, Nicoletti A, Poirier B, et al. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest, 2002; 109: 745-753.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700