靶向CX3CL1的RNA干扰在病毒性肝炎及癌症中的治疗作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在1999年9月份,当一个正在通过肝动脉给药,接受高滴度腺病毒载体治疗的病人死于病毒载体所引发的毒性反应后,人们对于腺病毒(Ad)载体用于临床基因治疗的理解发生了转变。当然,在临床治疗中所需的对腺病毒载体的连续性给药可能关系到机体对腺病毒的强烈反应,但是更重要的是,通过研究人们获得了更多的对腺病毒毒性的了解。我们都意识到,没有哪一种载体系统是完美无缺的。在看到腺病毒载体并不适于所有治疗应用的同时,我们也不会因此而忽略腺病毒载体那些相对于其他载体系统的显著优点:能够有效地感染静息或分裂中细胞,这是很多载体无法做到的;腺病毒能够在短时间内实现高水平的基因表达,这对于那些只需要短期高表达转基因就能产生足够治疗效应的应用意义重大。腺病毒载体潜在应用包括治疗性的血管生成作用,能够在中央神经系统(CNS)实施感染,以及在那些腺病毒的毒副作用也能产生帮助的治疗当中如作为肿瘤疫苗。当然毫无疑问的是,为了更广泛地应用腺病毒载体,解决其引起体内免疫应答的问题是当务之急。本次研究集中在腺病毒诱导的肝脏损伤,诱导体内肝脏抗病毒免疫抑制和黑色素瘤基因治疗方面,获得了如下的结果:
     1、新型高压注射重组腺病毒诱导肝损伤模型的建立
     目前,腺病毒载体能在肝脏中定位并引起肝脏炎症和损伤的研究甚多,但是通用的动物模型研究并不多。本部分研究的目的就是建立一种新的腺病毒诱导的爆发性肝炎模型,来促进对腺病毒诱导的自身免疫性肝炎的机制研究。我们采用了高压注射(注射体积占体重10%,并在7秒中内完成注射)腺病毒载体的方法,将腺病毒载体快速地特异地通过尾静脉传递到小鼠肝脏内部,观察后继的病毒感染引起的肝脏损伤。C57 BL/6小鼠尾静脉高压注射表达不同产物的腺病毒(AdLacZ,AdEGFP,AdsiNeg),通过流式细胞术分析肝脏内部淋巴细胞的比例和绝对数,血清转氨酶和H&E染色被用作评价肝脏损伤的指标。我们发现,高压注射腺病毒比普通注射诱导更加严重的肝脏炎症:大量的单个核细胞迅速浸润,尤其是肝脏NK细胞显著增加和活化;同时发现血清ALT转氨酶水平大幅升高:肝脏内出现多处坏死;IFN-γ在肝脏中的转录水平及在血清中蛋白水平上升。通过注射抗体预先清除NK细胞,可以显著减轻腺病毒诱导的肝脏损伤以及炎症因子IFN-γ的表达水平。这些数据表明腺病毒感染诱导了肝脏中NK细胞的浸润和活化,从而导致了肝细胞的损伤以及肝脏炎症的产生,NK细胞是该模型中病毒感染引发的早期炎症的主要效应细胞。总的来说,我们的工作展示了一个与人的急性肝脏感染相关的新的病毒肝炎模型,为研究腺病毒提供了一个实用有效的工具和平台。
     2、治疗性RNA干扰CX3CL1抑制腺病毒引起的肝脏损伤
     我们研究了趋化因子CX3CL1/fractalkine(FKN)在抗病毒感染免疫应答中的作用。FKN是一种CX3C类的趋化因子,有膜结合型和分泌型两种存在形式。大部分NK细胞,CD14~-单核细胞及部分的CD8~+T细胞表达相应受体CX3CR1。通过进一步研究以上构建的高压注射腺病毒诱导的肝脏损伤模型,我们发现CX3CL1在腺病毒感染的肝脏中是显著上调的,并且有意思的是同时发现浸润到炎症肝脏中的主要效应细胞NK细胞上相应受体的CX3CR1表达也显著上调。为了进一步证明二者关系,我们构建了表达重组小鼠CX3CL1的腺病毒进行注射,发现在肝脏内过表达CX3CL1大大增加了CX3CR1~+NK细胞的浸润和活化水平,血清中ALT转氨酶的水平及肝脏坏死程度也大幅升高。这表明腺病毒感染肝脏后诱导肝脏内CX3CL1的表达增加,CX3CL1与其受体CX3CR1相互作用在NK细胞的招募和活化以及IFN-γ的产生中行使重要的作用。因此,抑制CX3CL1的表达将可作为抗腺病毒炎症治疗的一个选择。实验中,运用高压注射表达CX3CL1特异性干扰小RNA的腺病毒进行了体内RNA干扰,发现病毒感染后CX3CL1在肝脏中的表达水平被明显抑制,相应地,NK细胞的浸润及肝脏损伤和炎症也显著下调。为了更好地验证CX3CL1的促炎症作用,我们在注射腺病毒之前用CX3CL1或CX3CR1的阻断抗体预先处理小鼠,结果显示肝脏中的炎症损伤及淋巴细胞浸润也能被很好地抑制。综上,该实验证明了CX3CL1-CX3CR1趋化因子系统在腺病毒诱导的肝脏损伤中的促炎症功能和重要性,并为体内基因治疗提供了一个新的靶点和手段。
     3、RNA干扰CX3CL1抑制黑色素瘤体内生长及机制研究
     虽然有报道称过表达的CX3CL1促进对肿瘤细胞的杀伤,CX3CL1行使的是抑制肿瘤生长的作用。而我们的研究经RT-PCR,Western Blotting以及免疫荧光检测发现小鼠黑色素瘤B16-F0细胞及一些肿瘤病人的实体瘤表达CX3CL1。进一步的流式细胞术抗体检测发现B16上CX3CL1为阳性,而ELISA检测发现B16的培养上清中无可溶性FKN的表达,这证明了B16表达的CX3CL1为膜结合型。因此我们猜测这种膜结合型的CX3CL1可能参与了肿瘤的发生过程。运用表达CX3CL1特异性干扰小RNA的腺病毒感染B16-F0黑色素瘤细胞,沉默了B16细胞上CX3CL1的表达。通过流式细胞分选技术筛选得到CX3CL1表达被有效抑制的B16细胞。在C57 BL/6小鼠上进行体内荷瘤的结果发现CX3CL1敲除鼠与对照组相比肿瘤的成瘤性大幅降低;生存曲线数据表明CX3CL1敲除组的小鼠的生存情况要显著优于对照组。对肿瘤切片加以研究发现,血管内皮细胞表达CX3CL1的受体CX3CR1;CX3CL1敲除组的肿瘤生长受到严重抑制且瘤体内部和周围只有少量的血管生成,而对照组肿瘤生长旺盛,并伴随着大量的肿瘤内血管分布。因此我们有理由认为肿瘤表达一定水平的CX3CL1来促进它们自身与体内表达CX3CR1的血管内皮细胞相互作用,加强肿瘤发生过程中对血管内皮的黏附及促肿瘤内部血管生成,从而促进了肿瘤的发生。
In September 1999,the perceptions of the use of adenoviral(Ad)vectors for gene therapy were altered when a patient exposed via the hepatic artery to a high dose of adenoviral vector succumbed to the toxicity related to vector administration. Appropriately,concerns were raised about continued use of the Ad vector system and, importantly,there were increased efforts to more fully understand the toxicity.Today it is recognized that there is no ideal vector system,and that while Ad vectors are not suitable for all applications,the significant advantages over other vector systems including efficient transduction of a variety of cell types,both quiescent and dividing, make it optimal for certain applications.These include protocols where high levels of short-term expression are sufficient to provide a therapeutic benefit.Potential target applications include therapeutic angiogenesis,administration into immune-privileged sites such as the CNS,or treatments where the adjuvant effect of adenovirus can be of benefit such as cancer vaccines.Broader applicability of Ad vectors will require resolution of toxicity issues.The researches presented here focus on the adenovirus-induced acute liver injury,induction of in vivo hepatic immuno suppression against adenoviral infection and gene therapy of melanoma.
     1,Hydrodynamic injection of adenovirus to construct a novel liver injury model.
     So far,it has been widely reported that adenovirus vectors delivered by i.v. injection accumulate in the liver and induce liver injury.But few common animal models were established to study the adenovirus-induced liver injury.The purpose of our research is to construct a novel adenovirus-indued fulminant hepatitis model to study the mechanisms involved in the adenovirus-induced auto-immune hepatitis.We employed hydrodynamics-based injection(10%body weight and the tail vein injection was performed over less than 5 s)to deliver adenovirus vector into the mouse livers and observe the pathological changes after infection.C57 BL/6 mouse was hydrodynamic injection with different adenovirus vectors(AdLacZ,AdEGFP and AdsiNeg),and then assayed the proportion and total amount of hepatic lymphocytes by FACS.The serum ALT levels and pathological H&E staining of liver sections were used as indication of liver injury.We found that hydrodynamic injection of adenovirus vector induced much more severe liver inflammation than conventional i.v. injection.HP-injection of adenovirus preferentially led a substantial increase of lymphocytes in infected liver.Especially the hepatic NK cells were significantly increased and activated.It was also observed that the serum ALT levels were dramatically increased following severe liver necrosis.The transcript level in infected liver and the serum level of IFN-γwere both up-regulated.Depletion of NK/NKT cells or NK cells prevented mice from adenovirus vector-induced liver injury and down-regulate the expression of IFN-γ.All these data indicated that adenovirus infection induced the infiltration and activation of hepatic NK cells leading to liver injury and inflammation.So NK cells are the key effector cell in the early phase of adenovirus infection in this model.In conclusion,our work presents a novel viral hepatitis model associated with human acute liver viral infection and provides a efficient platform for studying adenovirus infection.
     2、Therapeutic RNA silencing of CX3CL1 prevent adenovirus induced liver injury
     We investigate the role of chemokine CX3CL1/fractalkine(FKN)involved in the anti-viral infection immunity.Fractalkine,the only member of CX3C chemokine containing both membrane-anchored and soluble forms,has both chemoattractant and cell-adhesive functions and is believed to be an important regulator of inflammatory response as an inducer of cellular infiltration,including induction of IFN-γ.Most of NK cells,CD14~+ monocytes and partial CD8~+ T cells express its receptor CX3CR1. By further studying the hydrodynamic infection of adenovirus induced liver injury model,we found that the expression of CX3CL1 in adenovirus infected liver was significantly upregulated,and interestingly,the CX3CR1 expression on the infiltrated NK cells was also up-regulated.To explore the relationship between them,we constructed adenovirus vector to express mouse recombinant CX3CL1(AdFKN). Injection of AdFKN induced the overexpression of CX3CL1 in mouse liver and dramatically promoted the infiltration and activation of CX3CR1~+ NK cells while the serum ALT levels and the liver necrosis were increased too.These results indicated that adenovirus infection induced the expression of hepatic CX3CL1,then NK cells were recruited and activated through the interaction between CX3CL1 and CX3CR1 following the production of IFN-γ.So,inhibition of CX3CL1 expression might be a good choice for eluding adenovirus vector immunity.We constructed adenovirus vector carrying mouse CX3CL1 specifc siRNA(AdsiFKN)to perform in vivo RNA interference.After hydrodynamic injection of AdsiFKN,the expression of CX3CL1 in infected mouse liver was greatly inhibited.At the meantime,the infiltration of NK cells and the liver inflammation were significantly down-regulated too.In order to further demonstrating the pro-inflammatory role of CX3CL1,the mice were pre-treated with anti-CX3CL1 or anti-CX3CR1 specific neutralizing antibody before virus injection.We found that the injury and inflammation of infected liver could be greatly suppressed too.Our findings suggest a strategy to prevent or alleviate adenovirus vector-induced acute liver injury by blocking CX3CL1/CX3CR1 interaction in adenovirus vector-based gene therapy.
     3、Down-regulation of surface fractalkine by RNA interference in B16 melanoma reduced tumor growth in mice
     It is reported that membrane-bound form of CX3CL1/fractalkine(FKN)promotes cell-cell adhesion by binding with its unique receptor CX3CR1,and membrane fraetalkine works as an adhesion molecule for the communication between tumor cells and vascular endothelial cells.Here,we show that CX3CL1/fractalkine was expressed on both mouse and human solid tumors,and small interfering RNA-mediated knock down of fractalkine gene inhibited melanoma B16-F0 cells growth in vivo,which was correlated to the decreased angiogenesis around the tumor. Our findings for the first time suggest that membrane fractalkine may possibly promote tumor angiogenesis through its strong cell adhesion function and therefore serves as a potential target of tumors therapy including RNA interference.
引文
1.Stewart P L,Fuller S D,Burner R M.Difference imaging of adenovirus:bridging the resolution gap between X-ray crystallography and electron microscopy.EMBO,1993,2(1):2589-2 599.
    2.Horowitz M S,In Field B N,Naise D M,et al.Adenovirdae and their replication.Virology.2nd ed.New York:Raren press,1990:1 679-1 723.
    3.Alemany R,Balague C,Curiel DT.Replicative adenoviruses for cancer therapy.Nat Biotechnol 2000;18:723-727.
    4.Bramson JL,Graham FL,Gauldie J.The use of adenoviral vectors for gene therapy and gene transfer in vivo.Curr Opin Biotechnol 1995;6:590-595.
    5.Chuah MK,Collen D,VandenDriessehe T.Biosafety of adenoviral vectors.Curr Gene Ther 2003;3:527-543.
    6.Curiel DT.The development of conditionally replicative adenoviruses for cancer therapy.Clin Cancer Res 2000;6:3395-3399.
    7.Hitt MM,Graham FL.Adenovirus vectors for human gene therapy.Adv Virus Res 2000;55:479-505.
    8.Liu Y,Huang H,Saxena A,Xiang J.lntratumoral coinjection of two adenoviral vectors expressing functional interleukin-18 and inducible protein-10:respectively,synergizes to facilitate regression ofestahlished tumors.Cancer Gene Ther 2002;9:533-542.
    9.Sadeghi H,Hitt MM.Transcriptionally targeted adenovirus vectors.Curr Gene Ther 2005;5:41-427.
    10. St George JA. Gene therapy progress and prospects: adenoviral vectors. Gene Ther 2003;10:1135-1141.
    11. Akbulut H, Zhang L, Tang Y, Deisseroth A. Cytotoxic effect of replication-competent adenoviral vectors carrying L-plastin promoter regulated ElA and cytosine deaminase genes in cancers of the breast, ovary and colon. Cancer Gene Ther 2003;10:388-395.
    12. Ambar BB, Frei K, Malipiero U, Morelli AE, Castro MG, Lowenstein PR, Fontana A. Treatment of experimental glioma by administration of adenoviral vectors expressing Fas ligand. Hum Gene Ther 1999;10:1641-1648.
    13. Emtage PC, Wan Y, Muller W, Graham FL, Gauldie J. Enhanced interleukin-2 gene transfer immunotherapy of breast cancer by coexpression of B7-1 and B7-2. J Interferon Cytokine Res 1998;18:927-937.
    14. Parks R, Evelegh C, Graham F. Use of helper-dependent adenoviral vectors of alternative serotypes permits repeat vector administration. Gene Ther 1999;6:1565-1573.
    15. Trudel S, Li Z, Dodgson C, Nanji S, Wan Y, Voralia M, Hitt M, Gauldie J, Graham FL, Stewart AK. Adenovector engineered interleukin-2 expressing autologous plasma cell vaccination after highdose chemotherapy for multiple myeloma--a phase 1 study. Leukemia 2001;15:846-854.
    16. Wen XY, Mandelbaum S, Li ZH, Hitt M, Graham FL, Hawley TS, Hawley RG, Stewart AK. Tricistronic viral vectors co-expressing interleukin-12 (1L-12) and CD80 (B7-1) for the immunotherapy of cancer: preclinical studies in myeloma. Cancer Gene Ther 2001;8:361-370.
    17. Paielli DL, Wing MS, Rogulski KR, Gilbert JD, Kolozsvary A, Kim JH, Hughes J, Schnell M, Thompson T, Freytag SO. Evaluation of the biodistribution, persistence, toxicity, and potential of germ-line transmission of a replication-competent human adenovirus following intraprostatic administration in the mouse. Mol Ther 2000; 1:263-274.
    18. Harvey BG, Worgall S, Ely S, Leopold PL, Crystal RG. Cellular immune responses of healthy individuals to intradermal administration of an E1-E3- adenovirus gene transfer vector. Hum Gene Ther 1999;10:2823-2837.
    19. Dai Y, Schwarz EM, Gu D, Zhang WW, Sarvetnick N, Verma IM. Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression. Proc Natl Acad Sci USA 1995;92:1401—1405.
    20. Elkon KB, Liu CC, Gall JG, Trevejo J, Marino MW, Abrahamsen KA, Song X, Zhou JL, Old LJ, Crystal RG, Falck-Pedersen E. Tumor necrosis factor alpha plays a central role in immune-mediated clearance of adenoviral vectors. Proc Natl Acad Sci USA 1997;94:9814—9819.
    21. Kafri T, Morgan D, Krahl T, Sarvetnick N, Sherman L, Verma I. Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy. Proc Natl Acad Sci USA 1998;95:11377-11382.
    22. Yang Y, Nunes FA, Berencsi K, Furth EE, Gonczol E, Wilson JM. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 1994;91:4407-4411.
    23. Yang Y, Li Q, Ertl HC, Wilson JM. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol 1995;69:2004-2015.
    24. Toogood CI, Crompton J, Hay RT. Antipeptide antisera define neutralizing epitopes on the adenovirus hexon. J Gen Virol 1992;73:1429-1435.
    25. Dong JY, Wang D, Van Ginkel FW, Pascual DW, Frizzell RA. Systematic analysis of repeated gene delivery into animal lungs with a recombinant adenovirus vector. Hum Gene Ther 1996;7:319-331.
    26. Moffatt S, Hays J, HogenEsch H, Mittal SK. Circumvention of vector-specific neutralizing antibody response by alternating use of human and non-human adenoviruses: implications in gene therapy. Virology 2000;272:159-167.
    27. Sailaja G, HogenEsch H, North A, Hays J, Mittal SK. Encapsulation of recombinant adenovirus into alginate microspheres circumvents vector-specific immune response. Gene Ther 2002;9:1722-1729.
    28. Walter J, You Q, Hagstrom JN, Sands M, High KA. Successful expression of human factor IX following repeat administration of adenoviral vector in mice. Proc Natl Acad Sci USA 1996;93 :3056-3061.
    29. Crystal RG. Transfer of genes to humans: early lessons and obstacles to success. Science 1995;270:404-410.
    30. Engelhardt JF, Ye X, Doranz B, Wilson JM. Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver. Proc Natl Acad Sci USA 1994;9l:6196-6200.
    31. Fisher KJ, Choi H, Burda J, Chen SJ, Wilson JM. Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis. Virology 1996;217:11-22.
    32. Kochanek S, Clemens PR, Mitani K, Chen HH, Chan S, Caskey CT. A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both fulllength dystrophin and beta-galactosidase. Proc Natl Acad Sci USA 1996;93:5731-5736.
    33. Morsy MA, Gu M, Motzel S, Zhao J, Lin J, Su Q, Allen H, Franlin L, Parks RJ, Graham FL, Kochanek S, Bett AJ, Caskey CT. An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proc Natl Acad Sci USA 1998;95:7866-7871.
    34. Parks R, Chen L, Anton M, Sankar U, Rudnicki M, Graham F. A new helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci USA 1996;93:13565-13570.
    35. Hackett NR, Kaminsky SM, Sondhi D, Crystal RG. Antivector and antitransgene host responses in gene therapy. Curr Opin Mol Ther 2000;2:376-382.
    36. Kass-Eisler A, Leinwand L, Gall J, Bloom B, Falck-Pedersen E. Circumventing the immune response to adenovirus-mediated gene therapy. Gene Ther 1996;3:154-162.
    37. Bruder JT, Kovesdi I. Adenovirus infection stimulates the Raf/MAPK signaling pathway and induces interleukin-8 expression. J Virol 1997;71:398-404.
    38. Lieber A, He CY, Meuse L, Schowalter D, Kirillova I, Winther B, Kay MA. The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors. J Virol 1997;71:8798-8807.
    39. Muruve DA, Barnes MJ, Stillman IE, Libermann TA. Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo. Hum Gene Ther 1999; 10:965-976.
    40. Shifrin AL, Chirmule N, Gao GP, Wilson JM, Raper SE. Innate immune responses to adenoviral vectormediated acute pancreatitis. Pancreas 2005;30:122-129.
    41. Elkon KB, Liu CC, Gall JG, Trevejo J, Marino MW, Abrahamsen KA, Song X, Zhou JL, Old LJ, Crystal RG, Falck-Pedersen E. Tumor necrosis factor alpha plays a central role in immune-mediated clearance of adenoviral vectors. Proc Natl Acad Sci USA 1997;94:9814-9819.
    42. Zaiss AK, Liu Q, Bowen GP, Wong NC, Bartlett JS, Muruve DA. Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol 2002;76:4580-4590.
    43. Schnell MA, Zhang Y, Tazelaar J, Gao GP, Yu QC, Qian R, Chen SJ, Varnavski AN, LeClair C, Raper SE, Wilson JM. Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol Ther 2001;3:708-722.
    44. Zhang Y, Chirmule N, Gao GP, Qian R, Croyle M, Joshi B, Tazelaar J, Wilson JM. Acute cytokine response to systemic adenoviral vectors in mice is mediated by dendritic cells and macrophages. Mol Ther 2001;3:697-707.
    45. Schiedner G, Bloch W, Hertel S, Johnston M, Molojavyi A, Dries V, Varga G, van Rooijen N, Kochanek S. A hemodynamic response to intravenous adenovirus vector particles is caused by systemic Kupffer cell-mediated activation of endothelial cells. Hum Gene Ther 2003;14:1631-1641.
    46. Liu Q, Zaiss AK, Colarusso P, Patel K, Haljan G, Wickham TJ, Muruve DA. The role of capsidendothelial interactions in the innate immune response to adenovirus vectors. Hum Gene Ther 2003;14:627-643.
    47. Wolins N, Lozier J, Eggerman TL, Jones E, guilar-Cordova E, Vostal JG. Intravenous administration of replication-incompetent adenovirus to rhesus monkeys induces thrombocytopenia by increasing in vivo platelet clearance. Br J Haematol 2003; 123:903-905.
    48. Morral N, O'Neal WK, Rice K, Leland MM, Piedra PA, Aguilar-Cordova E, Carey KD, Beaudet AL, Langston C. Lethal toxicity, severe endothelial injury, and a threshold effect with high doses of an adenoviral vector in baboons. Hum Gene Ther 2002;13:143-154.
    49. Bramson JL, Hitt M, Gauldie J, Graham FL. Pre-existing immunity to adenovirus does not prevent tumor regression following intratumoral administration of a vector expressing IL-12 but inhibits virus dissemination. Gene Ther 1997;4:1069— 1076.
    50. Vlachaki MT, Hernandez-Garcia A, Ittmann M, Chhikara M, Aguilar LK, Zhu X, Teh BS, Butler EB, Woo S, Thompson TC, Barrera-Saldana H, Aguilar-Cordova E, The BS. Impact of preimmunization on adenoviral vector expression and toxicity in a subcutaneous mouse cancer model. Mol Ther 2002;6:342-348.
    51. Nagao S, Kuriyama S, Okuda H, Tominaga K, Nakatani T, Tsujinoue H, Yoshiji H, Fukui H. Adenovirusmediated gene transfer into tumors: evaluation of direct readministration of an adenoviral vector into subcutaneous tumors of immunocompetent mice. Int J Oncol 2001;18:57-65.
    52. Nunes FA, Furth EE, Wilson JM, Raper SE. Gene transfer into the liver of nonhuman primates with E1- deleted recombinant adenoviral vectors: safety of readministration. Hum Gene Ther 1999; 10:2515-2526.
    53. Smith JS, Tian J, Muller J, Byrnes AP. Unexpected pulmonary uptake of adenovirus vectors in animals with chronic liver disease. Gene Ther 2004; 11:431-438.
    54. Smith JS, Tian J, Lozier JN, Byrnes AP. Severe pulmonary pathology after intravenous administration of vectors in cirrhotic rats. Mol Ther 2004;9:932—941.
    55. Stilwell JL, McCarty DM, Negishi A, Superfine R, Samulski RJ. Development and characterization of novel empty adenovirus capsids and their impact on cellular gene expression. J Virol 2003;77:12881-12885.
    56. Maione D, Delia Rocca C, Giannetti P, D'Arrigo R, Liberatoscioli L, Franlin LL, Sandig V, Ciliberto G, La Monica N, Savino R. An improved helper-dependent adenoviral vector allows persistent gene expression after intramuscular delivery and overcomes preexisting immunity to adenovirus. Proc Natl Acad Sci USA 2001 ;98:5986-5991.
    57. Smith TA, White BD, Gardner JM, Kaleko M, McClelland A. Transient immunosuppression permits successful repetitive intravenous administration of an adenovirus vector. Gene Ther 1996;3:496-502.
    58. Kaplan JM, Smith AE. Transient immunosuppression with deoxyspergualin improves longevity of transgene expression and ability to readminister adenoviral vector to the mouse lung. Hum Gene Ther 1997;8:1095-1104.
    59. Ilan Y, Jona VK, Sengupta K, Davidson A, Horwitz MS, Roy-Chowdhury N, Roy-Chowdhury J. Transient immunosuppression with FK506 permits long-term expression of therapeutic genes introduced into the liver using recombinant adenoviruses in the rat. Hepatology 1997;26:949-956.
    60. Guerette B, Vilquin JT, Gingras M, Gravel C, Wood KJ, Tremblay JP. Prevention of immune reactions triggered by first-generation adenoviral vectors by monoclonal antibodies and CTLA4Ig. Hum Gene Ther 1996;7:1455-1463.
    61. Jooss K, Turka LA, Wilson JM. Blunting of immune responses to adenoviral vectors in mouse liver and lung with CTLA4Ig. Gene Ther 1998;5:309-319.
    62. Ye X, Robinson MB, Pabin C, Batshaw ML, Wilson JM. Transient depletion of CD4 lymphocyte improves efficacy of repeated administration of recombinant adenovirus in the ornithine transcarbamylase deficient sparse fur mouse. Gene Ther 2000;7:1761—1767.
    63. Chirmule N, Raper SE, Burkly L, Thomas D, Tazelaar J, Hughes JV, Wilson JM. Readministration of adenovirus vector in nonhuman primate lungs by blockade of CD40-CD40 Iigand interactions. J Virol 2000;74:3345-3352.
    64. Ilan Y, Sauter B, Chowdhury NR, Reddy BV, Thummala NR, Droguett G, Davidson A, Ott M, Horwitz MS, Chowdhury JR. Oral tolerization to adenoviral proteins permits repeated adenovirus-mediated gene therapy in rats with pre-existing immunity to adenoviruses. Hepatology 1998;27:1368-1376.
    65. Schiedner G, Hertel S, Johnston M, Dries V, van Rooijen N, Kochanek S. Selective depletion or blockade of Kupffer cells leads to enhanced and prolonged hepatic transgene expression using high-capacity adenoviral vectors. Mol Ther 2003;7:35-43.
    66. Worgall S, Leopold PL, Wolff G, Ferris B, Van Roijen N, Crystal RG. Role of alveolar macrophages in rapid elimination of adenovirus vectors administered to the epithelial surface of the respiratory tract. Hum Gene Ther 1997;8:1675-1684.
    67. Roy S, Shirley PS, McClelland A, Kaleko M. Circumvention of immunity to the adenovirus major coat protein hexon. J Virol 1998;72:6875-6879.
    68. Croyle MA, Yu QC, Wilson JM. Development of a rapid method for the PEGylation of adenoviruses with enhanced transduction and improved stability under harsh storage conditions. Hum Gene Ther 2000; 11:1713-1722.
    69. Croyle MA, Chirmule N, Zhang Y, Wilson JM. PEGylation of E1-deleted adenovirus vectors allows significant gene expression on readministration to liver. Hum Gene Ther 2002; 13:1887-1900.
    70. Lanciotti J, Song A, Doukas J, Sosnowski B, Pierce G, Gregory R, Wadsworth S, O'Riordan C. Targeting adenoviral vectors using heterofunctional polyethylene glycol FGF2 conjugates. Mol Ther 2003;8:99-107.
    71. O'Riordan CR, Lachapelle A, Delgado C, Parkes V, Wadsworth SC, Smith A E, Francis GE. PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum Gene Ther 1999; 10:1349-1358.
    72. Fisher KD, Stallwood Y, Green NK, Ulbrich K, Mautner V, Seymour LW. Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther 2001;8:341-348.
    73. Geest BD, Snoeys J, Linthout SV, Lievens J, Collen D. Elimination of innate immune responses and liver inflammation by PEGylation of adenoviral vectors and methylprednisolone. Hum Gene Ther 2005;16:1439-1451.
    74. Mok H, Palmer Donna J, Ng Philip, Barry Michael A. Evaluation of polyethylene glycol modification of first-generation and helper-dependent adenoviral vectors to reduce innate immune responses. Mol Ther 2005; 11:66-79.
    75. Croyle MA, Le HT, Linse KD, Cerullo V, Toietta G, Beaudet A, Pastore L. PEGylated helper-dependent adenoviral vectors: highly efficient vectors with an enhanced safety profile. Gene Ther 2005; 12:579-587.
    76. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997;275:1320-1323.
    77. Tomko RP, Xu R, Philipson L. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA 1997;94:3352-3356.
    78. Hong SS, Karayan L, Tournier J, Curiel DT, Boulanger PA. Adenovirus type 5 fiber knob binds to MHC class I alpha2 domain at the surface of human epithelial and B lymphoblastoid cells. EMBO J 1997; 16:2294-2306.
    79. Smith TA, Idamakanti N, Rollence ML, Marshall-Neff J, Kim J, Mulgrew K, Nemerow GR, Kaleko M, Stevenson SC. Adenovirus serotype 5 fiber shaft influences in vivo gene transfer in mice. Hum Gene Ther 2003;14:777-787.
    80. Arnberg N, Edlund K, Kidd AH, Wadell G. Adenovirus type 37 uses sialic acid as a cellular receptor. J Virol 2000;74:42-48.
    81. Molinier-Frenkel V, Prevost-Blondel A, Hong SS, Lengagne R, Boudaly S, Magnusson MK, Boulanger P, Guillet JG. The maturation of murine dendritic cells induced by human adenovirus is mediated by the fiber knob domain. J Biol Chem 2003;278:37175-37182.
    82. Schoggins JW, Nociari M, Philpott N, Falck-Pedersen E. Influence of fiber detargeting on adenovirusmediated innate and adaptive immune activation. J Virol 2005;79:11627-11637.
    83. Nanda A, Lynch DM, Goudsmit J, Lemckert AA, Ewald BA, Sumida SM, Truitt DM, Abbink P, Kishko MG, Gorgone DA, Lifton MA, Shen L, Carville A, Mansfield KG, Havenga MJ, Barouch DH. Immunogenicity of recombinant fiber-chimeric adenovirus serotype 35 vector-based vaccines in mice and rhesus monkeys. J Virol 2005;79:14161-14168.
    84. Ostapchuk P, Hearing P. Pseudopackaging of adenovirus type 5 genomes into capsids containing the hexon proteins of adenovirus serotypes B, D, or E. J Virol 2001 ;75:45-51.
    85. Sumida SM, Truitt DM, Lemckert AA, Vogels R, Custers JH, Addo MM, Lockman S, Peter T, Peyerl FW, Kishko MG, Jackson SS, Gorgone DA, Lifton MA, Essex M, Walker BD, Goudsmit J, Havenga MJ, Barouch DH. Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein. J Immunol 2005; 174:7179-7185.
    86. Chillon M, Lee JH, Fasbender A, Welsh MJ. Adenovirus complexed with polyethylene glycol and cationic lipid is shielded from neutralizing antibodies in vitro. Gene Ther 1998;5:995—1002.
    87. Beer SJ, Matthews CB, Stein CS, Ross BD, Hilfinger JM, Davidson BL. Poly (lactic-glycolic) acid copolymer encapsulation of recombinant adenovirus reduces immunogenicity in vivo. Gene Ther 1998;5:740-746.
    88. Aggarwal N, HogenEsch H, Guo P, North A, Suckow M, Mittal SK. Biodegradable alginate microspheres as a delivery system for naked DNA. Can J Vet Res 1999;63:148-152.
    89. Bowerstock TL, HogenEsch H, Suckow M, Guimond P, Martin S, Borie D, Torregrosa S, Park H, Park K. Oral vaccination of animals with antigens encapsulated in alginate microspheres. Vaccine 1999; 17:1804-1811.
    90. Hilbert AK, Fritzsche U, Kissel T. Biodegradable microspheres containing influenza A vaccine: immune response in mice. Vaccine 1999;17:1065—1073.
    91. Mittal SK, Aggarwal N, Sailaja G, van Olphen A, HogenEsch H, North A, Hays J, Moffatt S. Immunization with DNA, adenovirus or both in biodegradable alginate microspheres: effect of route of inoculation on immune response. Vaccine 2000;19:253-263.
    92. Periwal SB, Speaker TJ, Cebra JJ. Orally administered microencapsulated reovirus can bypass suckled, neutralizing maternal antibody that inhibits active immunization of neonates. J Virol 1997;71:2844-2850.
    93. Lomotan EA, Brown KA, Speaker TJ, Offita PA. Aqueous-based microcapsules are detected primarily in gut-associated dendritic cells after oral inoculation of mice. Vaccine 1997;15:1959-1962.
    94. Yotnda P, Chen DH, Chiu W, Piedra PA, Davis A, Templeton NS, Brenner MK. Bilamellar cationic liposomes protect adenovectors from preexisting humoral immune responses. Mol Ther 2002;5:233-241.
    95. Steel JC, Cavanagh HM, Burton MA, Kalle WH. Microsphere-liposome complexes protect adenoviral vectors from neutralising antibody without losses in transfection efficiency, in-vitro. J Pharm Pharmacol 2004; 56:1371-1378.
    96. Mack CA, Song WR, Carpenter H, Wickham TJ, Kovesdi I, Harvey BG, Magovern CJ, Isom OW, Rosengart T, Falck-Pedersen E, Hackett NR, Crystal RG, Mastrangeli A. Circumvention of antiadenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype. Hum Gene Ther 1997;8:99-109.
    97. Mastrangeli A, Harvey BG, Yao J, Wolff G, Kovesdi I, Crystal RG, Falck-Pedersen E. "Sero-switch" adenovirus-mediated in vivo gene transfer: circumvention of anti-adenovirus humoral immune defenses against repeat adenovirus vector administration by changing the adenovirus serotype. Hum Gene Ther 1996;7:79-87.
    98. Parks R, Evelegh C, Graham F. Use of helper-dependent adenoviral vectors of alternative serotypes permits repeat vector administration. Gene Ther 1999;6:1565-1573.
    99. Gao W, Tamin A, Soloff A, D'Aiuto L, Nwanegbo E, Robbins PD, Bellini WJ, Barratt-Boyes S, Gambotto A. Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet 2003;362:1895-1896.
    100. Reddy PS, Ganesh S, Limbach MP, Brann T, Pinkstaff A, Kaloss M, Kaleko M, Connelly S. Development of adenovirus serotype 35 as a gene transfer vector. Virology 2003;311:384-393.
    101. Sakurai F, Mizuguchi H, Hayakawa T. Efficient gene transfer into human CD34+ cells by an adenovirus type 35 vector. Gene Ther 2003;10:1041-1048.
    102. Vogels R, Zuijdgeest D, van Rijnsoever R, Hartkoorn E, Damen I, de Bethune MP, Kostense S, Penders G, Helmus N, Koudstaal W, Cecchini M, Wetterwald A, Sprangers M, Lemckert A, Ophorst O, Koel B, van Meerendonk M, Quax P, Panitti L, Grimbergen J, Bout A, Goudsmit J, Havenga M. Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of preexisting adenovirus immunity. J Virol 2003;77:8263-8271.
    103. Holterman L, Vogels R, van der V, Sieuwerts M, Grimbergen J, Kaspers J, Geelen E, van der Helm E, Lemckert A, Gillissen G, Verhaagh S, Custers J, Zuijdgeest D, Berkhout B, Bakker M, Quax P, Goudsmit J, Havenga M. Novel replication-incompetent vector derived from adenovirus type 11 (Ad11) for vaccination and gene therapy: low seroprevalence and non-cross-reactivity with Ad5. J Virol 2004;78:13207-13215.
    104. Stone D, Ni S, Li ZY, Gaggar A, DiPaolo N, Feng Q, Sandig V, Lieber A. Development and assessment of human adenovirus type 11 as a gene transfer vector. J Virol 2005;79:5090-5104.
    105. Barouch DH, Pau MG, Custers JH, Koudstaal W, Kostense S, Havenga MJ, Truitt DM, Sumida SM, Kishko MG, Arthur JC, Korioth-Schmitz B, Newberg MH, Gorgone DA, Lifton MA, Panicali DL, Nabel GJ, Letvin NL, Goudsmit J. Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity. J Immunol 2004; 172:6290-6297.
    106. Shiver JW, Emini EA. Recent advances in the development of HIV-1 vaccines using replicationincompetent adenovirus vectors. Annu Rev Med 2004;55:355—372.
    107. Mitani K, Wakamiya M, Hasty P, Graham FL, Bradley A, Caskey CT. Gene targeting in mouse embryonic stem cells with an adenoviral vector. Somat Cell Mol Genet 1995;21:221—231.
    108. Schiedner G, Morral N, Parks RJ, Wu Y, Koopmans SC, Langston C, Graham FL, Beaudet AL, Kochanek S. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet 1998;18:180—183.
    109. Morral N, O'Neal W, Rice K, Leland M, Kaplan J, Piedra PA, Zhou H, Parks RJ, Velji R, Aguilar-Cordova E, Wadsworth S, Graham FL, Kochanek S, Carey KD, Beaudet AL. Administration of helperdependent adenoviral vectors and sequential delivery of different vector serotype for long-term liverdirected gene transfer in baboons. Proc Natl Acad Sci USA 1999;96:12816-12821.
    110. Morral N, Parks RJ, Zhou H, Langston C, Schiedner G, Quinones J, Graham FL, Kochanek S, Beaudet AL. High doses of a helper-dependent adenoviral vector yield supraphysiological levels of alphal- antitrypsin with negligible toxicity. Hum Gene Ther 1998;9:2709-2716.
    111. Roth MD, Cheng Q, Harui A, Basak SK, Mitani K, Low TA, Kiertscher SM. Helper-dependent adenoviral vectors efficiently express transgenes in human dendritic cells but still stimulate antiviral immune responses. J Immunol 2002;169:4651-4656.
    112. Brunetti-Pierri N, Palmer DJ, Beaudet AL, Carey KD, Finegold M, Ng P. Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates. Hum Gene Ther 2004; 15:35-46.
    113. Stilwell JL, McCarty DM, Negishi A, Superfine R, Samulski RJ. Development and characterization of novel empty adenovirus capsids and their impact on cellular gene expression. J Virol 2003;77:12881-12885.
    114. Ng P, Parks RJ, Graham FL. Preparation of helper-dependent adenoviral vectors. Methods Mol Med 2002;69:371-388.
    115. Mittal SK, Prevec L, Graham FL, Babiuk LA. Development of a bovine adenovirus type 3-based expression vector. J Gen Virol 1995;76:93-102.
    116. Reddy PS, Idamakanti N, Hyun BH, Tikoo SK, Babiuk LA. Development of porcine adenovirus-3 as an expression vector. J Gen Virol 1999;80:563-570.
    117. van Olphen AL, Tikoo SK, Mittal SK. Characterization of bovine adenovirus type 3 El proteins and isolation of E1-expressing cell lines. Virology 2002;295:108-118.
    118. Hemminki A, Kanerva A, Kremer EJ, Bauerschmitz GJ, Smith BF, Liu B, Wang M, Desmond RA, Keriel A, Barnett B, Baker HJ, Siegal GP, Curiel DT. A canine conditionally replicating adenovirus for evaluating oncolytic virotherapy in a syngeneic animal model. Mol Ther2003;7:163-173.
    119. Klonjkowski B, Gilardi-Hebenstreit P, Hadchouel J, Randrianarison V, Boutin S, Yeh P, Perricaudet M, Kremer EJ. A recombinant E1-deleted canine adenoviral vector capable of transduction and expression of a transgene in human-derived cells and in vivo. Hum Gene Ther 1997;8:2103-2115.
    120. Hofmann C, Loser P, Cichon G, Arnold W, Both GW, Strauss M. Ovine adenovirus vectors overcome preexisting humoral immunity against human adenoviruses in vivo. J Virol 1999;73:6930-6936.
    121. Farina SF, Gao GP, Xiang ZQ, Rux JJ, Burnett RM, Alvira MR, Marsh J, Ertl HC, Wilson JM. Replication-defective vector based on a chimpanzee adenovirus. J Virol 200I;75:11603-11613.
    122. Xiang Z, Gao G, Reyes-Sandoval A, Cohen CJ, Li Y, Bergelson JM, Wilson JM, Ertl HC. Novel, chimpanzee serotype 68-based adenoviral vaccine carrier for induction of antibodies to a transgene product. J Virol 2002;76:2667-2675.
    123. Bangari DS, Mittal SK. Porcine adenoviral vectors evade preexisting humoral immunity to adenoviruses and efficiently infect both human and murine cells in culture. Virus Res 2004; 105:127-136.
    124. Reddy PS, Idamakanti N, Chen Y, Whale T, Babiuk LA, Mehtali M, Tikoo SK. Replication-defective bovine adenovirus type 3 as an expression vector. J Virol 1999;73:9137-9144.
    125. Bangari DS, Shukla S, Mittal SK. Comparative transduction efficiencies of human and nonhuman adenoviral vectors in human, murine, bovine, and porcine cells in culture. Biochem Biophys Res Commun 2005;327:960-966.
    126. Rasmussen UB, Benchaibi M, Meyer V, Schlesinger Y, Schughart K. Novel human gene transfer vectors: evaluation of wild-type and recombinant animal adenoviruses in human-derived cells. Hum Gene Ther 1999; 10:2587-2599.
    127. Moffatt S, Hays J, HogenEsch H, Mittal SK. Circumvention of vector-specific neutralizing antibody response by alternating use of human and non-human adenoviruses: implications in gene therapy. Virology 2000;272:159-167.
    128. Bangari DS, Mittal SK. Development of nonhuman adenoviruses as vaccine vectors. Vaccine 2006;24:849-862.
    129. Lewis DL, Hagstrom JE, Loomis AG, Wolff JA, Herweijer H. 2002. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat. Genet. 32:107-8
    130. McCaffrey AP, Meuse L, Pham IT, Conklin DS, Hannon GJ, Kay MA. 2002. RNA interference in adult mice. Nature 418:38-39
    131. Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, et al. 2005. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 11:263-70
    132. Judge AD, Bola G, Lee AC, MacLachlan I. 2006. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther. 13:494-505
    133. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, et al. 2004. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173-78
    134. Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, et al. 2006. RNAi-mediated gene silencing in nonhuman primates. Nature 441:111-14
    135. Grzelinski M, Urban-Klein B, Martens T, Lamszus K, Bakowsky U, et al. 2006. RNA interference-mediated gene silencing of pleiotrophin through polyethyleniminecomplexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. Hum. Gene Ther. 17:751-66
    136. Thomas M, Lu JJ, Ge Q, Zhang C, Chen J, Klibanov AM. 2005. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc. Natl. Acad. Sci. USA 102:5679-84
    137. Li SD, Huang L. 2006. Gene therapy progress and prospects: nonviral gene therapy by systemic delivery. Gene Ther. 13:1313-19
    138. Geisbert TW, Hensley LE, Kagan E, Yu EZ, Geisbert JB, et al. 2006. Postexposure protection of guinea pigs against a lethal ebola virus challenge is conferred by RNA interference. J. Infect. Dis. 193:1650-57
    139. Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, et al. 2005. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23:1002-7
    140. Lewis DL, Hagstrom JE, Loomis AG, Wolff JA, Herweijer H. 2002. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat. Genet. 32:107-8
    141. Hasuwa H, Kaseda K, Einarsdottir T, Okabe M. 2002. Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett. 532:227-30
    142. Tiscornia G, Singer O, Ikawa M.Verma IM. 2003. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl. Acad. Sci. USA 100:1844-48
    143. Carmell MA, Zhang L, Conklin DS, Hannon GJ, Rosenquist TA. 2003. Germline transmission of RNAi in mice. Nat. Struct. Biol. 10:91-92
    144. Kunath T, Gish G, Lickert H, Jones N, Pawson T, Rossant J. 2003. Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype. Nat. Biotechnol. 21:559-61
    145. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, et al. 2003. A lentivirusbased system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33:401-6
    146. Fritsch L, Martinez LA, Sekhri R, Naguibneva 1, Gerard M, et al. 2004. Conditional gene knock-down by CRE-dependent short interfering RNAs. EMBO Rep. 5:178-82
    147. Ventura A, Meissner A, Dillon CP, McManus M, Sharp PA, et al. 2004. Cre-lox-regulated conditional RNA interference from transgenes. Proc. Natl. Acad. Sci. USA 101:10380-85
    148. Oberdoerffer P, Kanellopoulou C, Heissmeyer V, Paeper C, Borowski C, et al. 2005. Efficiency of RNA interference in the mouse hematopoietic system varies between cell types and developmental stages. Mol. Cell. Biol. 25:3896-905
    149. Szulc J.Wiznerowicz M, Sauvain MO, Trono D, Aebischer P. 2006. A versatile tool for conditional gene expression and knockdown.Nat.Methods 3:109-16
    150.Wiznerowicz M,Szulc J,Trono D.2006.Tuning silence:conditional systems for RNA interference.Nat.Methods 3:682-88
    151.Dann CT,Alvarado AL,Hammer RE,Garbers DL.2006.Heritable and stable gene knockdown in rats.Proc.Natl.Acad.Sci.USA 103:11246-51
    152.Golding MC,Long CR,Carmell MA,Hannon GJ,Westhusin ME.2006.Suppression of prion protein in livestock by RNA interference.Proc.Natl.Acad.Sci.USA 103:5285-90
    153.Peng S,York JP,Zhang P.2006.A transgenic approach for RNA interference-based genetic screening in mice.Proc.Natl.Acad.Sci.USA 103:2252-56
    154.Brummelkamp TR,Bernards R,Agami R.2002.Stable suppression of tumorigenicity by virus-mediated RNA interference.Cancer Cell 2:243-47
    155.Hemann MT,Fridman JS,Ziifou JT,Hernando E,Paddison PJ,et ai.2003.An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo.Nat.Genet.33:396-400
    156.Ke N,Zhou D,Chatterton JE,Liu G,Chionis J,et al.2006.A new inducible RNAi xenograft model for assessing the staged tremor response to mTOR silencing.Exp.Cell Res.312:2726-34
    157.Li L,Lin X,Staver M,Shoemaker A,Semizarov D,et al.2005.Evaluating hypoxiainducible factor-lalpha as a cancer therapeutic target via inducible RNA interference in vivo.Cancer Res.65:7249-58
    158.Reich SJ,Fosnot J,Kuroki A,TangW,Yang X,et al.2003.Small interferingRNA(siRNA)targeting VEGF effectively inhibits ocular neovascularization in a mouse model.Mol.Vis.9:210-16
    159.Hommel JD,Sears RM,Georgescu D,Simmons DL,DiLeone RJ.2003.Local gene knockdown in the brain using viral-mediated RNA interference.Nat.Med.9:1539-44
    160.Hommel JD,Trinko R,Sears RM,Georgescu D,Liu ZW,et al.2006.Leptin receptor signaling in midbrain dopamine neurons regulates feeding.Neuron 51:801-10
    161.Rodriguez-Lebron E,Denovan-Wright EM,Nash K,Lewin AS,Mandel RJ.2005.Intrastriatal rAAV-mediated delivery of antihuntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington's disease transgenic mice.Mol.Ther.12:618-33
    162.Xia H,Mao Q,Eliason SL,Harper SQ,Martins IH,et al.2004.RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia.Nat.Med. 10:816-20
    163.Gonzalez-Alegre P,Bode N,Davidson BL,Paulson HL.2005.Silencing primary dystonia:lentiviral-mediatod RNA interference therapy for DYT1 dystonia.J.Neurosci.25:10502-9
    164.Ralph GS,Radcliffe PA,Day DM,Carthy JM,Leroux MA,et al.2005.Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model.Nat.Med.11:429-33
    165.Xia H,Mao Q,Paulson HL,Davidson BL.2002.siRNA-mediated gene silencing in vitro and in vivo.Nat.Biotechnol.20:1006-10
    166.Hong CS,Goins WF,Goss JR,Burton EA,Glorioso JC.2006.Herpes simplex virus RNAi and neprilysin gene transfer vectors reduce accumulation of Alzheimer's diseaserelated amyloid-beta peptide in vivo.Gene Ther.13:1068-79
    167.Thakker DR,Natt F,Husken D,Maier R,Muller M,et al.2004.Neurochemical and behavioral consequences of widespread gene knockdown in the adult mouse brain by using nonviral RNA interference.Proc.Natl.Acad.Sci.USA 101:17270-75
    168.Thakker DR,Natt F,Husken D,van der Putten H,Maier R,et al.2005.siRNA-mediated knockdown of the serotonin transporter in the adult mouse brain.Mol.Psychiatry 10:782-89.
    169.Song E,Lee SK,Wang J,Ince N,Ouyang N,et al.2003.RNA interference targeting Fas protects mice from fulminant hepatitis.Nat.Med.9:347-51
    170.Zender L,Hutker S,Liedtke C,Tillmann HL,Zender S,et al.2003.Caspase 8 small interfering RNA prevents acute liver failure in mice.Proc.Natl.Acad.Sci.USA 100:7797-802
    171.McCaffrey AP,Nakai H,Pandey K,Huang Z,Salazar FH,et al.2003.Inhibition of hepatitis B virus in mice by RNA interference.Nat.Biotechnol.21:639-44
    172.Uprichard SL,Boyd B,Althage A,Chisari FV.2005.Clearance of hepatitis B virus from the liver oftransgenic mice by short hairpin RNAs.Proc.Natl.Acad.Sci.USA 102:773-78
    173.Kronke J,Kittler R,Buchholz F,Windisch MP,Pietschmann T,et al.2004.Alternative approaches for efficient inhibition of hepatitis C virus RNA replication by small interfering RNAs.J.Virol.78:3436-46
    174.Wang Q,Contag CH,Ilves H,Johnston BH,Kaspar RL.2005.Small hairpin RNAs efficiently inhibit hepatitis C IRES-mediated gene expression in human tissue culture cells and a mouse model.Mol.Ther.12:562-68
    175.Wilson JA,Jayasena S,Khvorova A,Sabatinos S,Rodrigue-Gervais IG,et al.2003.RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proc. Natl. Acad. Sci. USA 100:2783-88
    176. Novina CD, Murray MF, Dykxhoorn DM, Beresford PJ, Riess J, et al. 2002. siRNAdirected inhibition of HIV-1 infection. Nat. Med. 8:681-86
    177. Coburn GA, Cullen BR. 2002. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J. Virol. 76:9225-31
    178. Jacque JM, Triques K, Stevenson M. 2002. Modulation of HIV-1 replication by RNA interference. Nature 418:435-38
    179. Morris KV, Rossi JJ. 2006. Lentivirus-mediated RNA interference therapy for human immunodeficiency virus type 1 infection. Hum. Gene Ther. 17:479-86
    180. Bitko V, Musiyenko A, Shulyayeva O, Barik S. 2005. Inhibition of respiratory viruses by nasally administered siRNA. Nat. Med. 11:50-55
    181. Palliser D, Chowdhury D,Wang QY, Lee SJ, Bronson RT, et al. 2006. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 439:89-94
    182. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, et al. 2005. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769-73
    183. Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME,Triche TJ. 2005. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interferingRNAinhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res. 65:8984-92
    184. Sumimoto H, Miyagishi M, Miyoshi H, Yamagata S, Shimizu A, et al. 2004. Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirusmediated RNA interference. Oncogene 23:6031-39
    185. Hoeflich KP, Gray DC, Eby MT, Tien JY, Wong L, et al. 2006. Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. Cancer Res. 66:999-1006
    186. Brummelkamp TR, Bernards R, Agami R. 2002. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2:243-47
    187. Saydam O, Glauser DL, Heid I, Turkeri G, Hilbe M, et al. 2005. Herpes simplex virus 1 amplicon vector-mediated siRNA targeting epidermal growth factor receptor inhibits growth of human glioma cells in vivo. Mol. Ther. 12:803-12
    188. Zhang SZ, Pan FY, Xu JF, Yuan J, Guo SY, et al. 2005. Knockdown of c-Met by adenovirus-delivered small interfering RNA inhibits hepatocellular carcinoma growth in vitro and in vivo. Mol. Cancer Ther. 4:1577-84
    189. Caldas H, Holloway MP, Hall BM, Qualman SJ, Altura RA. 2006. Survivin-directed RNA interference cocktail is a potent suppressor of tumor growth in vivo. J. Med. Genet. 43:119-28
    190. Uchida H, Tanaka T, Sasaki K, Kato K, Dehari H, et al. 2004. Adenovirus-mediated transfer of siRNA against survivin induced apoptosis and attenuated tumor cell growth in vitro and in vivo. Mol. Ther. 10:162-71
    191. Wang Y, Zhu H, Quan L, Zhou C, Bai J, et al. 2005. Downregulation of survivin by RNAi inhibits the growth of esophageal carcinoma cells. Cancer Biol. Ther. 4:974-78
    192. Nakamura M, Masutomi K, Kyo S, Hashimoto M, Maida Y, et al. 2005. Efficient inhibition of human telomerase reverse transcriptase expression by RNA interference sensitizes cancer cells to ionizing radiation and chemotherapy. Hum. Gene Ther. 16:859-68
    193. Zou L, Zhang P, Luo C, Tu Z. 2006. shRNA-targeted hTERT suppress cell proliferation of bladder cancer by inhibiting telomerase activity. Cancer Chemother. Pharmacol. 57:328-34
    194. Shi Z, Liang YJ, Chen ZS, Wang XW, Wang XH, et al. 2006. Reversal of MDR1/Pglycoprotein-mediated multidrug resistance by vector-based RNA interference in vitro and in vivo. Cancer Biol. Ther. 5:39-47
    195. Gerard C, Rollins BJ. Chemokine and disease. Nat Immunol. 2001;2:108-115.
    196. Proudfoot AEI. Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol. 2002;2:106-115.
    197. Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, Kakizaki M, Takagi S, Nomiyama H, Schall TJ, Yoshie O. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell. 1997;91:521-530.
    198. Umehara H, Bloom ET, Okazaki T, Domae N, Imai T. Fractalkine and vascular injury. Trends Immunol. 2001 ;22:602-607.
    199. Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Ross D, Greaves DR, Zlotnik A, Schall TJ. A new class of membrane-bound chemokine with a CX3C motif. Nature. 1997;385:640-644.
    200. Garton KJ, Gough PJ, Blobel CP, Murphy G, Greaves DR, Dempsey PJ, Raines EW. Tumor necrosis factor-_-converting enzyme (ADAM 17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem. 2001;276:37993-38001.
    201. Tsou C-L, Haskell CA, Charo IF. Timor necrosis factor-_-converting enzyme mediates the inducible cleavage of fractalkine. J Biol Chem. 2001;276:44622-44626.
    202. Umehara H, Imai T. The role of fractalkine in leukocyte adhesion and migration, and vascular injury. Drug News Perspect. 2001 ;14:460-464.
    203. Tanaka Y, Adams DH, Hubscher S, Hirano H, Siebenlist U, Shaw S. T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1β Nature. 1993;361:79-82.
    204. Goda S, Imai T, Yoshie O, Yoneda O, Inoue H, Nagano Y, Okazaki T, Imai H, Bloom ET, Domae N, Umehara H. CX3C-chemokine, fractalkine enhanced adhesion of THP-1 cells to endothelial cells through integrindependent and independent mechanisms. J Immunol. 2000; 164: 4313-4320.
    205. Fong AM, Robinson LA, Steeber DA, Tedder TF, Yoshie O, Imai T, Patel D. Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. J Exp Med. 1998;188:1413-1419.
    206. Haskell CA, Cleary MD, Charo IF. Molecular uncoupling of fractalkinemediated cell adhesion and signal transduction: rapid flow arrest of CX3CR1-expressing cells is independent of G-protein activation. J Biol Chem. 1999;274:10053-10058.
    207. Umehara H, Goda S, Imai T, Nagano Y, Minami Y, Tanaka Y, Okazaki T, Bloom ET, Domae N. Fractalkine, a CX3C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1. Immunol Cell Biol. 2001;79:298-302.
    208. Yoshie O, Imai T, Nomiyama H. Related article chemokines in immunity. Adv Immunol. 2001;78:57-110.
    209. Sallusto F, Mackay CR, Lanzavecchia A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu Rev Immunol. 2000; 18:593-620.
    210. Kim CH, Rott L, Kunkel EJ, Genovese MC, Andrew DP, Wu L, Butcher E. Roles of chemokine receptor association with T cell polarization in vivo. J Clin Invest. 2001;108:1331-1339.
    211. Nishimura M, Umehara H, Nakayama T, Yoneda O, Hieshima K, Kakizaki M, Domae N, Yoshie O, Imai T. Dual functions of fractalkine/ CX3CR1 in trafficking of circulating cytotoxic effector lymphocytes that are defined by CX3CR1 expression. J Immunol. 2002; 168:6173-6180.
    212. Fraticelli P, Sironi M, Bianchi G, D'Ambrosio D, Albanesi C, Stoppacciaro A, Chieppa M, Allavena P, Ruco L, Girolomoni G, Sinigaglia F, Vecci A, Mantovani A. Fractalkine (CX3CL1) as an amplification circuit of polarized Th1 responses. J Clin Invest. 2001; 107:1173—1181.
    213. Ancuta P, Rao R, Moses A, Mehle A, Shaw SK, Luscinskas FW, Gabuzda D. Fractalkine preferentially mediates arrest and migration of CD16_ monocytes. J Exp Med. 2003;197:1701-1707.
    214. Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migration properties. Immunity. 2003;19:71—82.
    215. Yoneda O, Imai T, Gouda S, Inoue H, Yamauchi A, Okazaki T, Yoshie O, Domae N, Umehara H. NK cell-mediated vascular injury. J Immunol. 2000; 164:4055-4062.
    216. Seaman WE. Natural killer cells and natural killer T cells. Arthritis Rheum. 2000;43:1204-1217.
    217. Nelson PJ, Krensky AM. Chemokines, chemokine receptors, and allograft rejection. Immunity. 2001;14:377-386.
    218. Greaves DR, Hakkeinen T, Lucas AD, Liddiard H, Jones E, Quinn CM, Senaratne J, Green FR, Tyson K, Hoyle J, Shanahan C, Weissberg PL, Gordon S, Yla-Hertulla S. Linked chromosome 16q13 chemokines, macrophage-derived chemokine, fractalkine, and thymus- and activation-regulated chemokine, are expressed in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2001;21:923-929.
    219. Wong BWC, Wong D, McManus BM. Characterization of fractalkine (CX3CL1) and CX3CR1 in human coronary arteries with native atherosclerosis, diabetes mellitus, and transplant vascular disease. Cardiovasc Pathol. 2002; 11:332-338.
    220. Glass CK, Witztum JL. Atherosclerosis: the road ahead. Cell. 2001;104:503-516.
    221. Lesnik P, Haskell CA, Charo IF. Decreased atherosclerosis in CX3CR1-/- mice reveals a role for fractalkine in atherogenesis. J Clin Invest. 2003; 111:333-340.
    222. Combadiere C, Potteaux S, Gao J-L, Esposito B, Casanova S, Lee EJ, Debre P, Tedgui A, Murphy PM, Mallat Z. Decreased atherosclerotic lesion formation in CX3CRl/apolipoprotein E double knockout mice. Circulation. 2003;107:1009-1016.
    223. Moatti D, Faure S, Fumeron F, Amara MEW, Seknadji P, McDermott DH, Debre P, Aumont MC, Murphy PM, de Prost D, Combadiere C. Polymorphism in the fractalkine receptor CX3CR1 as a genetic risk factor for coronary artery disease. Blood. 2001 ;97:1925— 1928.
    224. MacDermott DH, Halcox JPJ, Schenke WH, Waclawiw MA, Merrell MN, Epstein N, Quyyumi AA, Murphy PM. Association between polymorphism in the chemokine receptor CX3CR1 and coronary vascular endothelial dysfunction and atherosclerosis. Circ Res. 2001;89:401-407.
    225. Robinson LA, Nataraj C, Thomas DW, Howell DN, Griffiths R, Bautch V, Patel DD, Feng L, Coffman TM. A role for fractalkine and its receptor (CX3CR1) in cardiac allograft rejection. J Immunol. 2000; 165:6067-3072.
    226. Haskell C, Hancock WW, Salant DJ, Gao W, Csizmadia V, Peters W, Faia K, Fituri O, Rottman JB, Charo IF. Targeted deletion of CX3CR1 reveals a role for fractalkine in cardiac allograft rejection. JClin Invest. 2001; 108:679-688.
    227. Chen S, Bacon KB, Li L, Garcia GE, Xia Y, Lo D, Thompson DA, Siani MA, Yamamoto T, Harrison JK, Feng L. In vivo inhibition of CC and CX3C chemokine-induced leukocyte infiltration and attenuation of glomerulonephritis in Wistar-Kyoto (WKY) rats by vMIP-II. J Exp Med. 1998;188:193-198.
    228. Furuichi K, Wada T, Iwata Y, Sakai N, Yoshimoto K, Shimizu M, Kobayashi K, Takasawa K, Kida H, Takeda S, Matsushima K, Yokoyama H. Upregulation of fractalkine in human crescentic glomerulonephritis. Nephron. 2000;87:314-320.
    229. Ito Y, Kawachi H, Morioka Y, Nakatsue T, koike H, Ikezuni Y, Oyanagi A, Natori Y, Natori Y, Nakamura T, Gejyo F, Shimizu F. Fractalkine expression and the recruitment of CX3CR1_ cells in the prolonged mesangial proliferative glomerulonephritis. Kidney Int. 2002;61:2044-2057.
    230. Segerer S, Hughes E, Hudkins KL, Mack M, Goodpaster T, Alpers CE. Expression of the fractalkine receptor (CX3CR1) in human kidney disease. Kidney Int. 2002;62:488-495.
    231. Cockwell P, Chakravorty SJ, Girdlestone J, Savage COS. Fractalkine expression in human renal inflammation. J Pathol. 2002; 196:85-90.
    232. Chakravorty SJ, Cockwell P, Girdlestone J, Brooks CJ, Savage COS. Fractalkine expression on human renal tubular epithelial cells: potential role in mononuclear cell adhesion. Clin Exp Immunol. 2002; 129:150-159.
    233. Feng L, Chen S, Garcia GE, Xia Y, Siani MA, Botti P, Wilson CB, Harrison JK, Bacon KB. Prevention of crescent glomerulonephritis by immunoneutralization of the fractalkine receptor CX3CR1. Kidney Int. 1999;56:612-620.
    234. Faussat A, Bouchet-Delbos L, Berrebi D, Durand-Gasselin I, Coulomb- L'Hermine A, Krzysiek R, Galanaud P, Levy Y, Emilie D. Deregulation of the expression of the fractalkine/fractalkine receptor complex in HIVinfected patients. Blood. 2001;98:1678-1686.
    235. Tong N, Perry SW, Zhang Q, James HJ, Guo H, Brooks A, Bal H, Kinnear SA, Fine S, Epstein LG, Dairaghi D, Schall TJ, Gendelman HE, Dewhurst S, Scharer LR, Gelbard HA. Neuronal fractalkine expression in HIV-1 encephalitis: roles for macrophage recruitment and neuroprotection in the central nervous system. J Immunol. 2000; 164:1333-1339.
    236. Faure S, Meyer L, Costagliola D, Vaneensberghe C, Genin E, Autran B, Delfraissy JF, McDermott DH, Murphy PM, Debre P, Theodorou I, Combadiere C. Rapid progression to AIDS in HIV_ individuals with a structural variant of the chemokine receptor CX3CR1. Science. 2000;287:2274-2277.
    237. Ruth JH, Rottman JB, Katschke KJ Jr, Qin S, Wu L, LaRosa G, Ponath P, Rope RM, Koch AE. Selective lymphocytes chemokine receptor expression in the rheumatoid joint. Arthritis Rheum. 2001;44:2750-2760.
    238. Ruth JH, Volin MV, Haines GK III, Woodruff DC, Katschke KJ Jr, Woods JM, Park CC, Morel JCM, Koch AE. Fractalkine, a novel chemokine in rheumatoid arthritis and in rat adjuvant-induced arthritis. Arthritis Rheum. 2001 ;44:1568—1581.
    239. Nanki T, Imai T, Nagasaka K, Urasaki Y, Nonomura Y, Taniguchi K, Hayashida K, Hasegawa J, Yoshie O, Miyasaka N. Migration of CX3CR1-positive T cells producing type 1 cytokines and cytotoxic molecules into synovium of patients with rheumatoid arthritis. Arthritis Rheum. 2002;46:2878-2883.
    240. Volin MV, Woods JM, Amin MA, Connors MA, Harlow LA, Koch AE. Fractalkine: a novel angiogenic chemokine in rheumatoid arthritis. Am J Pathol. 2001; 159:1521—1530.
    241. Raychaudhuri SP, Jiang W-Y, Farber EM. Cellular localization of fractalkine at sites of inflammation: antigen-presenting cells in psoriasis express high levels of fractalkine. Br J Dermatol. 2001;144:l 105-1113.
    242. Sugaya M, Nakamura K, Mitsui H, Takekoshi T, Saeki H, Tamaki K. Human keratinocytes express fractalkine/CX3CL1. J Dermatol Sci. 2003; 31:179-187.
    243. Balabanian K, Foussat A, Dormuller P, Durand-Gasselin I, Capel F, Bouchet-Delbos L, Portier A, Marfaing-Koka A, Krzysiek R, Rimaniol A-C, Simonneau G, Emilie D, Humbert M. CX3C chemokine fractalkine in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2002; 165:1419-1425.
    244. Fujimoto K, Imaizumi T, Yoshida H, Takanashi S, Okumura K, Satoh K. Interferon-_ stimulates fractalkine expression in human bronchial epithelial cells and regulates mononuclear cell adherence. Am JRespir Cell Mol Biol. 2001;25:233-238.
    
    245. Efsen E, Grappone C, DeFranco RMS, Milani S, Romanelli RG, Bonacchi A, Caligiuri A,Failli P, Annunziato F, Paglial G, Pinzani M, Laffi G, Gentilini P, Marra F. Up-regulated expression of fractalkine and its receptor CX3CR1 during liver injury in humans. J Hepatol.2002;37:39-47.
    1.Yei,S,Mittereder N,Wert S,Whitsett J.A.,Wilmott R.W.and Trapnell B.C.1994.In vivo evaluation of the safety of adenovirus-mediated transfer of the human cystic fibrosis transrnembrane conductance regulator cDNA to the lung.Hum Gene Ther.Jun;5(6):731-44.
    2.Adesanya M.R.Redman R.S.,Baum B.J.,and O'connell B.C.Immediate inflammatory responses to adenovirus-mediated gene transfer in rat salivary glands.Hum.Gene Ther.1996;7:1085-1093.
    3.Song W,Kong HL,Traktman Crystal RG.Cytotoxic T lymphocyte responses to proteins encoded by heterologous transgenes transferred in vivo by adenoviral vectors.Hum Gene Ther.1997;8:1207-1217.
    4.Lieber A,He CY,Meuse L,et al.The role ofkupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors.Journal of Virology.1997;11:8798-8807.
    5.Muruve D.A.,Barnes M.J.,Stillman I.E.,and Libermann T.A.Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo.Hum.Gene Ther.1999;10:965-976.
    6.Liu ZX,Govindarajan S,Okamoto S,Dennert G.NK cells cause liver injury and facilitate the induction of T cell-mediated immunity to a viral liver infection.J.Immunol.2000;164:6480-6486.
    7.Kobayashi N.,Nishikawa M.,Hirata K.,Takakura Y.Hydrodynamics-based procedure involves transient hyperpermeability in the hepatic cellular membrane:implication of a nonspecific process in efficient intracellular gene delivery.J.Gene Med.2004;6:584-592.
    8.Song YK,Liu F,Zhang G,et al.Hydrodynamics-based tranfection:simple and efficient method for introducing and expressing transgenes in animals by intravenous injection of DNA.Methods Enzymol 2002;346:92-105.
    9.Teissie J.In vivo gene expression:combining hydrodynamics-based transfection and electrotransfer.TRENDS in Biotechnology 2002;12:487-488.
    10.Andrianaivo F,Lecocq M,Coninck SWD,Wattiaux R,Jadot M.Hydrodynamics-based tranfection of the liver: entrance into hepatocytes of DNA that causes expression takes place very early after injection. J Gene Med 2004;6: 877-883.
    11. Leon RP, Hedlund T, Meech SJ, Li S, Schaack J, Hunger SP, Duke RC, DeGregori J: Adenoviral-mediated gene transfer in lymphocytes. Proc Natl Acad Sci U S A 1998,95:13159-64.
    12. Arai K, Liu ZX, Lane T, Dennett G. IP-10 and Mig facilitate accumulation of T cells in the virus-infected liver. Cellular Immunology 2002,219:48-56.
    13. Harvey BG, Worgall S, Ely S, Leopold PL, Crystal RG. Cellular immune responses of healthy individuals to intradermal administration of an E1-E3- adenovirus gene transfer vector. Hum Gene Ther 1999; 10:2823-2837.
    14. Bruder JT, Kovesdi I. Adenovirus infection stimulates the Raf/MAPK signaling pathway and induces interleukin-8 expression. J Virol 1997;71:398-404.
    15. Lieber A, He CY, Meuse L, Schowalter D, Kirillova I, Winther B, Kay MA. The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors. J Virol 1997;71:8798-8807.
    16. Muruve DA, Barnes MJ, Stillman IE, Libermann TA. Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo. Hum Gene Ther 1999; 10:965-976.
    17. Shifrin AL, Chirmule N, Gao GP, Wilson JM, Raper SE. Innate immune responses to adenoviral vectormediated acute pancreatitis. Pancreas 2005;30:122-129.
    18. Fong AM, Robinson LA, Steeber DA, Tedder TF, Yoshie O, Imai T, Patel DD. Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. J Exp Med. 1998 Oct 19;188(8):1413-9.
    19. D.A. Arenberg, S.L. Kunkel, P.J. Polverini, M. Glass, M.D. Burdick, R.M. Strieter, Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice, J. Clin. Invest 97 (1996) 2792-2802.
    20. A. Muller, B. Homey, H. Soto, N. Ge, D. Catron, M.E. Buchanan, T. McClanahan, E. Murphy, W. Yuan, S.N. Wagner, J.L. Barrera, A. Mohar, E. Verastegui, A. Zlotnik, Involvement of chemokine receptors in breast cancer metastasis, Nature 410 (2001) 50-56.
    21. R.M. Strieter, P.J. Polverini, S.L. Kunkel, D.A. Arenberg, M.D. Burdick, J. Kasper, J. Dzuiba, J. Van Damme, A. Walz, D. Marriott, et al., The functional role of the ELR motif in CXC chemokine-mediated angiogenesis, J. Biol. Chem. 270 (1995) 27348-27357.
    22. K.S. Weber, P.J. Nelson, H.J. Grone, C. Weber, Expression of CCR2 by endothelial cells: implications for MCP-1 mediated wound injury repair and In vivo inflammatory activation of endothelium, Arterioscler Thromb. Vase. Biol. 19 (1999) 2085-2093.
    23. V. Goede, L. Brogelli, M. Ziche, H.G. Augustin, Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1, Int. J. Cancer 82 (1999) 765-770. C. Boshoff, Y. Endo, P.D. Collins, Y. Takeuchi, J.D. Reeves, V.L.
    24. Schweickart, M.A. Siani, T. Sasaki, T.J. Williams, P.W. Gray, P.S. Moore, Y. Chang, R.A. Weiss, Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines, Science 278 (1997)290-294.
    25. J.F. Bazan, K.B. Bacon, G. Hardiman, W. Wang, K. Soo, D. Rossi, D.R. Greaves, A. Zlotnik, T.J. Schall, A new class of membranebound chemokine with a CX3C motif, Nature 385 (1997) 640-644.
    26. T. Imai, K. Hieshima, C. Haskell, M. Baba, M. Nagira, M. Nishimura, M. Kakizaki, S. Takagi, H. Nomiyama, T.J. Schall, O. Yoshie, Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion, Cell 91 (1997) 521-530.
    27. X. Zhang, H. Wei, Q. Chen, Z. Tian, Activation of human natural killer cells by recombinant membrane-expressed fractalkine on the surface of tumor cells, Oncol. Rep. 17 (2007) 1371-1375.
    28. T. Matsubara, T. Ono, A. Yamanoi, M. Tachibana, N. Nagasue, Fractalkine-CX3CR1 axis regulates tumor cell cycle and deteriorates prognosis after radical resection for hepatocellular carcinoma, J. Surg. Oncol. 95 (2007) 241-249.
    29. Yoneda O, Imai T, Goda S, Inoue H, Yamauchi A, Okazaki T, et al. Fractalkine-mediated endothelial cell injury by NK cells. J Immunol 2000; 164:4055-4062.
    30. Yoneda O, Imai T, Nishimura M, Miyaji M, Mimori T, Okazaki T, et al. Membrane-bound form of fractalkine induces IFN-gamma production by NK cells. Eur J Immunol 2003;33:53-58.
    31. Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, et al. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci U S A 1998;95:10896-10901.
    32. Maciejewski-Lenoir D, Chen S, Feng L, Maki R, Bacon KB. Characterization of fractalkine in rat brain cells: migratory and activation signals for CX3CR-1-expressing microglia. J Immunol 1999;163:1628-1635.
    33. Haskell CA, Hancock WW, Salant DJ, Gao W, Csizmadia V, Peters W, et al. Targeted deletion of CX3CR1 reveals a role for fractalkine in cardiac allograft rejection. J Clin Invest 2001;108:679-688.
    34. Muehlhoefer A, Saubermann LJ, Gu X, Luedtke-Heckenkamp K, Xavier R, Blumberg RS, et al. Fractalkine is an epithelial and endothelial cellderived chemoattractant for intraepithelial lymphocytes in the small intestinal mucosa. J Immunol 2000; 164:3368-3376.
    35. Chakravorty SJ, Cockwell P, Girdlestone J, Brooks CJ, Savage CO. Fractalkine expression on human renal tubular epithelial cells: potential role in mononuclear cell adhesion. Clin Exp Immunol 2002; 129:150-159.
    36. Chen YM, Lin SL, Chen CW, Chiang WC, Tsai TJ, Hsieh BS. Tumor necrosis factor-alpha stimulates fractalkine production by mesangial cells and regulates monocyte transmigration: down-regulation by cAMP. Kidney Int 2003;63:474-486.
    37. Garcia GE, Xia Y, Chen S, Wang Y, Ye RD, Harrison JK, et al. NFkappaB-dependent fractalkine induction in rat aortic endothelial cells stimulated by IL-lbeta, TNF-alpha, and LPS. J Leukoc Biol 2000;67:577-584.
    38. Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 1997;91:521-530.
    39. Efsen E, Grappone C, DeFranco RM, Milani S, Romanelli RG, Bonacchi A, et al. Up-regulated expression of fractalkine and its receptor CX3CR1 during liver injury in humans. J Hepatol 2002;37:39-47.
    40. Huang D, Shi FD, Jung S, Pien GC, Wang J, Salazar-Mather TP, et al. The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB J 2006;20:896-905.
    41. Isse K, Harada K, Zen Y, Kamihira T, Shimoda S, Harada M, et al. Fractalkine and CX3CR1 are involved in the recruitment of intraepithelial lymphocytes of intrahepatic bile ducts. HEPATOLOGY 2005;41:506-516.
    42. Hamar P, Song E, Kokeny G, Chen A, Ouyang N, Lieberman J. Small interfering RNA targeting Fas protects mice against renal ischemia-reperfusion injury. Proc Natl Acad Sci U S A 2004;101:14883-14888.
    43. Song E, Lee SK, Wang J, Ince N, Ouyang N, Min J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 2003; 9:347-351.
    44. Chu Q, Joseph M, Przybylska M, Yew NS, Scheule RK. Transient siRNAmediated attenuation of liver expression from an alpha-galactosidase A plasmid reduces subsequent humoral immune responses to the transgene product in mice. Mol Ther 2005; 12:264-273.
    45. Wooddell CI, Van Hout CV, Reppen T, Lewis DL, Herweijer H. Longterm RNA interference from optimized siRNA expression constructs in adult mice. Biochem Biophys Res Commun 2005;334:117-127.
    46. Iezzi M, Eliasson L, Fukuda M, Wollheim CB. Adenovirus-mediated silencing of synaptotagmin 9 inhibits Ca2_-dependent insulin secretion in islets. FEBS Lett 2005;579:5241-5246.
    47. Schisler JC, Jensen PB, Taylor DG, Becker TC, Knop FK, Takekawa S, et al. The Nkx6.1 homeodomain transcription factor suppresses glucagons expression and regulates glucose-stimulated insulin secretion in islet beta cells. Proc Natl Acad Sci U S A 2005; 102:7297-7302.
    48. Hurtado C, Ander BP, Maddaford TG, Lukas A, Hryshko LV, Pierce GN. Adenovirally delivered shRNA strongly inhibits Na_-Ca2_ exchanger expression but does not prevent contraction of neonatal cardiomyocytes. J Mol Cell Cardiol 2005;38:647-654.
    49 Fong, A.M. et al., CX3CR1 tyrosine sulfation enhances fractalkine-induced cell adhesion. J Biol Chem, 2002.277(22):p. 19418-23.
    50 Hundhausem, C, et al., The disintegrin-Ilike metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood, 2003.102(4):p.1186-95.
    51 Goda, S., et al., CX3C-chemokine, fractalkine-enhanced adhesion of THP-1 cells to endothelial cells through integrin-dependent and -independent mechanisms. J Immunol, 2000.164(8):p.4313-20.
    52 Ancuta, P., et al., Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. J Exp Med, 2003.197(12):p.1701-7.
    53 Xin H., et al., Antitumor immune response by CX3CL1/fractalkine gene transfer depends on both NK and T cells. Eur J Immunol, 2005.35(5):p.1371-80.
    54 Volin M.V., et al., Fractalkine: a novel angiogenic chemokine in rheumatoid arthritis. Am J Pathol, 2001.159(4):p.1521-30.
    55 Fong A.M., et al., Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. J Exp Med, 1998.188(8):p. 1413-9.
    56 Yoneda O., et al., Fractalkine-mediated endothelial cell injury by NK cells. J Immunol, 2000.164(8):p.4055-62.
    57 Zhang X., et al., Involvement of interaction between Fractalkine and CX3CR1 in cytotoxicity of natural killer cells against tumor cells. Oncol Rep, 2006.15(2):p.485-8.
    58 Efsen E., et al., Up-regulated expression of fractalkine and its receptor CX3CR1 during liver injury in humans. J Hepatol, 2002.37(1):p.39-47.
    59 Ohta M, et al., The high expression of Fractalkine results in a better prognosis for colorectal cancer patients. Int J Oncol, 2005.26(1):p.41-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700