纳米管复合材料的制备及在生物传感器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料和生物体系相结合的相关研究是纳米生物学中很有前景的一个研究领域。将纳米材料独特的电子学,光学和催化特性与生物分子高度选择性的催化能力和识别能力结合起来,构建功能化的复合界面系统,对发展纳米电子元件和生物传感器具有重要意义。作为一种新型的碳纳米材料,自从1991年被Iijima发现以来,碳纳米管(CNTs)因其优异的物理和化学性质,而成为人们广泛研究关注的焦点。由于其较大的比表面积,良好的生物相容性和丰富的电子学性质,碳纳米管被认为是一种构建新型生物传感器的理想材料。现在已经发展了众多的基于碳纳米管的酶生物传感器。在大多数情况下,CNTs修饰电极由滴涂法制备。但是,这种方法制备的修饰电极,其稳定性和应用性有一定局限,妨碍了其在电化学中的进一步应用。为了克服这些问题,拓展CNTs在纳米器件和生物传感器中的潜在应用价值,建立新型的多样性地将CNTs和酶共同修饰到电极表面的可靠方法十分必要。另一方面,近年来,把CNTs和其它材料整合起来,制备复合功能材料也引起了研究者相当的兴趣。尽管在CNTs修饰电极的构建方面已经有了部分创造性的工作,但是,随着CNTs和纳米技术的发展,CNTs及其复合材料的制备、性质及应用仍然吸引了全世界众多的研究者而成为热点领域。
     本论文内容共分七章,主要摘要如下:
     在第一章中,对CNTs的发展,制备、功能化及其应用进行了较系统全面的综述。
     在第二章中,通过磁性负载碳纳米管/纳米四氧化三铁(CNTs/Fe_3O_4)于电极上,发展了一种新型的电化学传感平台。为了实现传感器的构建理念,首先在CNTs存在的碱性溶液中,Fe~(2+)和Fe~(3+)化学共沉积形成纳米Fe_3O_4于CNTs上。合成的磁性纳米复合材料整合了CNTs和Fe_3O_4的优点,为电化学传感装置带来了新的改进,从而提供了一种把CNTs负载到电极表面的新方法。对磁性纳米复合物修饰电极的制备和表现进行了研究。修饰电极对过氧化氢显著的电化学催化性能使得低电位下检测葡萄糖成为可能。本文中磁性负载碳纳米管复合物的概念在基于CNTs的生物传感装置的创建和电化学装置的发展上有进一步的应用价值。
     在第三章中,将开口截断的多壁碳纳米管(MWNTs)在硝酸铁溶液中水热反应后煅烧,从而制备了填充γ-Fe_2O_3的碳纳米管。磁性粒子通过湿法化学填充到碳管内部。产物用透射电镜(TEM)、能量分散X射线荧光(EDX)、X射线粉术衍射(XRD)、电子结合能谱(XPS)和磁力计(VSM)进行了表征。制备得到的磁性碳纳米管(M-MWNTs)能够在溶液中得到很好的分散,而且可以很方便的进行磁性分离。对染料的吸附实验证明其是一种移除中性红和亚甲基兰的有效吸附剂。和其它吸附剂相比,M-MWNTs不仅有着很好的吸附能力,而且可以在外磁场作用下很方便的操作。把碳纳米管的优良的吸附能力和磁性粒子的磁学性质结合起来,使得磁性碳纳米管成为了一种应对环境污染的有力工具。
     在第四章中,用磁性诱导组装的方法构建了一种基于磁性碳纳米管的新型的电化学纳米生物传感器。在磁场作用下,M-MWNTs和酶组装成了复合多层的功能化界面。辣根过氧化物酶(HRP)作为一种模型蛋白,展示了所构建的纳米生物传感器的最终性能表现。用扫描电子显微镜(SEM)、紫外可见光谱和电化学技术对组装过程进行了表征。最终形成的M-MWNTs/HRP三维结构的复合膜显示了优异的稳定性、生物兼容性和电化学性质。结果表明,磁性组装能够有效增加酶和碳纳米管在电极表面的功能化密度,从而提升传感器的性能表现。这里我们提供了一种以可控方式组装碳纳米管和生物分子形成纳米生物功能化界面的通用方法。
     在第五章中,用电沉积的方法把氧化锆、碳纳米管和肌红蛋白沉积到电极表面形成纳米生物复合膜。膜中的肌红蛋白实现了直接电化学,并且保持了对过氧化氢的高度催化能力。和单独的碳纳米管或者氧化锆构建的传感器相比,通过简单的一步电沉积方法构建的生物传感器展现了对过氧化氢更宽的检测范围和更低的检测限。这里,我们提出了一种简单有效的组装CNTs、ZrO_2和酶形成纳米复合体系的方法,可以应用于其它生物体系。
     在第六章中,研究了血红蛋白(Hb)在硅酸盐纳米管(SNT)修饰电极上的直接电化学行为。首先在乙醇/水的混合溶液体系中通过水热法合成了镍镁杂化的硅酸盐纳米管。这种新型的硅酸盐纳米管具有尺寸均一、端口开放和表面亲水等特点。用TEM、EDX和XRD对产物进行了表征。然后把SNT修饰于电极表面,并对修饰膜用SEM和EIS进行了表征。SNT修饰电极上的Hb实现了直接电子传递,并保持了对过氧化氢的高度催化活性。可以预期,SNT修饰电极能在生物传感器和生物燃料电池中得到进一步的应用。
     第七章是对论文工作的总结和下一步工作的展望。
The integration of nanomaterials with biological systems is an attractive research area of nanobiotechnology.The construction of functional hybrid systems that incorporate the highly selective catalytic and recognition properties of biomolecules with the unique electronic,photonic,and catalytic features of nanomaterials are of great importance for potential applications in nanoelectronic devices and biosensors. As a new type of carbon nanomaterial,carbon nanotubes(CNTs)have been the focus of intensive study due to their excellent physical and chemical properties since their discovery by Iijima in 1991.They are considered as promising building blocks for the construction of novel biosensors because of their high surface area,good biocompatibility and rich electronic properties.Now numerous CNTs-based biosensors have been developed with a variety of enzymes.In most case,CNTs modified electrodes have been prepared by drop costing method.However,the insufficient reactivity and stability of such modified electrodes seem to impede their applications.To overcome these problems and exploit the potential applications in future biosensors and nanodevices,it is necessary to develop versatile reliable approaches to assemble or integrate CNTs onto solid surfaces.Recently,composite materials based on integration of CNTs and some other materials have gained growing interest.Although some creative efforts on the construction of the CNTs-based electrodes have almost been made,with the further development of CNTs and nanotechnology,the study on the preparation,properties and application of CNTs and its composite materials is still a hot topic attracting lots of researchers in the world.
     This thesis is divided into seven chapters and the details are given as follows:
     In chapter 1,we present the systemic overview on the development of CNTs.The preparation of CNTs,the functionalization of CNTs and its application are described in detail.
     In chapter 2,an electrochemical sensing platform was developed based on the magnetic loading of CNTs/Fe_3O_4 composite on electrodes.To demonstrate the concept,Fe_3O_4 was deposited by the chemical coprecipitation of Fe~(2+)and Fe~(3+)in the presence of CNTs in an alkaline solution.The resulting magnetic nanocomposite brings new capabilities for electrochemical devices by combining the advantages of CNTs and Fe_3O_4 and provides an alternative way for loading CNTs on electrodes. The fabrication and the performances of the magnetic nanocomposite modified electrodes have been described.The marked electrocatalytic activity toward hydrogen peroxide permits effective low-potential amperometric biosensing of glucose.The concept of the magnetic loading of CNTs nanocomposite has great promise for creating CNTs-based biosensing devices and expands the scope of CNTs-based electrochemical devices.
     In chapter 3,the multi-walled carbon nanotubes(MWNTs)filled withγ-Fe_2O_3 nanoparticles have been prepared via hydrothermal reaction of shortened MWNTs in ferric nitrate solution and subsequent calcinations.Magnetic nanoparticles have been introduced into MWNTs via wet chemical method.The resulting products were characterized by TEM,EDX,XRD,XPS,and VSM.The prepared magnetic MWNTs (M-MWNTs)can be well dispersed in the water and can be easily magnetic separated from the medium.The adsorption test demonstrates that it is a superior absorbent for the removal of dyes(NR and MB).Compared with other absorbents,the M-MWNTs not only have high adsorption efficiency to dyes,but also can be easily manipulated by external magnetic field.The combination of the superior adsorption properties of MWNTs and the magnetic properties of Fe_2O_3 nanoparticles makes it became a powerful separation tool to deal with environmental pollution.
     In chapter 4,a new type of electrochemical nanostructured biosensor based on CNTs has been constructed by magnetic assembly method.The multilayered functional platform could be assembled using M-MWNTs and enzyme with the aid of magnetic field.The Horseradish Peroxidase(HRP)was employed as a model enzyme to demonstrate the final performance of the nanostructured biosensor.SEM,UV-vis spectroscopy and electrochemical techniques were used for characterization of assembly process.The resulting three-dimensional M-MWNTs/HRP multilayer films have showed satisfactory stability,biocompatibility and electrochemical properties. The results showed that the magnetic assembly method enhanced the density of CNTs and the amount of enzyme loaded on the electrode,leading to the improvement of the behavior of the biosensor.Our present study may provide a general way to the construction of nanostructure biofunctional surfaces of carbon nanotubes in a highly controllable manner,while integrating the highly catalytic properties of biomolecules.
     In chapter 5,a nanobiocomposite film consisted of zirconia,MWNTs and Myoglobin(Mb)was electrochemically deposited on the electrode.Mb immobilized in the film has realized direct electrochemistry and kept high electrocatalytic efficiency toward H_2O_2.The proposed biosensor via a simple one-step electrodeposition method displayed a broader linear range and a lower detection limit for H_2O_2,as compared with those CNTs or ZrO_2 based biosensor.The present strategy provides a simple and effective method to assemble CNTs,ZrO_2 and enzyme nanohybrid on the electrode and can be application to the other biosystems.
     In chapter 6,direct electrochemistry of hemoglobin(Hb)at silicate nanotubes(SNT) modified electrode was studied.Firstly,this hybrid silicate nanotube was prepared by a hydrothermal process in a mixed water/ethanol solvent system.This opened nanotube has homogeneous diameter and its surface is hydrophilic.The resulting products were characterized by TEM,EDX,and XRD.Then the SNT coated electrode was prepared and the film was characterized by SEM and electrochemical impedance spectroscopy(EIS).Hb at SNT electrode has realized direct electrochemistry and kept high electrocatalytic efficiency toward H_O_2.It could be anticipated that the SNT modified electrode could be used in biosensors and biofuel cells.
     Chapter 7 is the summary of this thesis.Meanwhile,the direction of related research is also proposed.
引文
[1]朱宏伟,吴德海,徐才录.纳米碳管[M].第一版,北京:机械工业出版社,2003:1-6.
    [2]S Iijima.Helical microtubules of graphitic carbon[J].Nature,1991,354(7):56-58.
    [3]S Iijima,T Ichihashi.Single shell carbon nanotubes of 1nm diameter[J].Nature,1993,363(9):603-605.
    [4]Zhu HW,Xu CL,Wu DH,Wei BQ,Vajtai R,Ajayan PM.Direct synthesis of long single-walled carbon nanotube strands[J].Scinence,2002,296(5569):884-886.
    [5]顾宜.材料科学与工程基础[M].北京:化学工业出版社,2002:1-5.
    [6]Balasubramanian K,Burghard M.Chemically functionalized carbon nanotubes[J].Small,2005,1(2):180-192.
    [7]TW Ebbesen,PM Ajayan.Large scale synthesis of carbon nanotubes[J].Nature,1992,358(1):220-222.
    [8]DS Bethune,CH Kiang,MS Devries,G Gorman,R Savoy,J Vazquez,R Beyers.Cobalt catalyzed growth of carbon nanotubes with single atomic layer walls[J].Nature,1993,363(2):605-607.
    [9]C Journet,Wk Maser,P Bernier,A Loiseau.M L D L Chapelle,S Lefrant,P Deniard,R L Fischer.Large scale production of single walled carbon nanotubes by the electric arc technique[J].Nature,1997,388(10):756-758.
    [10]HM Cheng,F Li,G Su,HY Pan,LL He,X Sun,MS Dresselhaus.Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons[J].Appl Phys Lett 1998,72(12):3282-3284.
    [11]Ruckenstein E,Hu YH.Catalytic preparation of narrow pore size distribution mesoporous carbon[J].Carbon,1998,36(3):269-275.
    [12]Kong J,Cassel AM,Dai H J.Chemical vapor deposition of methane for single-walled carbon nanotubes[J]. Chem Phys Lett, 1998, 292(4):567-574.
    
    [13] Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes[J]. Science, 1996, 273(3):483-487.
    
    [14] WK Hsu, M Terrones, JP Hare, H Terrones, HW Kroto, DRM Walton. Electrolytic formation of carbon nanostructures[J]. Chem Phys Lett, 1996, 262(1):161-165.
    
    [15] YL Li, YD Yu, YJ Liang. A novel method for synthesis of carbon nanotubes, Low temperature solid pyrolysis[J]. J Mater Res, 1997, 12(11): 1678-1684.
    
    [16] JY Huang, H Yasuda, H Mori. Highly curved carbon nanostructures produced by bal-milling[J]. Chem Phys Lett, 1999, 303(1): 130-136.
    
    [17] RL Vander Wal, TM Ticich, VE Curtis. Diffusion flame synthesis of single-walled carbon nanotubes[J]. Chem Phys Lett, 2000, 323(2):217-221.
    
    [18] 王宗花,罗国安.碳纳米管在分析化学领域的研究进展[J].2003,31(8):1004-1009.
    
    [19] Bandow S, Asaka S, Zhao X, et al. Purification and magnetic properties of carbon nanotubes[J]. Mater Sci, 1998, 67(1): 23-27.
    
    [20] Adachi T, Ahn J Y, Yamaioto K. Morphology control of films formed by atmospheric-pressure chemical vapor deposition using tetraethylorthosilicate/ozone system[J]. Appl Phys Lett, 1996, 60(43): 1937-1943.
    
    [21] JM Bondow, T Stora, JP Salvetat, F Maier, T Forro, WC Duschl, LA de Heer, A Chatelain. Purification and size-selection of carbon nanotubes[J]. Adv Mater, 1997, 9(6): 827-831.
    
    [22] GS Duesberg, W Blau, HJ Byrne, J Muster, M Burghard, S Roth. Chromatography of carbon nanotubes[J]. Synth Metal, 1999, 103(12):2484-2489.
    
    [23] SC Tsang, PJF Harris, MLH Green. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide[J]. Nature 1993,362(6): 520-525.
    
    [24] AR Harutyunyan, BK Pradhan, et al. Purification of single-wall carbon nanotubes by selective microwave heating of catalyst particIes[J]. J Phys Chem B, 2002, 106(18): 8671-8678.
    
    [25] E B Paten, T Pichler, X Liu, M Knupfer, A Graff, O Jost, W Pompe, RJ Kalenczuk, J Fink. Reduced diameter distribution of single-wall carbon nanotubes by selective oxidation[J]. Chem Phys Lett, 2002, 363(5):567-572.
    
    [26] W Chiang, BE Brinson, RE Smalley, JL Margrave, RH Hauge. Purification and characterization of single-wall carbon nanotubes[J]. J Phys Chem B, 2001.105(12): 1157-1162.
    [27]Colomer JF,Poedigrosso P,Fonseca A.Different purification methods of carbon nanotubes produced by catalytic synthesis[J].Chemical Metals,1999,14(2):67-70.
    [28]A Hirsch.Functionalization of Single-Walled Carbon Nanotubes[J].Angew Chem Int Ed,2002,41(11):1853-1859.
    [29]吴康兵.碳纳米管化学修饰电极的制备表征及分析应用研究.武汉大学分析化学专业博士论文[D],2004.27-29.
    [30]S Tsang,Y K Chen,P Harris,MLH Green.A simple chemical method of opening and filling carbon nanotubes[J].Nature,1994,372(10):159-161.
    [31]RM Lago,SC Tsang,KL Lu,YK Chen,MLH Green.Filling carbon nanotubes with small palladium metal crystallites,the effect of surface acid groups[J].Chem Commun 1995,13(3):1355-1356.
    [32]H Hiura,TW Ebbesen,K Tanigaki.Opening and purification of carbon nanotubes in high yields[J].Adv Mater,1995,7(1):275-279.
    [33]J Liu,AG Rinzler,H Dai,RE Smalley,et al.Fullerene pipes[J].Science,1998,280(15):1253-1255.
    [34]S Banerjee,T H Benny,S W Stanislaus.Covalent Surface Chemistry of Single-Walled Carbon Nanotubes[J].Adv Mater,2005,17(1):l7-26.
    [35]J Chen,MA Hamon,H Hu,,S Chen,AM Rao,PC Eklund,RC Haddon.Solution properties of single-walled carbon nanotubes[J].Science,1998,282(1):95-97.
    [36]MA Hamon,J Chen,H Hu,S Chen,AM Rao,PC Eklund,RC Haddon.Dissolution of single-walled carbon nanotubes[J].Adv Mater,1999,11(2):834-838.
    [37]F Pomper,DE Resasco.Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine[J].Nano Lett,2002,2(2):369-372.
    [38]Eitan A,Jiang KY,Dukes D,et al.Surface Modification of Mmultiwalled Carbon Nanotubes:Toward the Tailoring of the Interface in Polymer Composites[J].Chem Mater,2003,15(12):3198-3204.
    [39]李博,康永福,施祖进,顾镇南.单层碳纳米管的化学修饰[J].高等学校化学学报,2000,21(4):1633-1634.
    [40]KF Fu,WJ Huang,Y Liu,LA Riddle,DL Carroll,YP Sun.Defunctionalization of functionalized carbon nanotubes[J].Nano Lett,2001,1(4):439-443.
    [41]B R Azamian,K S Coleman,J J Davis,N Hanson,M L H Green.Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes[J].Chem Commun,2002,2(3):366-367.
    [42] M Bottini, L Tautz, H Huynh, E Monosov, T Mustelin. Covalent decoration of multi-walled carbon nanotubes with silica Nanoparticles [J]. Chem Commun, 2005, 4(2):758-760.
    
    [43] S Banerjee, S S Wong. Synthesis and characterization carbon nanotube-nanocrystal heterostructures [J]. Nano Lett, 2002, 2(2): 195-197.
    
    [44] ZF Liu, ZY Shen, T Zhu, SF Hou, LZ Ying, ZJ Shi, ZN Gu. Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling technique[J]. Langmuir 2000, 16(8): 3569-3573.
    
    [45] LSH Ichia, B Basnar, I Willner. Efficient Generation of Photocurrents by Using CdS Carbon Nanotube Assemblies on Electrodes[J]. Angew Chem 2005, 117(1): 80 -85.
    
    [46] E Katz, I Willner. Biomolecule-Functionalized Carbon Nanotubes applications in nanobioelectronics[J]. ChemPhysChem, 2004, 5(2): 1084-1104.
    
    [47] W Huang, S Taylor, Ke Fu, Y Lin, D Zhang, T W Hanks, YP Sun. Attaching Proteins to Carbon Nanotubes via Diimide-Activated Amidation[J]. Nano Lett, 2002, 2(4):311-314.
    
    [48] M Hazani, R Naaman, F Hennrich, M M Kappes. Confocal Fluorescence Imaging of DNA-Functionalized Carbon Nanotubes [J]. Nano Lett, 2003, 3(2): 153-155.
    
    [49] Sarah E B, W Cai, T L Lasseter, K P Weidkamp, R J Hamers. Covalently Bonded Adducts of Deoxyribonucleic Acid (DNA) Oligonucleotides with Single-Wall Carbon Nanotubes Synthesis and Hybridization [J]. Nano Lett, 2002, 2(12): 1413-1417.
    
    [50] C V Nguyen, L Delzeit, A M Cassell, J Li, J Han,M Meyyappan. Preparation of Nucleic Acid functionalized carbon nanotube arrays[J]. Nano Lett, 2002, 2(10): 1079-1081.
    
    [51] N W S Kam, T C Jessop, P A Wender, H Dai. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells[J]. J Am Chem Soc, 2004, 126(22):6850-6851.
    
    [52] A Hamwi, H Alevergnat, S Bonnamy, F Beguin. Fluorination of carbon nanotubes[J]. Carbon 1996, 35(2): 723-727.
    
    [53] ET Mickelson, CB Huffman, AG Beguim, RE Smiley, RH Hauge, JL Margrave. Fluorination of single wall carbon nanotubes[J]. Chem Phy Lett, 1998, 296(1):188-192.
    [54] ET Mickelson, IW Chiang, JL Zimmerman, PJ Boul, J Lozano, J Liu, RE Smalley, RH Hauge, JL Margrave. Solvation of fluorinated single wall carbon nanotubes in alcohol solvents[J]. J Phys Chem B, 1999,103(5):4318-4322.
    
    [55] KF Kelly, IW Chiang, ET Mickelson, RH Hauge, JL Margrave, X Wang, GE Scuseria, C Radloff, NJ Halas. Insight into the mechanism of sidewall functionalization of single-walled nanotubes:an STM study[J]. Chem Phy Lett, 1999, 313(4): 445-449.
    
    [56] Khabashesku V N, Billups W E, Margrave J L. Fluorination of Single-wall Carbon Nanotubes and Subsequent Derivatization Reactions[J]. Acc Chem Res,2002, 35(6),1087-1090.
    
    [57] Stevens J L, Huang A Y, Peng H Q, et al. Sidewall Amino-functionalization of Single-walled Carbon Nanotubes Through Fluorination and Subsequent Reactions with Terminal Diamines[J]. Nano Lett, 2003, 3(2):331-334.
    
    [58] RK Saini, IW Chiang, H Peng, RE Smalley, WE Billups, RH Hauge, JL Margrave. Covalent sidewall functionalization of single wall carbon nanotubes[J]. J Am Chem Soc, 2003,125(4): 3617-3618.
    
    [59] V Georgakilas, K Kordatos, M Prato, DM Guldi, M Holzinger, A Hirsch. Organic functionalization of carbon nanotubes[J]. J Am Chem Soc, 2002, 124(3): 760-761.
    
    [60] S Banerjee, S S Wong. Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis[J]. J Phys Chem B, 2002, 106(47): 12144-12151.
    
    [61] JL Bahr, JP Yang, DV Kosynkin, MJ Bronikowski, RE Smalley, JM Tour. Functionalization of carbon nanotubes by electrocehmcial reduction of aryl diazonium salts: abucky paper electrode [J]. J Am Chem Soc, 2001, 123(15):6536-6542.
    
    [62] CA Dyke, JM Tour. Solvent-free functionalization of carbon nanotubes[J]. J Am Chem Soc, 2003, 125(6): 1156-1162.
    
    [63] M Holzinger, O Vostrowsky, A Hircsh, F Hennrich, M Kappes, R Weiss, F Jellen. Side wall functionalisation of carbon nanotubes[J]. Angew Chem Int Ed, 2001, 40(6): 4002-4007.
    
    [64] Peng H, Alemany L B, Margrave J L, et al. Sidewall Carboxylic Acid Functionalization of Single-walled Carbon Nanotubes[J]. J Am Chem Soc, 2003, 125(14):15174-15175.
    
    [65] 郭令学,李宇国,吴胜伟,等.多壁碳纳米管γ辐照后的化学修饰[J].辐照 研究与辐射工艺学报,2005,23(3):155-157.
    [66]Zhu J,Kim J D,Peng H Q,et al.Improving the Dispersion and Integration of Single-walled Carbon Nanotubes in Epoxy Composites Through Functionalization[J].Nano Lett,2003,3(11):1107-1109.
    [67]Zhu J,Peng H Q,Rodriguez-Macias F,et al.Reinforcing Epoxy Polymer Composites Through Covalent Integration of Functionalized Nanotubes[J].Adv Funct Mater,2004,14(2):643-648.
    [68]刘举庆,肖潭,吴萍.碳纳米管的功能化及其在聚合物结构复合材料中的应用[J].纳米科技,2007,4(3):21-25.
    [69]Garg A,Sinnott S B.Effect of Chemical Functionalization on the Mechanical Properties of Carbon Nanotubes[J].Chem Phys Lett,1998,295(2):273-276.
    [70]SA Curran,PM ayan,WJ Blau.DL Carroll,J Coleman,A Dalton,AP Davey,B McCarthy.Composite from PPV and carbon nanotubes:a novel material for molecular optoelectronics[J].Adv Mater,1998,10(13):1091-1096.
    [71]JN Coleman,AB Dalton,SA Curran,A Rubio,AP Davey,A Drury,et al.Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer[J].Adv Mater,2000,12(2):213-216.
    [72]Steuerman D W,Star A,Narizzano R,et al.Interaction Between Conjugated Polymers and Single-walled Carbon Nanotubes[J].J Phys Chem B,2002,106:3124-3128.
    [73]J Wang,M Musameh,Y Lin.Solubilization of Carbon Nanotubes by Nation toward the Preparation of Amperometric Biosensors[J].J Am Chem Soc,2003,125(14):2408-2409.
    [74]Xia H S,Wang Q,Qiu G H.Polymer-encapsulated Carbon Nanotubes Prepared Through Ultrasonically Initiated in Situ Emulsion Polymerization[J].Chem Mater,2003,15(12):3879-3885.
    [75]JE Riggs,DB Walker,DL Carroll,Y P Sun.Optical Limiting properties of suspended and solubilized carbon nanotubes[J].J Phys Chem B,2000,104(7):7071-7076.
    [76]R Czerw,ZX Guo,PM Ajayan,YP Sun.DL Carroll.Organization polymers onto carbon nanotubes a route to assembly of nanoscale[J].Nano Lett,2001,1(2):423-426.
    [77]M J O Connell,P Boul,LM Ericson,C Huffman,YH Haroz,C Kuper,Reversible water-solublization of single-walled carbon nanotubes by polymer wrapping[J].Chem Phys Lett 2001,342(4):265-269.
    [78] Matarredona O, Rhoads H, Li ZR, Resasco D E, Balzano L, Harwell J H. Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS[J]. J Phys Chem B, 2003,107:13357-13367.
    
    [79] Chambers G, Carroll C, Farrell GF, Byrne H, et al. Characterization of the interaction of gamma cyclodextrin with single-walled carbon nanotubes[J]. Nano Lett, 2003, 3(6):843-846.
    
    [80] Chen R J, Zhang Y, Wang D, et al. Noncovalent Side-wall Functionalization of Single-walled Carbon Nanotubes for Protein Immobilization[J]. J Am Chem Soc, 2001,123(15):3838-3839.
    
    [81] Pederson M R, Broughton J Q. Nanocapillarity in fullerene tubules[J]. Phys Rev Lett,1992,69(15): 2689-2692.
    
    [82] Ajayan PM, Iijima S. Capillarity induced filling of carbon nanotubes[J]. Nature,1993, 361(2): 333-335.
    
    [83] 王治宇,赵宗彬,邱介山.碳纳米管填充技术研究[J].化学进展,18(5):563-572.
    
    [84] Liu M, Cowley J M. Encapsulation of manganese carbides within carbon nanotubes and nanoparticles[J]. Carbon, 1995, 33(4): 749-756.
    
    [85] Guerret-Piecourt C, Le Bouar Y, Loiseau A, et al. Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes[J]. Nature,1994,372(4): 761-765.
    
    [86] Terrones M, Grobert N, Zhang J P, et al. Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films[J]. Chem Phys Lett, 1998,285(5): 299-305.
    
    [87] Grobert N, Hsu WK, Zhu YQ, et al. Enhanced magnetic coercivities in Fe nanowires [J]. Appl Phys Lett, 1999, 75(21): 3363-3365.
    
    [88] Leonhardt A, Ritschel M, Kozhuharova R, et al. Synthesis and properties of filled carbon nanotubes[J]. Diamond and Related Mater, 2003, 12(3):790-793.
    
    [89] Sinha AK, Hwang D W, Hwang L P. A novel approach to bulk synthesis of carbon nanotubes filled with metal by a catalytic chemical vapor deposition method[J]. Chem Phys Lett, 2000, 332(5): 455-460.
    
    [90] Che G,Lakshmi B B,Martin C R,et al. Metal-nanocluster-filled carbon nanotubes: Catalytic properties and possible applications in electrochemical energy storage and production[J]. Langmuir, 1999,15(3):750-758.
    
    [91] J Jang, H Yoon. Fabrication of magnetic carbon nanotubes using a metal-impregnated polymer precursor [J]. Adv Mater, 2003, 15 (24): 2088-2091.
    [92] Ugarte D, Chatelain A, Deherr WA. Nanocapillarity and chemistry in carbon nanotubes [J]. Science, 1996, 274 (9): 1897-1901.
    
    [93] G Brown, A York, KS Coleman, MLH Green. Capillarity and silver nanowire formation observed in single walled carbon Nanotubes [J]. Chem Commun, 1999, 1(7): 699-700.
    
    [94] S Tsang, Y K Chen, P Harris, MLH Green. A simple chemical method of opening and filling carbon nanotubes [J]. Nature, 1994, 372 (10): 159-161.
    
    [95] M Wilson, A Paul. Growth of Ionic Crystals in Carbon Nanotubes [J]. J Am Chem Soc, 2001, 123 (9): 2101-2102.
    
    [96] Wong S S, Harper J D, Lansbury P T, Lieber C M. Covalently-functionalized single-walled carbon nanotube probe tips for chemical force microscopy [J]. J Am Chem Soc, 1998, 120(33): 603-604.
    
    [97] H Dai, JH Hafner, AG Rinzler, DT Colbert, RE Smalley. Nanotubes as nanoprobes in scanning probe microscopy [J]. Nature, 1996,384(1): 147-149.
    
    [98] SS Wong, E Joselevich, A Woolley, C Cheung, C Lieber. Covalently functionalized nanotubes as nanometer probes for chemistry and biology [J]. Nature, 1998, 394(1):52-54.
    
    [99] 李莉香,李峰.纳米碳管/聚合物功能复合材料[J].新型炭材料,2003,18(1):69-74.
    
    [100] MinamiN, Kazaoui S, Jacquemin R. Optical properties of semiconducting and metallic single wall carbon nanotubes: effects of doping and high pressure[J]. Synthetic Metals, 2001, 116(6): 1-3.
    
    [101] WA De Heer, A Chatelain, D Ugarte. A carbon nanotube field-emission electron source[J]. Science, 1995,270(8): 1179-1183.
    
    [102] SJ Tans, AR Verschueren, C Dekker. Room-temperature transistor based on a single carbon nanotube[J]. Nature 1998, 393(1):49-53.
    
    [103] Kim Y J, Shin T S. Electrical conductivity of chemically modified multiwalled carbonnanotube/epoxy composites[J]. Carbon, 2005, 43(1): 23-30.
    
    [104] Clayton LM, SikderA K. Transparent poly(methylmeth-acrylate ) /single-walled carbon nanotube (PMMA/SWNT) composite films with increased dielectric constants[J]. Advanced Functional Materials, 2005, 15(1): 101-106.
    
    [105] Dillon A C, Jones K M, Bekkedahl A. Storage of hydrogen in single-walled carbon nanotubes[J]. Nature, 1997, 386(2): 377-379.
    
    [106] Qin X, Gao X, Liu H, et al. Electrochemical hydrogen storage of multiwalled carbon nanotubes[J].Electrochem Solid State Lett,2000,3(3),532-534.
    [107]Wang Q,Li H,Chen L,et al.Investigation of lithium storage in bamboo-like Carbon nanotubes by HTEM[J].J Electrochem Soc,2003,150(9):1281-1286.
    [108]Pico F,Rojo J M,Sanjuan M L,et al.Single-walled carbon nanotubes as electrodes in supercapacitors[J].J Electrochem Soc,2004,151(6):831-834.
    [109]蔡称心,陈静,包建春,陆天虹.碳纳米管在分析化学中的应用[J].分析化学,2004,32(3):381.387.
    [110]PJ Britton,KSV Santhanam,PM Ajayan.Carbon nanotube electrode for oxidation of dopamine[J].Bioelectrochem Bioenerg,1996,41(1):121-127.
    [111]JJ Davis,JC Richard,H Allen,O Hill.Protein electrochemistry at carbon nanotube electrodes[J].J Electroanal Chem,1997,440(1):79-83.
    [112]N S Lawrence,R P Deo,Joseph Wang.Detection of homocysteine at carbon nanotube paste electrodes[J].Talanta,2004,63(3):443-449.
    [113]F Valentini,A Amine,S Orlanducci,M L Terranova,G Palleschi.Carbon Nanotube Purification Preparation and Characterization of Carbon Nanotube Paste Electrodes[J].Anal Chem,2003,75(19):5413-5421.
    [114]HX Luo,ZJ Shi,NQ Li,ZN Gu,QK Zhuang.Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode[J].Anal Chem,2001,73(4):915-920.
    [115]FH Wu,GC Zhao,XW Wei.Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode[J].Electrochem Commun 2002,4:690-695.
    [116]C Cai,J Chen.Direct electron transfer of glucose oxidase promoted by carbon nanotubes[J].Anal Biochem,2004,332(1):75-83.
    [117]K Gong,M Zhang,Y Yah,L Su,L Mao,S Xiong,Y Chen.Sol-Gel-Derived Ceramic-Carbon Nanotube Nanocomposite Electrodes Tunable Electrode Dimension and Potential Electrochemical Applications[J].Anal Chem,2004,76(22):5721-5726.
    [118]PF Liu,JH Hu.Carbon nanotube powder microelectrodes for nitrite detection[J].Sensors and Actuators B,2002,84(2):194-198.
    [119]R S Chen,W H Huang,H Tong,Z L Wang,J K Cheng.Carbon Fiber Nanoelectrodes Modified by Single-Walled Carbon Nanotubes[J].Anal Chem,2003,75(23):6341-6345.
    [120]J Wang,M Musameh,Randhir PD,et al.Carbon nanotube fiber microelectrodes[J].J Am Chem Soc,2003,125(21):14706-14707.
    [121]JJ Gooding,R Wibowo,J Liu,W Yang,et al.Protein Electrochemistry Using Aligned Carbon Nanotube Arrays[J].J Am Chem Soc,2003,125(24):9006-9007.
    [122]X Yu,D Chattopadhyay,I Galeska,F Papadimitrakopoulos,JF Rusling.Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes[J].Electrochem Commun,2003,5(2)408-411.
    [123]Y H Lin,F Lu,Z Ren.Glucose biosensors based on carbon nanotube nanoelectrode ensembles[J].Nano Lett,2004,4(2):191-195.
    [124]Wu K B,Hu S S,Fei J J,Bai W.Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes[J].Anal Chim Acta,2003,489(2):215-221.
    [125]Z H Wang,YM Wang,GA Luo.Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid[J].Analyst,2002,127(5):653-658.
    [126]ZH Wang,YM Wang,GA Luo.A selective Voltammetric method for uric acid detection β-cyclodextrin modified electrode incorporating carbon nanotubes[J].Analyst,2002,127(10):1353-1358.
    [127]B Zeng,FHuang.Electrochemical behavior and determination of fluphenazine at multi-walled carbon nanotubes/(3-mercaptopropyl)trimethoxysilane bilayer modified gold electrodes[J].Talanta,2004,64(3):380-386.
    [128]邹雪莲,王田霖,丁亚平.分析化学中的碳纳米管修饰电极[J].化学世界,2007,3(3):179-182.
    [129]X Cao,L Lin,Y Zhou,G Shi,W Zhang,K Yamamoto,LT Jin.Amperometric determination of 6-mercaptopurine on functionalized multi-wall carbon nanotubes modified electrode by liquid chromatography coupled with microdialysis and its application to pharmacokinetics in rabbit[J].Talanta,2003,60(10):1063-1070.
    [130]W Zhang,F Wan,Y Xie,J Gua,J Wang,K Yamamotoc,LT Jin.Amperometric determination of(R)-salsolinol,(R)-N-methylsalsolinol and monoamine neurotransmitters with liquid chromatography using functionalized multi-wall carbon nanotube modified electrode in Parkinson's patients'cerebrospinal fluid[J].Anal Chim Acta,2004,512(2):207-214.
    [131]J Wang,G Chen,M P Chatrathi,M Musameh.Capillary Electrophoresis Microchip with a Carbon Nanotube-Modified Electrochemical Detector[J].Anal Chem,2004,76(1):298-302.
    [132]M Guo,J Chen,D Liu,L Ni,S Z Yao.Electrochemical characteristics of the immobilization of calf thymus DNA molecules on multi-walled carbon nanotubes[J]. Bioelectrochemistry, 2004, 62 (1) :29-35.
    
    [133] H Cai, X Cao, Y Jiang, P He, Y Fang. Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection[J]. Anal Bioanal Chem 2003, 375 (2): 287-293.
    
    [134] J Wang, G Liu, M Rasul. Ultrasensitive Electrical Biosensing of Proteins and DNA: Carbon-Nanotube Derived Amplification of the Recognition and Transduction Events[J]. J Am Chem Soc, 2004, 126(26), 3010-3011.
    
    [135] J Wang, M Li, Z Shi, N Li, Z Gu. Direct Electrochemistry of Cytochrome c at a Glassy Carbon Electrode Modified with Single-Wall Carbon Nanotubes[J]. Anal Chem 2002, 74(5): 1993-1997.
    
    [136] G Wang, J Xu, HY Chen. Interfacing cytochrome c to electrodes with a DNA -carbon nanotube composite film[J]. Electrochem Commun, 2002,4 (4) :506-509.
    
    [137] GC Zhao, L Zhang, XW Wei, ZS Yang. Myoglobin on multi-walled carbon nanotubes modified electrode direct electrochemistry and electrocatalysis [J]. Electrochem Commun, 2003, 5 (3): 825-827.
    
    [138] M Wang, F Zhao, Y Liu, SJ Dong. Direct electrochemistry of microperoxidase at Pt microelectrodes modified with carbon nanotubes [J]. Biosens Bioelectron, 2005, 21 (6): 159-165.
    
    [139] YM Yan, W Zheng, M Zhang, L Wang, L Su, L Mao. Bioelectrochemically Functional Nanohybrids through Co-Assembling of Proteins and Surfactants onto Carbon Nanotubes Facilitated Electron Transfer of Assembled Proteins with Enhanced Faradic Response [J]. Langmuir, 2005,21 (9): 6560-6566.
    
    [140] M Musameh , J Wang , A Merkoci , Y Lin. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes[J]. Electrochem Commun, 2002, 4 (3):743-746.
    
    [141] J Wang, Carbon-nanotube based electrochemical biosensors: A review[J]. Electroanlysis, 2005, 17 (1): 7-14.
    
    [142] S Hrapovic, Y Liu, K Male, J H Luong. Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes [J]. Anal Chem, 2004, 76 (4): 1083-1088.
    
    [143] HL San, W Ji, J Lina, L Qiutian, KY Jin. A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode [J]. Biosens Bioelectron, 2005, 20 (5) 2341-2347.
    
    [144] L Zhou, J Wang, F Zhou. Direct Electrochemistry of Catalase at a Gold Electrode Modified with Single-Wall Carbon Nanotubes [J]. Electroanal, 2004, 16 (4): 672-675.
    
    [145] M D Rubianes, G A Rivas. Enzymatic Biosensors Based on Carbon Nanotubes Paste Electrodes [J]. Electroanal, 2005, 17(1): 73-76.
    
    [146] Q Zhao, LH Guan, ZN Gu, QK Zhuang. Determination of Phenolic Compounds Based on the Tyrosinase- Single Walled Carbon Nanotubes Sensor [J]. Electroanal, 2005,17(1): 85-87.
    
    [147] J Wang, M Musameh. A Disposable Biosensor for Organophosphorus Nerve Agents Based on Carbon Nanotubes Modified Thick Film Strip Electrode [J]. Anal Lett, 2003, 36 (10): 2041-2045. [J] S Iijima. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354 (7):56-58.
    
    [2] J Wang. Carbon-Nanotube Based Electrochemical Biosensors A Review [J]. Electroanalysis, 2005, 17 (1): 7-14.
    
    [3] RS Chen, WH Huang, H Tong, ZL Wang, JK Cheng. Carbon Fiber Nanoelectrodes Modified by Single-Walled Carbon Nanotubes [J]. Anal Chem, 2003, 75 (15): 6341-6345.
    
    [4] M Wang, F Zhao, Y Liu, SJ Dong. Direct electrochemistry of microperoxidase at Pt microelectrodes modified with carbon nanotubes [J]. Biosens Bioelectron, 2005, 21 (6): 159-165.
    
    [5] Z H Wang, J Liu, QL Liang, YM Wang, G Luo. Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid [J]. Analyst, 2002, 127 (6): 653-658.
    
    [6] S Hrapovic, Y Liu, K Male, J H Luong. Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes [J]. Anal Chem, 2004, 76 (4): 1083-1088.
    
    [7] J Wang, M Musameh. Enzyme-dispersed carbon-nanotube electrodes a needle microsensor for monitoring glucose [J]. Analyst, 2003,128 (7):1382-1385.
    
    [8] M Musameh, J Wang, A Merkoci, YH Lin. Carbon nanotube-modified glassy carbon electrode for adsorptive stripping voltammetric detection of ultratrace levels of 2,4,6-trinitrotoluene [J]. Electrochem Comm, 2004, 6 (2): 176-179.
    
    [9] J Wang, G Chen. MP Chatrathi, M Musameh. Capillary Electrophoresis Microchip with a Carbon Nanotube-Modified Electrochemical Detector [J]. Anal Chem, 2004, 76 (5): 298-302.
    
    [10] Y D Zhao, W D Zhang, H Chen, Q M Luo. The interface behavior of hemoglobin at carbon nanotube and the detection for H2O2 [J]. Talanta, 20025, 58 (7): 529-534.
    
    [11] J Wang, M Musameh. Carbon nanotube/Teflon Composite Electrochemical Sensors and Biosensors [J]. Anal Chem, 2003, 75 (8): 2075-2079.
    
    [12] J Wang, M Musameh. Carbon nanotube screen-printed electrochemical sensors [J]. Analyst, 2004,129(1): 1-2.
    
    [13] G Chen, LY Zhang, J Wang. Miniaturized capillary electrophoresis system with a carbon nanotube microelectrode for rapid separation and detection of thiols [J]. Talanta, 2004, 64 (7): 1018-1023.
    
    [14] J Wang, G Chen, M Wang, MP Chatrathi. Carbon-nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates [J]. Analyst, 2004, 129 (3): 512-515.
    
    [15] H Luo, Z Shi, N Li, Z Gu, Q Zhuang. Investigation of the Electrochemical and Electrocatalytic Behavior of Single-Wall Carbon Nanotube Film on a Glassy Carbon Electrode [J]. Anal Chem, 2001, 73 (5): 915-920.
    
    [16] Q Zhao, ZN Gu, QK Zhuang. Electrochemical study of tetra-phenyl-porphyrin on the SWNTs film modified glassy carbon electrode [J]. Electrochem Commun, 2004, 6 (1): 83-86.
    
    [17] J Wang, M Musameh, Y Lin. Solubilization of Carbon Nanotubes by Nafion toward the Preparation of amperometric biosensors [J]. J Am Chem Soc, 2003,125 (8): 2408-2049.
    
    [18] M. Zhang, A. Smith, W. Gorski. Carbon Nanotube-Chitosan System for Electrochemical Sensing Based on Dehydrogenase Enzymes [J]. Anal Chem, 2004, 76 (15): 5045-5050.
    
    [19] XL Luo, JJ Xu, JL Wang, HY Chen. Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application [J]. Chem Commun, 2005, 16 (18): 2169-2171.
    
    [20] ML Guo, JH Chen, J Li, B Tao, SZ Yao. Fabrication of polyaniline/carbon nanotube composite modified electrode and its electrocatalytic property to the reduction of nitrite [J]. Anal Chim Acta, 2005, 532 (1) 71-77.
    
    [21] M Gao, S Huang, L Dai, G Wallace, R Gao, Z Wang. Aligned coaxial nanowires of carbon nanotubes sheathed with conducting polymers [J]. Angew Chem Int Ed, 2000, 39 (15): 3664-3667.
    
    [22] R Hirsch, E Katz, J Wasserman, I Willner, Magneto-Switchable Bioelectrocatalysis [J]. J Am Chem.Soc, 2000, 122 (15): 12053-12054.
    
    [23] E Katz, I Willner. Magnetic control of chemical transformations application for programmed electrocatalysis and surface patterning [J]. Electrochem Commun, 2002, 4 (2): 201-204.
    
    [24] J Wang, A Kawde. Magnetic-field stimulated DNA oxidation [J]. Electrochem Commun, 2002,4 (4): 349-352.
    [25] M Yang, JJ Zhu. Indirect voltammetric determination of trace hydroxylamine using magnetic microspheres [J]. Analyst, 2003, 128 (2): 178-181.
    
    [26] HQ Wu, YJ Cao, P Yuan, HY Xu, XW Wei. Controlled synthesis, structure and magnetic properties of alloy nanoparticles attached on carbon nanotubes [J]. Chemical Physics Letters, 2005,406 (2): 148-153.
    
    [27] Peng XJ, Luan Z, Di Z, Zhang Z, Zhu C. Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb(II) and Cu(II) from water [J]. Carbon, 2005,43:880-883.
    [1] S Iijima. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354 (7):56-58.
    
    [2] A Hirsch. Functionalization of single-walled carbon nanotubes [J]. Angew Chem Int Ed, 2002, 41(11): 1853-1859.
    
    [3] J Jang, H Yoon. Fabrication of magnetic carbon nanotubes using a metal-impregnated polymer precursor [J]. Adv Mater, 2003, 15 (24), 2088-2091.
    
    [4] G Korneva, H Ye, Y Gogotsi, D Halverson, G Friedman. Carbon Nanotubes Loaded with Magnetic Particles [J]. Nano letter, 2005, 5(5): 879-884.
    
    [5] M Wilson, A Paul. Growth of Ionic Crystals in Carbon Nanotubes [J]. J Am Chem Soc, 2001, 123 (9): 2101-2102.
    
    [6] G Brown, A York, KS Coleman, MLH Green. Capillarity and silver nanowire formation observed in single walled carbon Nanotubes [J]. Chem Commun, 1999, 1(4) 699-700.
    
    [7] S Tsang, Y K Chen, P Harris, MLH Green. A simple chemical method of opening and filling carbon nanotubes [J]. Nature, 1994, 372 (10): 159-161.
    
    [8] RQ Long, R Yang. Carbon Nanotubes as Superior Sorbent for Dioxin Removal [J]. J Am Chem Soc, 2001, 123 (10): 2058-2059.
    
    [9] Y Cai, G Jiang, J Liu, Q Zhou. Multiwalled Carbon Nanotubes as a Solid-Phase Extraction Adsorbent for the Determination of Bisphenol A, 4-n-Nonylphenol, and 4-tert-Octylphenol [J]. Anal Chem, 2003, 75 (18): 2517-2521.
    
    [10] Li YH, Wang S, Luan Z, Ding J, Xu C, Wu D. Adsorption of cadium (II) from aqueous solution by surface oxidized carbon nanotubes [J]. Carbon, 2003, 41 (6): 1057-1062.
    
    [11] Li YH, Ding J, Luan Z, Di Z, Zhu Y et al. Competitive adsorption of Pb~(2+) , Cu~(2+) and Cd~(2+) ions from aqueous solutions by multiwalled carbon nanotubes [J]. Carbon, 2003, 41(5) :2787-2792.
    
    [12] Peng XJ, Luan Z, Di Z, Zhang Z, Zhu C. Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb(II) and Cu(II) from water [J]. Carbon, 2005,43:880-883.
    
    [13] KR Ramakrishna, T Viraraghavan. Dye removal using low cost adsorbents [J]. Water Sci Technol 1997, 36 (5): 18996-18999.
    [14] LC A Oliveira, RVRA Rios, JD Fabris, VK Garg, K Sapag, RM Lago. Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water [J]. Carbon, 2002,40 (12):2177-2183.
    
    [15] Z Liu, Z Shen, T Zhu, S Hou, L Ying, Z Shi, Z Gu. Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembing technique [J]. Langmuir, 2000, 16 (8): 3569-3572.
    
    [16] Y Liu, L Gao. A study of the electrical properties of carbon nanotube-NiFe_2O_4 composites Effect of the surface treatment of the carbon nanotubes [J]. Carbon, 2005,43(1): 47-52.
    
    [17] Ugarte D, Chatelain A, Deherr WA. Nanocapillarity and chemistry in carbon nanotubes [J]. Science, 1996, 274 (9): 1897-1901.
    
    [18] Hyeon T, Lee SS, Park J, et al. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process [J]. J Am Chem Soc, 2001, 123 (15):12798-12801.
    
    [19] Z Sun, Z Liu, Y Wang, B Han, J Du, J Zhang. Fabrication and characterization of magnetic carbon nanotube composites [J]. J Mater Chem, 2005, 15 (7): 4497-4501.
    
    [20] SJ Son, J Reichel, B He, SB Lee. Magnetic nanotubes for magnetic-filed-assisted bioseparation, biointeraction and drug delievery [J]. J Am Chem Soc, 2005, 127 (10): 7316-7317.
    
    [21] Pascal C, Pascal JL, Favier F, et al. Electrochemical synthesis for the control of gamma-Fe_2O_3 nanoparticle size, morphology, microstructure, and magnetic behavior [J]. Chem Mater, 1999, 11 (1):141-147.
    
    [22] J Liu, AG Rinzler, HJ Dai, JH Hafner, RK Bradley, PJ Boul, A Lu, et al. Fullerene pipes [J]. Science, 1998, 280 (5367): 1253-1256.
    
    [23] PK Malik. Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes a case study of Acid Yellow 36 [J]. Dyes and Pigments, 2003, 56 (2):239-245.
    
    [24] Namasivayam C, Jayakumar R, Yamuna RT. Dye removal from wastewater by adsorption on waste Fe (III)/ Cr (III) hydroxide [J]. Waste Management, 1994,14 (5): 643-650.
    [1]E Katz,I Willner.Integrated Nanoparticle-Biomolecule Hybrid Systems Synthesis,Properties,and Applications[J].Angew Chem Int.Ed,2004,43(9):6042-6108.
    [2]E Katz,I Willner,Biomolecule-Functionalized Carbon Nanotubes applications in nanobioelectronics[J].ChemPhysChem,2004,5(3):1084-1104.
    [3]J Wang,M Musameh,Y Lin.Solubilization of Carbon Nanotubes by Nafion toward the Preparation of amperometric biosensors[J].J Am Chem Soc,2003,125(8):2408-2049.
    [4]S Hrapovic,Y Liu,K Male,J H Luong.Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes[J].Anal Chem,2004,76(4):1083-1088.
    [5]HL San,W Ji,J Lina,L Qiutian,KY Jin.A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode[J].Biosens Bioelectron,2005,20(5):2341-2347.
    [6]X Yu,D Chattopadhyay,I Galeska,F Papadimitrakopoulos,JF Rusling.Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes[J].Electrochem Commun,2003,5(2):408-411.
    [7] M Wang, F Zhao, Y Liu, SJ Dong. Direct electrochemistry of microperoxidase at Pt microelectrodes modified with carbon nanotubes [J]. Biosens Bioelectron, 2005, 21 (6): 159-165.
    
    [8] YM Yan, W Zheng, M Zhang, L Wang, L Su, L Mao. Bioelectrochemically Functional Nanohybrids through Co-Assembling of Proteins and Surfactants onto Carbon Nanotubes Facilitated Electron Transfer of Assembled Proteins with Enhanced Faradic Response [J]. Langmuir, 2005, 21 (9): 6560-6566.
    
    [9] GC Zhao, L Zhang, XW Wei, ZS Yang. Myoglobin on multi-walled carbon nanotubes modified electrode direct electrochemistry and electrocatalysis [J]. Electrochem Commun, 2003, 5 (3): 825-827.
    
    [10] L Zhou, J Wang, F Zhou. Direct Electrochemistry of Catalase at a Gold Electrode Modified with Single-Wall Carbon Nanotubes [J]. Electroanal, 2004, 16 (4): 672-675.
    
    [11] M D Rubianes, G A Rivas. Enzymatic Biosensors Based on Carbon Nanotubes Paste Electrodes [J]. Electroanal, 2005, 17(1): 73-76.
    
    [12] Q Zhao, LH Guan, ZN Gu, QK Zhuang. Determination of Phenolic Compounds Based on the Tyrosinase- Single Walled Carbon Nanotubes Sensor [J]. Electroanal, 2005,17(1): 85-87.
    
    [13] J Wang, M Musameh. A Disposable Biosensor for Organophosphorus Nerve Agents Based on Carbon Nanotubes Modified Thick Film Strip Electrode [J]. Anal Lett, 2003, 36 (10): 2041-2045.
    
    [14] Z Xu, N Gao, H Chen, S. Dong. Biopolymer and Carbon Nanotubes Interface Prepared by Self-Assembly for Studying the Electrochemistry of Microperoxidase-11 [J]. Langmuir, 2005, 21 (15): 10808-10813.
    
    [15] H Zhao, HX Ju. Multilayer membranes for glucose biosensing via layer-by-layer assembly of multi wall carbon nanotubes and glucose oxidase [J]. Anal Biochem, 2006, 350(4): 138-142.
    
    [16] J H Rouse, P T Lillehei. Electrostatic Assembly of Polymer Single Walled Carbon Nanotube Multilayer Films [J]. Nano Lett, 2003, 3 (1): 59-63.
    
    [17] M Zhang, Y Yan, K Gong, L Mao, Z Guo, Y Chen. Electrostatic Layer-by-Layer Assembled Carbon Nanotube Multilayer Film and Its Electrocatalytic Activity for O_2 Reduction [J]. Langmuir, 2004, 20 (5): 8781-8785.
    
    [18] M Sato, M Sano. Van der Waals layer-by-layer construction of a carbon nanotube 2D network [J]. Langmuir, 2005, 21 (7): 11490-11494.
    
    [19] SH Qin, DQ Qin, WT Ford, Y Zhang, AK Nicholas. Covalent Cross-Linked Polymer Single-Wall Carbon Nanotube Multilayer Films [J]. Chem Mater, 2005, 17 (12): 2131-2138.
    
    [20] R Hirsch, E Katz, J Wasserman, I Willner. Magneto-Switchable Bioelectrocatalysis [J]. J Am Chem Soc, 2000,122 (15): 12053-12054.
    
    [21] E Katz, I Willner. Magnetic control of chemical transformations application for programmed electrocatalysis and surface patterning [J]. Electrochem Commun, 2002, 4 (2): 201-204.
    
    [22] J Wang, A Kawde. Magnetic-field stimulated DNA oxidation [J]. Electrochem Commun, 2002,4 (4): 349-352.
    
    [23] D Cao, P He, N Hu. Electrochemical biosensors utilising electron transfer in heme proteins immobilished on Fe_3O_4 nanoparticles [J]. Analyst, 2003, 128 (5): 1268-1274.
    
    [24] S Liu, A Chen. Coadsorption of Horseradish Peroxidase with Thionine on TiO_2 Nanotubes for Biosensing [J]. Langmuir, 2005, 21 (9): 8409-8413.
    
    [25] W Zhao, J Xu, H Y Chen. Multilayer Membranes via Layer-by-Layer Deposition of Organic Polymer Protected Prussian Blue Nanoparticles and Glucose Oxidase for Glucose Biosensing [J]. Langmuir, 2005,21(14): 9630-9634.
    
    [26] R W Murray, A J Bard. Electroannalytic Chemistry [M]. New York: New York Press, 1984:13.
    
    [27] Laviron E. The use of linear potential sweep voltammetry and of voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes [J]. J Electroanal Chem, 1979,100(3): 263-270.
    
    [28] Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J]. J Electroanal Chem, 1979, 101(3): 19-28.
    
    [29] Kamin RA, Wilson GS. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized layer [J]. Anal Chem, 1980, 52(12): 1198-1205.
    [1] Kong J, Z Lu, Lvov YM, Desamero RZA, Frank HA, Rusling JF. Direct electrochemistry of cofactor redox sites in a bacterial photosynthetic reaction center protein [J]. J Am Chem Soc, 1998, 120 (13):7371-7372.
    
    [2] Shen L, Huang R, Hu N. Myoglobin in polyacrylamide hydrogel films direct electrochemistry and electrochemical catalysis [J]. Talanta, 2002, 56 (11): 1131-1137.
    
    [3] Liu A, Wei M, Honma I, Zhou H. Direct electrochemistry of myoglobin in titanate nanotubes film [J]. Anal Chem, 2005, 77 (13): 8068-8074.
    
    [4] Liu XJ, Xiao H, Shang LB, Wang XY, Li GX. Electrochemical studies of hemoglobin and myoglobin embedded in dipalmitoylphosphatidic acid films [J]. Anal lett, 2005, 38 (3): 453-462.
    
    [5] Liu H, Hu NJ. Comparative Bioelectrochemical Study of Core-Shell Nanocluster Films with Ordinary Layer-by-Layer Films Containing Heme Proteins and CaCO_3 Nanoparticles [J]. J Phys Chem B, 2005 109 (18): 10464-10473.
    
    [6] S Iijima. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354 (7):56-58.
    
    [7] Q Zhao, Z Gan, Q Zhuang. Electrochemical Sensors Based on Carbon Nanotubes [J]. Electroanalysis, 2002, 14 (23): 1609-1616.
    
    [8] F Valentini, A Amine, S Orlanducci, M L Terranova, G Palleschi. Carbon Nanotube Purification Preparation and Characterization of Carbon Nanotube Paste Electrodes [J]. Anal Chem, 2003, 75 (19): 5413-5421.
    
    [9] MD Rubianes, G A Rivas. Enzymatic Biosensors Based on Carbon Nanotubes Paste Electrodes [J]. Electroanalysis, 2005,17 (1): 73-78.
    
    [10] R S Chen, W H Huang, H Tong, Z L Wang, J K Cheng. Carbon Fiber Nanoelectrodes Modified by Single-Walled Carbon Nanotubes [J]. Anal Chem, 2003, 75 (23): 6341-6345.
    
    [11] M Gao, L Dai, G G Wallace. Biosensors Based on Aligned Carbon Nanotubes Coated with Inherently Conducting Polymers [J]. Electroanalysis, 2003, 157 (13): 1089-1095.
    
    [12] J J Gooding, R Wibowo, J Liu, W Yang, et al. Protein Electrochemistry Using Aligned Carbon Nanotube Arrays [J]. J Am Chem Soc, 2003, 125 (24): 9006-9007.
    [13] J Wang, M Musameh. Y Lin. Solubilization of Carbon Nanotubes by Nafion toward the Preparation of Amperometric Biosensors [J]. J Am Chem Soc, 2003, 125 (14): 2408-2409.
    
    [14] M Wang, F Zhao, Y Liu, SJ Dong. Direct electrochemistry of microperoxidase at Pt microelectrodes modified with carbon nanotubes [J]. Biosens Bioelectron, 2005, 21 (6): 159-165.
    
    [15] L Zhou, J Wang, F Zhou. Direct Electrochemistry of Catalase at a Gold Electrode Modified with Single-Wall Carbon Nanotubes [J]. Electroanal, 2004, 16 (4): 672-675.
    
    [16] GC Zhao, L Zhang, XW Wei, ZS Yang. Myoglobin on multi-walled carbon nanotubes modified electrode direct electrochemistry and electrocatalysis [J]. Electrochem Commun, 2003, 5 (3): 825-827.
    
    [17] Zou Y, Sun L, Xu F. Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor [J]. Talanta, 2007, 72 (2) :437-442.
    
    [18] Qu S, Wang J, Kong J, Yang P, Chen G. Magnetic loading of carbon nanotube/nano-Fe_3O_4 composite for electrochemical sensing [J]. Talanta, 2007, 71(1):1096-1102.
    
    [19] S H Lima, JWeia, J Lina, Q Lib, J K Youc. A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode [J]. Biosens Bioelectron, 2005, 20 (6): 2341-2346.
    
    [20] Fang M, Kaschak DM, Sutorik AC, Mallouk TE. A "Mix and Match" Ionic-Covalent Strategy for Self-Assembly of Inorganic Multilayer Films [J]. J Am Chem Soc, 1997, 119(50): 12184-12191.
    
    [21] Liu S, Dai Z, Chen HY, Ju HX. Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor [J]. Biosens Bioelectron, 2004,19 (10): 963-968.
    
    [22] Liu BH, Cao Y, Chen DD, Kong JL, Deng JQ. Amperometric biosensor based on a nanoporous ZrO_2 matrix [J]. Anal Chim Acta, 2003,478 (1):59-66.
    
    [23] Yu H, Rowe AW, Waugh D M. Templated Electrochemical Deposition of Zirconia Thin Films on Recordable CDs [J]. Anal Chem, 2002, 74 (25): 5742-5747.
    
    [24] M Aslam, S Pethkar, K Bandyopadhyay, I S Mulla, et al. Preparation, characterization and mechanistic features of zirconia films on bare and functionalized gold surfaces [J]. J Mater Chem, 2000, 10(12): 1737-1743.
    
    [25] Laviron E. The use of linear potential sweep voltammetry and of voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes [J]. J Electroanal Chem, 1979, 100(3): 263-270.
    
    [26] Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J]. J Electroanal Chem, 1979, 101(3): 19-28.
    
    [27] Zhao G, Feng Ji, Xu J, Chen HY. Direct electrochemistry and electrocatalysis of heme proteins immobilized on self-assembled ZrO_2 film [J]. Electrochem Commun, 2005, 7(5): 724-729.
    
    [28] Kamin RA, Wilson GS. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized layer [J]. Anal Chem, 1980, 52(12): 1198-1205.
    [1]Kong J,Z Lu,Lvov YM,Desamero RZA,Frank HA,Rusling JF.Direct electrochemistry of cofactor redox sites in a bacterial photosynthetic reaction center protein[J].J Am Chem Soc,1998,120(13):7371-7372.
    [2]蔡称心,陈静.碳纳米管电极上辣根过氧化物酶的直接电化学[J].化学学报,2004,62(3):335-340.
    [3]Chen X,Hu N,Zeng Y,Rusling JF,Yang J.Ordered electrochemically active films of hemoglobin,didodecyldimethylammonium ions,and clay[J].Langmuir,1999,15(22):7022-7030.
    [4]Ciureanu M,Goldstein S,Mateescu MA.Direct electron transfer for hemoglobin in surfactant films cast on carbon electrodes[J].J Electrochem Soc,1998,145(3):533-541.
    [5]Han X,Huang W,Jia J,Dong S,Wang E.Direct electrochemistry of hemoglobin in egg-phosphatidylcholine films and its catalysis to H_2O_2[J].Biosens Bioelectron,2002,17(4):741-746.
    [6]Sun H,Hu N,Ma H.Direct electrochemistry of hemoglobin in polyacrylamide hydrogel films on pyrolytic graphite electrode[J].Electroanalysis,2000,12(10):1064-1070.
    [7]HY Gu,AM Yu,HY Chen.Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteaminemodified gold electrode[J].J Electroanal Chem,2001,516(1):119-126.
    [8]SQ Liu,ZH Dai,HY Chen,HX Ju.Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor[J].Biosens Bioelectron,2004,19(6):963-969.
    [9]JM Gong,XQ Lin.Facilitated electron transfer of hemoglobin embedded in nanosized Fe_3O_4 matrix based on paraffin impregnated graphite electrode and electrochemical catalysis for trichloroacetic acid[J]. Microchem J, 2003, 75(1): 51-57.
    
    [10] Z Dai, S Liu, H Ju, H Chen. Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix [J]. Biosens Bioelectron, 2004, 19 (5):861-867.
    
    [11] L Zhang, Q Zhang, J Li. Direct electrochemistry and electrocatalysis of hemoglobin immobilized in bimodal mesoporous silica and chitosan inorganic-organic hybrid film. Electrochem Commun, 2007, 9 (10):1530-1535.
    
    [12] Y Xian, Y Xian, L Zhou, F Wu, Y Ling, L Jin. Encapsulation hemoglobin in ordered mesoporous silicas Influence factors for immobilization and bioelectrochemistry [J]. Electrochem Commun, 2007, 9 (1): 142-148.
    
    [13] C Cai, J Chen. Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode[J]. Anal Biochem, 2004, 325 (2): 285-292.
    
    [ 14] Y Zhao, Y Bia, W Zhang, QM Luo. The interface behavior of hemoglobin at carbon nanotube and the detection for H_2O_2[J]. Talanta 2005, 65 (2): 489-494.
    
    [15] X Wang, J Zhuang, J Chen, K Zhou, Y Li. Thermally Stable Silicate Nanotubes[J]. Angew Chem Int Ed, 2004, 43(7): 2017-2020.
    
    [16] Laviron E. The use of linear potential sweep voltammetry and of voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes [J]. J Electroanal Chem, 1979, 100(3): 263-270.
    
    [17] Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J]. J Electroanal Chem, 1979, 101(3): 19-28.
    
    [18] Kamin RA, Wilson GS. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized layer [J]. Anal Chem, 1980, 52(12): 1198-1205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700