CO_2加氢制甲醇用Pd-修饰MWCNTs-促进高效新型Pd-ZnO催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室效应对我们这个星球的环境和人类社会的生存发展已构成越来越严重的威胁,减少主要温室气体之一的CO_2的排放已成为一个紧迫的问题.通过加氢转化,将CO_2加工为有价值的燃料或化学品被认为是现时固定大量排放的CO_2的较好方法.在诸多CO_2加氢的可能产物中,甲醇因其既是非石油基洁净合成燃料,又是重要化工原料,还可作为燃料电池氢燃料的载体,因而成为首选的目标产物.
     催化剂的研制开发是实现该过程实用化的关键.较早报道可用于催化CO_2加氢制甲醇的催化剂是Cu基(尤其是CuO-ZnO-基和CuO-ZrO_2-基)催化剂;负载型Pd催化剂对CO_2加氢制甲醇也有相当高的催化活性和选择性,并以ZnO负载的Pd基体系为佳.一个具有实用意义的CO_2加氢制甲醇的过程要求所使用的催化剂具有高的性能;然而就我们所知,现有CO_2加氢制甲醇用催化剂的活性和选择性均比较低,开发兼具高活性高选择性的催化剂是实现该过程实用化的技术瓶颈.
     在另一前沿,多壁碳纳米管(MWCNTs)作为一类新型纳米催化材料,近年来引起国际催化学界日益增加的兴趣.这类纳米碳材料在结构上与中空的石墨纤维相近;它具有纳米级的管腔、由sp~2-C构成的表面,并展现出良好的导电导热性及对H_2吸附活化的优异性能;迄今报道的催化应用领域涵盖选择加氢、氢甲酰化、脱氢、氧化、氨合成、F-T合成、甲醇/低碳醇合成、电催化和燃料电池等,研究结果已展现其作为某些类型催化剂的优良载体或促进剂的应用前景.
     本文开展CO_2加氢制甲醇用的MWCNTs促进的高效新型Pd-ZnO基催化剂的开发研究,从负载型Pd-ZnO催化剂的应用基础研究入手,在初步弄清MWCNTs的促进作用性质的基础上,进而研发出一类金属Pd修饰MWCNTs促进的高效新型Pd-ZnO催化剂,取得如下兼具理论意义和实用价值的重要进展.
     1.CO_2加氢制甲醇用的MWCNTs负载Pd-Zn催化剂的研究
     1.1 MWCNTs负载Pd-Zn催化剂的性能
     用一类自行制备的“鱼骨型(Herringbone-type)”MWCNTs(记为MWCNTs(h-type)或MWCNTs)作为载体,由分步等容浸渍法制备MWCNTs-负载的Pd-ZnO催化剂(记为x%Pd_iZn_j/MWCNTs,x%为质量百分数),在加压固定床连续流动反应系统,评价其对CO_2加氢制甲醇的催化性能,并与常规载体γ-Al_2O_3,活性炭(AC),以及“平行型(Parallel-type)”MWCNTs(记为MWCNTs(p-type))分别负载的体系作比较.结果表明,在组成经优化的16%Pd_(0.100)Zn_1/MWCNTs(h-type)催化剂上,在3.0 MPa,523 K,V(H_2):V(CO_2):V(N_2)=69:23:8和GHSV=1800 ml(STP)/(g·h)的反应条件下,所观测CO_2加氢的转化率达6.30%,相应的转化频率(TOF,即在单位时间(s)、单个表面Pd~0-活性位上CO_2加氢转化的分子数)为1.15×10~(-2)s~(-1).这个TOF值是相同反应条件下3种各具最佳Pd_(0.100)Zn_1负载量的参比催化剂,22%Pd_(0.100)Zn_1/MWCNT(p-type)、35%Pd_(0.100)Zn_1/AC和20%Pd_(0.100)Zn_1/γ-Al_2O_3上的相应TOF观测值(1.08×10~(-2),0.98×10~(-2)和0.97×10~(-2)(s~(-1)))分别的1.06,1.17和1.1 8倍.
     1.2 MWCNTs负载Pd-Zn催化剂的表征
     表观活化能(E_a)的测量及催化剂的XRD、XPS和H_2-TPD比较表征研究揭示,用MWCNTs代替AC或γ-Al_2O_3作为催化剂载体并不引起CO_2加氢反应的E_a发生明显变化,但导致工作态催化剂表面以PdZn合金形态存在的Pd~0-物种(一类与甲醇的生成密切相关的表面催化活性物种)的摩尔分率明显上升.在另一方面,MWCNTs-负载的Pd-ZnO催化剂在从室温至623 K温度范围能可逆地吸附大量的H_2,这一特点有助于在工作态催化剂表面营造较高稳态浓度活泼氢吸附物种的表面反应氛围,于是提高了表面加氢反应的速率.与常规载体AC或γ-Al_2O_3不同,MWCNTs起着作为催化剂的载体和促进剂的双重作用.与MWCNTs(p-type)管壁表面C原子属于类石墨平面面内原子的情形不同,MWCNTs(h-type)的管壁表面C原子属于类石墨平面边沿原子,有较多的表面悬键,化学活性较高,因而对H_2有较强的吸附活化能力,其促进作用较MWCNTs(p-type)显著.
     2.CO_2加氢制甲醇用Pd-修饰MWCNTs促进的高效新型Pd-Zn催化剂的研发
     2.1 Pd修饰MWCNTs-基纳米材料的研制
     以自行制备的MWCNTs作为基质,用微波助多元醇化学还原沉积法制备一类金属Pd-修饰的MWCNTs,记为y%Pd/MWCNTs(y%为质量百分数,2%(?)y%(?)8%).所制得的复合材料的TEM/SEM观测结果显示,金属Pd颗粒相当均匀地负载/分散在MWCNTs表面,从TEM/SEM和XRD的图像可估计其粒径在10 nm以下.组成为5.0%Pd/MWCNTs的试样的EDX分析证实,C和Pd是该试样表面仅有的两种元素,其原子分率分别为99.4%和0.6%.H_2-TPD测试揭示,适量金属Pd对MWCNTs表面的修饰导致其对H_2的吸附容量显著增加,以组成为5.0%Pd/MWCNTs的试样对H_2吸附容量的增幅最大,达~85%(所作对比观测两试样的H_2-TPD曲线在273~723 K温度范围的相对面积强度比为:A_(5.0%Pd/MWCNTs)/A_(MWCNTs)=100/54).
     2.2 Pd修饰MWCNTs促进的共沉淀型Pd-Zn催化剂的性能
     用上述制备的金属Pd-修饰的MWCNTs(y%Pd/MWCNTs)作为促进剂,制备y%Pd/MWCNTs-促进的共沉淀型Pd-ZnO催化剂,记为Pd_iZn_j-x%(y%Pd/MWCNTs)(x%和y%均为质量百分数);在加压固定床连续流动反应系统,评价其对CO_2加氢制甲醇的催化性能,并与不含促进剂的原基质Pd_iZn_j和添加等量纯MWCNTs的参比体系作比较.结果表明,在组成经优化的Pd_(0.100)Zn_1-9.6%(5.0%Pd/MWCNTs)催化剂上,在5.0 MPa,543 K,1 5000 ml_(STP)/(h·g)和V(H_2)/V(CO_2)/V(V_2)=69/23/8的反应条件下,CO_2加氢的转化率达6.98%,相应的TOF为6.68×10~(-2)s~(-1),这个TOF值是相同反应条件下两种参比催化剂,Pd_(0.100)Zn_1和Pd_(0.100)Zn_1-9.6%MWCNTs,的相应观测值(4.22×10~(-2)和5.40×10~(-2)(s~(-1)))分别的和1.58和1.24倍;前者的甲醇时空产率达343 mg/(h·g),是后两者的相应值(202和307 mg/(h·g)分别的1.70和1.12倍,也大幅度超过迄今文献报道的同类或可比的Pd-基催化剂(Pd-ZnO、Pd-Ga_2O_3等)或Cu-基催化剂(CuO/ZnO、CuO/ZrO_2等)的水平.这些结果表明,MWCNTs,尤其是Pd修饰的MWCNTs,确实可作为CO_2加氢制甲醇用的Pd-ZnO催化剂的高效促进剂.
     2.3 Pd修饰MWCNTs促进的共沉淀型Pd-Zn催化剂的表征
     TEM/SEM、N_2-BET和CO化学吸附的联合表征结果显示,含促进剂的催化剂(Pd_(0.100)Zn_1-9.6%(5.0%Pd/MWCNTs)和Pd_(0.100)Zr_1-9.6%MWCNTs)的粒度较小、分散度较高,而不含促进剂的原基质催化剂(Pd_(0.100)Zn_1)的粒度较大、比面较小.3种催化剂的氧化态N_2-BET比表面(SSA)依次为15.64,19.05,4.05(m~2/g);相应工作态的金属Pd表面(SA_(pd))分别为2.120、2.346、1.975(m~2/g).
     实验发现,催化剂的最高还原温度对其催化性能有显著影响,以经受538 K、H_2-还原的催化剂的活性为佳;XRD观测证实,经适当高温度还原的催化剂金属Pd组分绝大部分以Pd-Zn合金相的形态存在;这些实验事实表明Pd-Zn合金微晶相是与CO_2加氢制甲醇更加密切相关的催化活性相.3种催化剂(Pd_(0.100)Zn_1-9.6%(5.0%Pd/MWCNTs),Pd_(0.100)Zn_1-9.6%MWCNTs和Pd_(0.100)Zn_1)的反应后试样的XPS分析显示,其表面pd~0物种在总表面Pd量中的摩尔分率分别为57.3,52.6,48.6(mol%),前者是后两者分别的1.09和1.18倍;这个顺序与3种催化剂上CO_2加氢制甲醇的反应活性高低顺序相一致.
     H_2-TPD测试结果表明,MWCNTs,尤其是5.0%Pd/MWCNTs,促进的Pd_(0.100)Zn_1-基体系对H_2有更强的吸附/活化能力;所作对比观测3种试样的H_2-TPD曲线的相对面积强度比为:A_(Pd0.100Zn1-9.6%(5.0%Pd/MWCNTs))/A_(Pd0.100Zn1-9.6%MWCNTs)/A_(Pd0.100Zn1)=100/86/81(在293~773 K温度范围)或100/87/75(在473~773 K温度范围),这个顺序与这3种催化剂上CO_2加氢制甲醇的反应活性高低顺序相一致.
     2.4 Pd-修饰MWCNTs-基纳米材料的促进作用本质
     上述催化剂评价结果显示,适当添加少量5.0%Pd/MWCNTs到Pd_(0.100)Zn_1基质催化剂中导致CO_2加氢转化率和甲醇产率大幅度增加;然而表观活化能(E_a)的测量结果显示,少量MWCNTs-基纳米材料促进剂的加入并不引起CO_2加氢转化的E_a发生明显变化,这可能暗示CO_2加氢反应速率决定步骤的反应途径并不因少量MWCNTs-基促进剂的加入而有所改变.
     在另一方面,所观测催化活性表面Pd-物种的摩尔分率的增加无疑有助于催化剂比活性(即单位质量催化剂的活性)的提高,然而所观测CO_2加氢转化率高达70%的增幅(6.98%vs.4.11%对于Pd_(0.100)Zn_1-9.6%(5.0%Pd/MWCNTs)和Pd_(0.100)Zn_1)很难单纯归因于活性金属Pd表面的增加(2.120 vs.1.975(m~2/g),增幅仅为7.3%)所贡献;此外,从活性金属Pd表面积增加的角度出发也无法解释单个表面Pd~0-活性位上CO_2加氢的转化频率(即TOF)的显著差别(6.68×10~(-2)s~(-1)vs.4.22×10~(-2)s~(-1),增幅达58%).
     因此在我们看来,在Pd修饰MWCNTs促进的Pd-ZnO催化剂上CO_2加氢高的活性与作为促进剂的MWCNTs-基纳米材料对H_2优良的吸附性能也密切相关.根据上述H_2-TPD结果,能够推断:在CO_2加氢的反应条件下,在工作态Pd_(0.100)Zn_1-9.6%(5.0%Pd/MWCNTs)催化剂表面存在着大量的氢吸附物种,营造具有较高稳态浓度活泼氢吸附物种的表面反应氛围,于是提高了表面加氢反应的速率.
     3.结论
     Pd修饰MWCNTs能够作为CO_2加氢制甲醇用的Pd-Zn催化剂的高效促进剂;
     作为助剂的MWCNTs-基纳米材料的促进效应主要表现在:1)通过影响催化剂的化学态使表面催化活性钯(pd~0)的表面积有所增加;2)提高了催化剂对H_2(反应物之一)的吸附活化能力.
     4.本文的创新点
     研发出一种金属Pd修饰MWCNTs促进的高效新型Pd-ZnO催化剂,其对CO_2加氢制甲醇的催化活性和选择性高而稳定,CO_2加氢转化率及甲醇时空产率明显高于现有文献报道同类催化剂的水平,具有明显创新性.
     初步弄清作为助剂的MWCNTs-基纳米材料的促进作用机理,对于增进对MWCNTs-基纳米材料催化特性的认识具有重要理论意义.
The greenhouse effect of carbon dioxide has been recognized to be one of themost serious problems in the world and a number of countermeasures have beenproposed so far.Catalytic hydrogenation of carbon dioxide to produce various kindsof chemicals and fuels has received much attention.Among the options considered,methanol synthesis by CO_2 hydrogenation has been also considered to play a role inthe transportation of hydrogen energy produced from natural such as solar energy,hydropower and so on.
     A number of Cu-based catalysts,especially CuO-ZnO and CuO-ZrO_2 basedcatalysts,have been found to exhibit interesting properties for synthesis of methanolfrom CO_2/H_2 feedstock.Supported Pd catalysts have also been found to displaycertain activity for hydrogenation of CO_2 to methanol.Nevertheless,a practicalmethanol synthesis process from CO_2 hydrogenation requires a high performancecatalyst,and to our best knowledge,the activity and selectivity of the existingcatalysts for CO_2 hydrogenation to methanol were still relatively low.Development ofcatalysts with high efficiency and selectivity has been one of the key objectives forR&D efforts.
     To the other front,multi-walled carbon-nanotubes (symbolized as MWCNTs inlater text),as a novel nano-carbon material,have been drawing increasing attentionrecently.This new form of carbon is structurally close to hollow graphite fiber,exceptthat it has a much higher degree of structural perfection.MWCNTs possess severalunique features,such as graphitized tube-wall,nanometer-sized channel andsp~2-C-constructed surface.They display high thermal/electrical conductivity,mediumto high specific surface areas,and excellent performance for adsorption of hydrogen,all of which render this kind of nanostructured carbon materials full of promise as anovel catalyst support and/or promoter.
     In the present work,a series of supported and promoted Pd-ZnO catalysts byMWCNTs or Pd-decorated MWCNTs,noted as x%Pd_iZn_j/MWCNTs and Pd_iZn_j-x%(MWCNTs or y%Pd/MWCNTs),respectively,(where x% and y% both representedmass percentage) were prepared by methods of conventional impregnation orco-precipitation.Their catalytic performance for CO_2 hydrogenation to methanol wasevaluated,and compared with the related reference systems.The results should shed light on the understanding of the nature of promoter action by the MWCNTs-basednano-material and on the design of practical catalyst for CO_2 hydrogenation tomethanol.The progresses obtained in the present work were briefly described asfellows.
     1.Study of MWCNTs-supported Pd-Zn catalyst for hydrogenation of CO_2 tomethanol
     1.1 Performance of MWCNTs-supported Pd-Zn catalyst
     Using a kind of home-made“Herringbone-type”MWCNTs (noted asMWCNTs(h-type) in later text) as support,a type of MWCNTs(h-type)-supportedPd-ZnO catalysts were prepared by a stepwise incipient wetness method,and theircatalytic activity for CO_2 hydrogenation to methanol was evaluated,and compared tothat of the reference systems supported on activated carbon (AC) orγ-Al_2O_3.Theresults showed that over the composition-optimized catalyst,16%Pd_(0.100)Zn_1/MWCNTs(h-type),under the reaction condition of 3.0 MPa,523 K,V(H_2):V(CO_2):V(N_2)=69:23:8 and GHSV=1800 ml_(STP)/(g·h),the observedconversion of CO_2-hydrogenation reached 6.30%,with the corresponding turnoverfrequency (TOF,i.e.,the number of CO_2-molecule hydrogenated on unit site ofexposed Pd~0 per second (s~(-1))) being 1.15×10~(-2)s~(-1).This value of TOF was 1.06 or 1.17or 1.18 times that (1.08×10~(-2) or 0.98×10~(-2) or 0.97×10~(-2)(s~(-1)) under the same reactioncondition) of the catalyst of 22%Pd_(0.100)Zn_1/MWCNTs(p-type) or 35%Pd_(0.100)Zn_1/ACor 20%Pd_(0.100)Zn_1/γ-Al_2O_3,all prepared by the same method with the respectiveoptimal Pd_(0.100)Zn_1-loading.
     1.2 Characterizations of MWCNTs-supported Pd-Zn catalyst
     The measurement of the apparent activation energy (E_a) and the comparativecharacterization-study of the catalysts by XRD,XPS and H_2-TPD et al.demonstratedthat using the MWCNTs in place of AC orγ-Al_2O_3 as the catalyst support displayedlittle change in the E_a for CO_2 hydrogenation,but led to an increase of surfaceconcentration of the Pd~0-species in the form of PdZn alloys,a kind of catalytically active Pd~0-species closely associated with the methanol generation.On the other hand,the MWCNTs-supported Pd-ZnO catalyst could reversibly adsorb a greater amount ofhydrogen at temperatures ranging from room temperature to 623 K.This uniquefeature would help to generate a micro-environment with higher concentration ofactive H-adspecies at the surface of the functioning catalyst,thus increasing the rateof surface hydrogenation reactions.It is evident that the MWCNTs played dual rolesas support and promoter.The“Herringbone type”MWCNTs possess more activesurface (with more dangling bonds),and thus,higher capacity for adsorbing H_2,which make their promoting action more remarkable,compared to the“Parallel-type”MWCNTs.
     2.Development of Pd-decorated MWCNTs-promoted co-precipitated Pd-Zncatalyst for hydrogenation of CO_2 to methanol
     2.1 Preparation and characterization of metallic Pd-decorated MWCNTs
     With the home-made MWCNTs(h-type) as substrate material,a type of metallicPd-decorated CNTs,noted as y%Pd/MWCNTs (2 mass%(?)y%(?)8 mass%),wasprepared using an intermittent microwave irradiation-assisted polyol-reduction/deposition method.The TEM and SEM observations of the synthesized materialsshowed that metallic Pd-particles were quite uniform in shape and size and welldispersed on the MWCNTs surface,with the Pd-particle diameters being below 10 nm,as estimated from the corresponding XRD patterns.The EDX analysis demonstratedthat carbon and palladium were the only two elements at the surface of 5.0%Pd/MWCNTs,with atomic percentage of 99.4% and 0.6%,respectively.The H_2-TPDinvestigation revealed that the modification of an appropriate amount of metallicpalladium to the MWCNTs led to a significant increase in their hydrogen-adsorbingcapacity,with the material of 5.0%Pd/MWCNTs composition reaching a maximumincrement of 85% (i.e.,the ratio of relative area-intensity of the observed H_2-TPDprofiles A_(5.0%Pa/MWCNTs)/A_(MWCNTs)=100/54) in the temperature range of 273~723 K.
     2.2 Performance of Pd-decorated MWCNTs-promoted co-precipitated Pd-Zn catalysts
     Using the CNTs or 5.0%Pd/MWCNTs as promoter,a type of co-precipitated Pd-ZnO catalysts,noted as Pd_iZn_j-x%(MWCNTs or y%Co/MWCNTs),forhydrogenation of CO_2 to methanol was developed.It was experimentally shown thatthe CNTs,especially the Pd-decorated MWCNTs,promoted catalyst displayed highactivity for CO_2 hydrogenation and excellent selectivity for methanol formation.Overthe composition-optimized Pd_(0.100)Zn_1-9.6%(5.0%Pd/MWCNTs) catalyst underreaction condition of 5.0 MPa,543 K,V(H_2)/V(CO_2)/V(N_2)=69/23/8 and GHSV=15000 ml_(STP)/(h·g),the observed conversion of CO_2 hydrogenation reached 6.98%,with the corresponding TOF being 6.68×10~(-2) s~(-1).This TOF value was 1.58 and 1.24times that (4.22×10~(-2) and 5.40×10~(-2) (s~(-1))) of the two reference systems,Pd_(0.100)Zn_1 andPd_(0.100)Zn_1-9.6%MWCNTs,respectively,under the same reaction condition.Theformer's methanol-STY reached 343 mg/(h·g),which was 1.70 and 1.12 times that(202 mg/(h·g) and 307 mg/(h·g)) of the latter two systems,successively,showing theremarkable promoter effect by the metallic Pd-decorated MWCNTs-material.
     2.3 Characterizations of Pd-decorated MWCNTs-promoted co-precipitated Pd-Zncatalysts
     It was experimentally found that the temperature for the reduction of catalystprecursor has a marked effect on the performance of the catalyst,with theperformance of catalyst undergoing H_2-reduction at 538 K being optimal.On theother hand,the post XRD analysis of the tested three catalysts revealed that most ofthe Pd-component existed in the form of PdZn-alloy in the catalysts undergoing theH_2-reduction at 538 K.This strongly implied that it was the PdZn-alloy crystallitephase that was closely associated with the selective formation of methanol.Nevertheless,it was also experimentally shown that the H_2-reduction at thetemperatures higher than 538 K lead to increasing particle-diameter of PdZn-alloycrystallites and decreasing the metallic Pd exposed area.
     Post XPS-analysis of the tested catalysts revealed that appropriate incorporationof a minor amount of the x%Pd/MWCNTs into the Pd_(0.100)Zn_1 host catalyst led to amarked increase of surface concentration of metallic palladium species (Pd~0),a kindof catalytically active Pd-species closely associated with the methanol generation.Theobserved relative content (mol%) of the surface Pd~0-species in the total Pd-amount atthe surface of the three catalysts,Pd_(0.100)Zn_1-9.6%(5.0%Pd/MWCNTs),Pd_(0.100)Zn_1-9.6%MWCNTs and Pd_(0.100)Zn_1,was 57.3,52.6 and 48.6 (mol%),successively.Thissequence was in line with the sequence of the specific activity of the three catalystsfor CO_2 hydrogenation.
     H_2-TPD measurements showed that appropriate addition of a minor amount ofthe x%Pd/MWCNTs into the Pd_(0.100_Zn_1 host catalyst could improve the capacity ofthe catalyst for adsorbing hydrogen to a greater extent.The relative area-intensityratio of the H_2-TPD profiles taken on the three catalysts pre-reduced by hydrogen wasestimated to be A_(Pd0.100Zn1-9.6%(5%Pd/MWCNTs))/A_(Pd0.100Zn1-9.6%MWCNTs)/A_(Pd0.100Zn1)=100/87/75 in the temperature region of 473~773 K.This was expected to also be thesequence of increase in concentration of hydrogen ad-species at the surface offunctioning catalysts,in line with the activity sequence observed on the correspondingthree catalysts for hydrogenation of CO_2 to methanol.
     2.4 Nature ofthe promoter action by MWCNTs-based nano-materials
     The aforementioned results of the catalyst evaluation showed that appropriateincorporation of a minor amount of the 5.0%Pd/MWCNTs into the Pd_(0.100)Zn_1 hostcatalyst led to a significant increase in conversion of CO_2 hydrogenation and yield ofmethanol.Yet the result of measurement of apparent activation energy (E_a) indicatedthat the addition of a minor amount of the MWCNTs-based promoter into the Pd_(0.100)Zn_1host catalyst did not cause a marked change in the Ea for CO_2 hydrogenation-conversion,most likely implying that the addition of a minor amount of the MWCNTs-basedpromoter to the Pd_(0.100)Zn_1 did not alter the reaction pathway of rate-determining step ofthe CO_2 hydrogenation reaction.
     On the other hand,the increment of the catalytically active surface Pd-species,observed by the XPS,was undoubtedly in favour of enhancing the specific activity ofthe catalysts (i.e.,activity of unit mass of catalyst).Nevertheless,it would be difficultto believe that the observed large-sized increase of CO_2 hydrogenation-conversionover the catalyst promoted by the 5.0%Pd/MWCNTs was solely attributed to thedifference in their specific active Pd surface-area.Besides,the difference in the activePd surface-area could hardly justify the increase of the observed TOF.
     It appears that the high reactivity of CO_2 hydrogenation over the 5.0%Pd/MWCNTs promoted Pd_(0.100)Zn_1 catalyst was closely related to the peculiar propertiesof this kind of MWCNTs,especially their excellent performance for adsorption /activation of H_2.Based upon the above H_2-TPD results,it could be suggested that,under the reaction conditions of the CO_2 hydrogenation,there existed a considerablylarger amount of reversibly adsorbed H-species on the functioning Pd_(0.100)Zn_1-9.6%(5.0%Pd/MWCNTs) catalyst,which would generate a surface micro-environmentwith high stationary-state concentration of H-adspecies on the catalyst,thus increasethe rate of a series of surface hydrogenation reactions in the CO_2 hydrogenationconversion.
     3.Concluding Remarks
     The present work showed that the MWCNTs,especially the metallicPd-decorated MWCNTs,could serve as an excellent promoter of the Pd-ZnO catalystfor CO_2 hydrogenation to methanol.The developed Pd_(0.100)Zn_1-9.6%(5.0%Pd/MWCNTs) catalyst achieved high single-pass-yield of methanol from CO_2hydrogenation,and demonstrated great potential in commercial use for convertingCO_2 into valuable chemicals.The results also shed some light on the understanding ofthe promoter action by the transition metal-decorated MWCNTs-additive and on thedesign of practical catalyst for CO_2 hydrogenation to methanol.For betterunderstanding of mechanism of the promoter action by the MWCNTs-based additives,further studies,especially in-situ characterization of reaction intermediates under theactual reaction condition,would be desirable.
引文
[1]科普长廊 , 2007, 9: 34-35.科普长廊 , 2007, 10: 37-38.科普长廊, 2007, 11: 35-38.
    [2]蒋安源.CO_2将成为一种重要的溶剂[J].湖南化工,1991, 21(2): 12-13.
    [3]陈成锐,卢泽勤.果蔬保鲜剂开发方向[J]..现代化工, 1991, 4: 22-25.
    [4]张可达.二氧化碳分离膜研究进展[J].现代化工, 1991, 4: 10-13.
    [5]杜菲娜.CO_2气体保护焊在钢瓶制造中的应用[J]焊接技术1992, 5: 8-10.
    [6]陈令仪.CO_2的应用前景[J].中氮肥, 1993, 5: 6-9.
    [7]吴俊泽.西德推出新型二氧化碳激光器[J].医装.备, 1990,3(5):32.
    [8]李飞.应大力开展CO_2化学科研工作[J].现付化工, 1989, 9(3): 10-12.
    [9]F.J.Berry, A.murray, N.D.Parkyns.Nickel-uranium oxide catalysts: characterisation and evaluation for methanation[J].Appl.Catal.A, 1993, 100(1): 131-143.
    [10]R.Kieffer, E.Ramaroson, A.Deluzarche, Y.Trambouze .A comparison of reactivity in the synthesis of methanol from CO_2+H_2 and CO+H_2[J].Reaction kinetics and catalysis letters,1981, 16(2-3): 207-212.
    [11]F.Solymosi, A.Erdohelyi.Hydrogenation of CO_2 to CH_4 over alumina-supported noble metals[J].Journal of molecular catalysis, 1980, 8(4): 471-474.
    [12]H.E.Ferkul, D.J.Stanton, D.McCowan, J.D.McCowan, M.C.Baird.Carbon dioxide and carbon monoxide methanation by supported ruthenium catalysts[J].J.Chem.Soc., Chem.Commun.1982, 16: 955-956.
    [13]S.D.Jackson, R.B.Moyes, P.B.Wells, R.Whyman.Chemisorption and catalysis by metal clusters Ⅲ.Hydrogenation of ethene, carbon monoxide, and carbon dioxide, and hydrogenolysis of ethane catalyzed by supported osmium clusters derived from Os_3(CO)12 and from Os_6(CO)_(18)[J].Journal of catalysis, 1984, 86(2): 342-358.
    [14]夏勇德,赵维君,张书笈.二氧化碳催化加氢研究进展[J].石油化工, 1996, 25(7): 513-522.
    [15]G.A.Mills, F.W.Steffgen.Study on the catalytic hydrogenation of carbon dioxide for methanation[J].Catalytic Methanation.Catal Revs, 1973, 8(2): 159-210.
    [16]陈荣梯,邓国才,江琦.二氧化碳甲烷化研究进展[J].化学研与应用,1995, 7(1): 1-7.
    [17]D.J.Darensbourg, C.G Bauch.Mechanistic aspects of catalytic CO_2 methanation[J].Revs.Inorg.Chem., 1985, 7(4): 315-339.
    [18]M.R.Prairie, A.Renken, J.G.Highfield, K.R.Thampi, M.Gratzel.A fourier transform infrared spectroscopic study of CO_2 methanation on supported ruthenium[J].J.catal., 1991,129(1): 130-144.
    [19]J.Barrault, C.Forquy, J.C.Menezo, R.Maurel.Hydrogenation of CO_2 (CO) over supported iron catalysts[J].Reaction kinetics and catalysis letters, 1981, 17(3-4): 373-378.
    [20]卢振举,林培滋,罗洪原,梁东白,林励吾.二氧化碳加氢制烃类的研究[J].石油炼制,1993, 24(9): 61-64.
    [21]S.Naito, O.Ogawa, M.Ichikawa, K.Tamaru.Formation of dimethyl ether from hydrogen and carbon dioxide over a graphite-PdCl_2-Na catalyst[J].J.Chem.Soc., Chem.Commun,1972,24:1266.
    [22]李梦青,邓国才,陈荣悌.FeCoK催化剂上二氧化碳加氢合成低碳烯烃的研究[J].河北工业大学学报,2000, 29(2): 39-43.
    [23]Y.Huang, X.Meng, Z.Dang, et al.Light olefin synthesis from carbon dioxide by hydrogenation over Fe_3(CO)_(12) supported on ZSM-5 zeolite catalyst[J].J.Chem.Soc., Chem.Commun, 1995,10: 1025-1026.
    [24]K.Fujimoto, T.Shikada.Selectivity synthesis of C_2-C_5 hydrocarbons from carbon dioxide utilizing a hybrid catalyst composed of a methanol synthesis catalyst and zeolite[J].Appl.Catal.A, 1987, 31(1): 13-23.
    [25]T.Inui, K.Kitagawa, T.Takeguchi, T.Hagiwara, Y.Makino.Hydrogenation of carbon dioxide to C_1-C_7 hydrocarbons via methanol on composite catalysts[J].Appl.Catal.A:Genernal, 1993, 94(1): 31-44.
    [26]刘业奎,王黎,候栋,王建祝.CO_2加氢一步法合成低碳烯烃研究进展[J].煤化工,2004, 1:37-42.
    [27]S.Naito, N.M.Gupta, V.S.Kamble, et al.Hydrogenation of CO_2 over bimetallic catalysts[J].Catal, 1980, 66(1): 101.
    [28]黄耀曾,钱延龙.《金属有机化学进展》[M].北京:化工业出版社.1987.
    [29]M.M.T.Khan, S.B.Halligudi, N.N.Rao, S.Shukla.Formic acid and formaldehyde as spin-off products in RU-EDTA-CO complex catalyzed liquid phase water-gas shift(WGS) reaction[J].Journal of Molecular Catalysis, 1989, 51(2): 161-170.
    [30]J.Tsai, K.M.Nicholas.Rhodium-catalyzed hydrogenation of carbon dioxide to formic acid[J].J.Am.Chem.Soc., 1992, 114(13): 5117-5124.
    [31]K.Kudo, N.Sugita, Y.Takezaki.Nippon Kagaku Kaishi, 1977: 302-309.
    [32]张一平.二氧化碳加氢合成甲酸的热力学分析[J].浙江教育学院学报,2005, 3: 53-58.
    [33]G.O.Evans, C.J.Newell.Conversion of CO_2, H_2, and alcohols into formate esters using anionic iron carbonyl hydrides[J].Inorganica chimica acta reviews, 1978, 31: 387-389.
    [34]D.J.Darensbourg, C.Ovalles.Anionic Group 6B metal carbonyls as homogeneous catalysts for carbon dioxide/hydrogen activation: The production of alkyl formats[J].J.Am.Chem.Soc.; 1984, 106(13): 3750-3754.
    [35]D.J.Darensbourg, C.Ovalles.Makeing it with CO_2[J].Chem Tech, 1985, 15(10): 636-640.[36]R.R.Chianeli, J.E.Lyons, G.A.Mills.Catalysts for liquid transportation fuels from petroleum, coal, residual oil, and biomass[J].Catal today, 1994, 22(2): 361-396.
    [37]阴丽华,高志华,黄伟.CuCo基催化剂催化CO_2加氢合成低碳醇[J].煤炭转化, 2004,27(2): 85-88.
    [38]李成岳,柴国墉.在Cu-Zn-Al-Ti-K催化剂上合成低碳混合醇的反应网络结构[J].化学学报,1992, 20(2): 145-152.
    [39]F.S.Karn, J.F.Shultz, R.B.Anderson.Hydrogenation of Carbon Monoxide and carbon dioxide on supported Ruthenium catalysts at Moderate pressures[J].Ind.Eng.Chem.Res.Dev, 1965, 4(4): 265-269.
    [40]Y.kudo, H.phala, N.Sugita, Y.Takezaki.Synthesis of dimethyl formamide from carbon dioxide, hydrogen and dimethyl amine catalyzed by palladium(Ⅱ) chloride[J].Chem Lett,1977; 72(12): 1495-1496.
    [41]Chapman, K.Duane, Newman, W.John, S.William.Methylation process[P].US 3718704,1973.
    [42]胡益之,李洪晋,韩冬青.21世纪洁净燃料——二甲醚[J].煤化工.2006, 5: 10-14.
    [43]唐庆杰,刘海平,袁光耀,吴文荣.二甲醚的研发现状和应用前景[J].中国煤炭, 2006, 7: 49-54.
    [44]赵彦巧,陈吉祥,张继炎.二氧化碳加氢直接合成二甲醚反应体系的热力学[J].天津大学学报.2006, 39(4): 408-413.
    [45]J.L.Dubojs, K.Sayama, H.Arakawa.Conversion of CO_2 to dimethyl ether and methanol over hybrid catalysis[J].Chem Lett, 1992, 21(7): 1115-1118.
    [46]J.H.Yao, B.Kimble James.Zeolite containing Cu-Zn-Al-Ga catalysts for carbon dioxide hydrogenation to methanol and dimethyl ether[P].US 2003060355 Al, 2001.
    [47]J.L.Tao, K.W.Jun, K.W.Lee.Co-production of dimethyl ether and methanol from CO_2 hydrogenation.Development of a stable hybridcatalyst[J].Appl.Organomet.Chem, 2001, 5(2) 105-108.
    [48]K.W.Jun, M.H.Jung, Rao.K.S.Rama, et al.Effective conversion of CO_2 to methanol and dimethyl ether over hybrid catalysts[J].Stud.Surf Sci.Catal, 1998, 114: 447-450.
    [49]K.W.Jun, Rao.K.S.Rama, M.H.Jung, et al.The CO_2 hydrogenation toward the mixture of methanol and dimethyl ether: Investigation of hybridcatalysts[J].Bull.Korean Chem.Soc.1998, 19(4): 466-470.
    [50]K.P.Sun, W.W.Lu, M.Wang, X.L.Xu.Low-temperature synthesis of DME from CO_2/H_2 over Pd-modified CuO-ZnO-Al_2O_3-ZrO_2/HZSM-5 catalysts[J].Catal.Commun,.2004, 5(7): 367-370
    [51]Y.Amenoya.Methanol synthesis from CO_2+H_2: Ⅱ Copper-based binary and ternary catalysts[J].Appl.Catal.A: General.1987, 30(1): 57-68.
    [52]A.Kiennemann, H.Idriss, J.P.Hindermann, et al.Methanol synthesis on Cu/Zn-Al_2O_3 and Cu/ZnO-Al_2O_3 catalysts: Influence of carbon monoxide pretreatment on the formation and concentration of formate species[J].Appl.Catal.A: General.1990, 59(1): 165-180.
    [53]许卫红.乙醇的用途种种.数理化学习(高中版),2002,4:64.
    [54]解红娟,谭猗生,刘巧,牛玉琴.由CO_2合成乙醇和低碳烯烃[J].煤化工, 2000, 4:17-20.
    [55]H.Wei, Ch.X.Ke, et al.A High Performance Catalyst from CO_2 Hydrogenation into Higher Alcohols[C].The 6th Japan-China Symposium on Coal and C1 Chemistry Proceedings Zao,Mayagi, Japan, 1998: 13-17.
    [56]G.Lu, Ch.F.Zhang, Y.Q.Cang, et al.Synthesis of Mixed Alcohols from CO_2 Contained Syngas on Supported Molybdenum Sulfide Catalyst[J].Appl.Catal.A: General, 1997,150(2): 243-252.
    [57]李玉敏.CO_2加氢合成乙醇[J].天然气化工, 1995, 20(2): 27.
    [58]A.Hironori.Research and development on new synthetic routes for basic chemicals by catalytic hydrogenation of CO_2[J].Stud.Surf Sci.Catal., 1998, 114: 19-30.
    [59]吉媛媛,银小龙,王常有.非均相催化氢化CO_2合成醇Ⅱ.双金属交换顺序及离子交换液pH值的影响[J].燃科化学学报,1994, 2(1): 53-57.
    [60]Y.Izumi, H.Kurakata, K.Aika.Ethanol Synthesis from Carbon Dioxide on [Rh_(10)Se]/TiO_2 Catalyst Characterized by X-ray Absorption Fine Structure Spectroscopy[J].J.Catal, 1998,175(2): 236-244.
    [61]卢振举,林培滋,冯喜云,刘崇早,罗洪原,梁东白,林励吾.CO_2+H_2制含氧化合物的研究[J].分子催化,1993, 7(2): 156-158.
    [62]H.Kusama, K.Okabe, K.Sayama, H.Arakawa.CO_2 hydrogenation to ethanol over promoted Rh/SiO_2 catalysts[J].Catal.Today,1996, 28(3): 261-266.
    [63]H.Kusama, K.Okabe, K.Sayama, H.Arakawa.Ethanol synthesis by catalytic hydrogenation of CO_2 over Rh---Fe/SiO_2 catalysts[J].Energy, 1997, 22(2-3): 343-348.
    [64]梁正.甲醇用途和煤制甲醇前景[J].煤化工, 1980, 4: 53-64.
    [65]邵强.国内外甲醇市场分析[J].化学工业,2007, 25(5): 51-55.
    [66]甲醇下游化学产品的开发[J].化工经济技术信息,2007, 10: 17-18.
    [67]董鑫.碳纳米管促进高效甲醇合成催化剂研究[D].厦门大学理学博士学位论文, 2002.
    [68]王璇.积极开发甲醇新用途应对未来可能出现的供应过剩[J].国际化工信息,2005, 10: 4-8.
    [69]郭岩岩.碳纳米管作为低碳醇合成CoMo氧化物基催化剂的高效促进剂[D].厦门大学理学硕士学位论文,2006.
    [70]韩景城.世界甲醇生产和消费的新趋势[J].中外能源,2007, 12(5): 22-27.
    [71]姚允斌,解涛,高英敏.《物理化学手册》[M].上海:上海科学技术出版社 , 1985.
    [72]张建祥,赵彦巧,陈吉祥,王日杰,张继炎.CO_2加氢合成甲醇及二甲醚研究进展[J].天然气化工,2004.29(6): 43-46.
    [73]R.kieffer, E.Ramaroson, A.Deluzarche, Y.Trambouze.React.Kinet.A comparison of reactivity in the synthesis of methanol from CO_2+H_2 and CO+H_2[J].React.Kinet.Catal.Lett.,1981, 16(2-3): 207-212.
    [74]O.Kiyomi, S.Kazuhiro, M.Nobuyuki, S.Kin'ya, A.Hironori.Selective Hydrogenation of Carbon Dioxide to Methanol on Cu-ZnO/SiO_2 Catalysts Prepared by Alkoxide Method[J].Bull.Chem.Soc.Japan, 1992, 65(9): 2520-2525.
    [75]B.Denise, R.P.A.Sneeden, C.Hamon.Hydrocondensation of carbon dioxide: Ⅳ[J].J.Mol.Catal., 1982, 17(2-3): 359-366.
    [76]O.S.Joo, K.D.Jung, I1 Moon, A.Y.Rozovskii, G.I.Lin, S.H.Han, S.J.Uhm.Carbon dioxide hydrogenation to form methanol via a Reverse-Water-Gas-Shift reaction[J].Ind.Eng.Chem.Res., 1999, 38 (5): 1808-1812.
    [77]朱毅青,文艺,赖梨芳,宗封琦,王剑.超细CuO/ZnO/TiO_2-SiO_2的表征和CO_2加氢合成甲醇性能研究[J].燃料化学学报,2004, 32(4): 486-491.
    [78]郑小明,齐共新,费金华.TiO_2改性的γ-Al_2O_3负载Cu催化剂上CO_2加氢合成甲醇的研究[J].宁夏大学学报,2001, 22(2): 132-133.
    [79]K.K.Bando, K.Sayama, H.Arakawa.In-situ FT-IR study on CO_2 hydrogenation over Cu catalysts supported on SiO_2, Al_2O_3 and TiO_2[J].Appl.Catal.A: General, 1997, 165(1-2): 391-409.
    [80]Z.S.Hong, Y.Cao, J.F.Deng, K.N.Fan.CO2 hydrogenation to methanol over CuO/ZnO/Al_2O_3 catalysts prepared by a novel gel-network-coprecipitation method[J].Catal.Lett., 2002, 82(1-2): 37-44.
    [81]I.Melian-Cabrera, M.L.Granados, J.L.G.Fierro.Effect of Pd on Cu-Zn catalysts for the hydrogenation of CO_2 to methanol: Stabilization of Cu metal against CO_2 oxidation[J].catal.Lett., 2002, 79(1-4): 165-170.
    [82]刘志坚,廖建军,谭经品,李大东.CeO_2对Cu-ZnO催化剂性质和 CO_2加氢反应性能的影响[J].工业催化,2001, 11(6): 41-44.
    [83]E.Andr(?)s, P.Monika S.Frigyes.Catalytic hydrogenation of CO2 over supported palladium[J].J.Catal., 1986, 98(1): 166-177.
    [84]N.Iwasa, H.Suzuki, M.Terashita, M.Arai, N.Takezawa.Methanol synthesis from CO_2 under atmosphere pressure over supported Pd catalysts[J].Catal.Lett., 2004, 96(1-2): 75-78.
    [85]S.E.Collins, D.L.Chiavassa, A.L.Bonivardi, M.A.Baltanas.Hydrogen spillover in Ga_2O_3-Pd/SiO_2 catalysts for methanol synthesis from CO_2/H_2[J].Catal.Lett., 2005, 103(1-2): 83-88.
    [86]E.novak, K.Fodor, T.Szailer, A.Oszko, A.Erdohelyi.CO_2 hydrogenation on Rh/TiO_2 previously reduced at different temperatures[J].Topics in Catal., 2002, 20(1-4): 107-117.
    [87]K.K.Bando, H.Arakawa, N.Ichikuni.CO_2 hydrogenation over micro- and mesoporous oxides supported Ru catalysts[J].Catal.Lett., 1999, 60(1-2): 125-132.
    [88]M.Saito, K.Murata.Development of high performance Cu/ZnO-based catalysts for methanol synthesis and the water-gas shift reaction[J].Catal.Surveys from Asia, 2004, 8(4): 285-294。
    [89]陈林枫,黄开辉.CuO/ZnO/Al_2O_3催化剂上的CO_2加氢反应Ⅰ.表面吸附中间态的表征及反应机理的研究[J].催化学报,1989, 10(1): 14-18.
    [90]张建祥,赵彦巧,陈吉祥,王日杰,张继炎.CO_2加氢合成甲醇及二甲醚研究进展[J].天然气化工,2004, 29(6): 43-46.
    [91]G.C.Chinchen, P.J.Denny, D.G.Parker, M.S.Spencer, D.A.Whan.Mechanism of methanol synthesis from CO_2/CO/H_2 mixturesover copper/zinc oxide/alumina catalysts: use of ~(14)C-labelled reactants[J].Appl.Catal., 1987, 30(2): 333-338.
    [92]B.Denise, R.P.A.Sneeden.Hydrogenate CO_2-plants do it, use CO_2 to make complex building blocks[J].Chemtech, 1982, 12(2): 108-112.
    [93]M.Y.He, J.G.Ekerdt.Methanol formation on zirconium dioxide[J].J.Catal., 1984, 90(1): 17-23.
    [94]E.Ramaroson, R.Kieffer, A.Kinnemann.Reaction of carbon dioxide and hydrogen on supported palladium catalysts[J].J.Chem.Soc., Chem.Commun., 1982, 12: 645-646.
    [95]G.A.Martin, M.Primet, J.A.Dalmon.Reactions of CO and CO_2 on Ni/SiO_2 above 373K as studied by infrared spectroscopic and magnetic methods[J].J.Catal., 1978, 53(3): 321-330.
    [96]A.Erdoehelyi, M.Pasztor, F.Solymosi.Catalytic hydrogenation of CO_2 over supported palladium[J].J.Catal., 1986, 98(1): 166-177.
    [97]S.Iijima.Helical microtubules of graphitic carbon[J].Nature, 1991,354(6348): 56-58.
    [98]陈萍,林国栋,张鸿斌.低温催化裂解烷烃法制备碳纳米管[J].高等学校化学学报, 1995, 16(11): 1783-1784.
    [99]陈萍,林国栋,张鸿斌.低温催化裂解烷烃法制备碳纳米管[J].厦门大学学报(自然科学版),1996, 35(1): 61-66.
    [100]P.Chen, H.B.Zhang, G.D.Lin, Q.Hong, K.R.Tsai.Growth of carbon nanotubes by catalytic decomposition of CH_4 or CO on a Ni-MgO catalyst[J].Carbon, 1997, 35(10-11):1495-1501.
    [101]陈萍,张鸿斌,林国栋,蔡启瑞.过渡金属催化剂及用于制备均匀管径碳纳米管的方法(P).中国发明专利,ZL 96110252.7, 1998.
    [102]T.W.Ebbesen, P.M.Ajiayan.Large-scale synthesis of carbon nanotubes[J].Nature, 1992, 358(6383): 220-222.
    [103]D.S.Bethune, C.H.Kiang, M.D.Vrice.Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls[J].Nature, 1993, 363(6430): 605-607.
    [104]X.Lin, X.K.Wang, V.P.David.Large scale synthesis of single-shell carbon nanotubes[J].Appl.Phys.Lett., 1994, 64(2): 181-183.
    [105]Y.Saito, K.Nishikubo, K.Kawabata.Carbon nanocapsules and single-layered nanotubes produced with platinum group metals(Ru, Rh, Pd, Os, Ir, Pt) by arc discharge[J].J.Appl.Phys., 1996, 80(5): 3062-3067.
    [106]C.Journet, W.K.Maser, P.Bernier, A.Loiseau, et al.Large-scale production of single-walled carbon nanotubes by the electric-arc technique[J].Nature, 1997, 388(6644):756-758.
    [107]H.Cheng, F.Li, G.Su.Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons[J].Appl.Phys.Lett., 1998, 72(25):3282-3284.
    [108]A.Thess, R.Lee, P.Nikolaev.Crystalline ropes of metallic carbon nanotubes[J].Science,1996, 273: 483-487.
    [109]Y.Zhang, S.Iijima.Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperatures[J].Appl.Phys.Lett., 1999, 75(20): 3087-3089.
    [110]T.V.Hughes, C.R.Chambers.Manufacture of carbon filaments[P].U.S.Patent, 405480,1889.
    [111]R.T.K.Baker, M.A.Barber, P.S.Harris.Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene[J].J.Catal., 1972, 26(1): 51-62.
    [112]R.T.K.Baker, P.S.Harris, R.B.Thomas.Formation of filamentous carbon from iron,cobalt and chromium catalyzed decomposition of acetylene[J].J.Catal., 1973, 30(1): 86-95.
    [113]S.Amelinckx, X.B.Zhang, D.Bernaerts.A formation mechanism for catalytically grown helix-shaped graphite nanotubes[J].Science, 1994, 265: 635-639
    [114]V.Ivanov, J.B.Nagy, Ph.Lambin, et al.The study of carbon nanotubes produces by catalytic method[J].Chem.Phys.Lett., 1994, 223(4): 329-335.
    [115]M.Audier, A.Oberlin, M.Oberlin.Morphology and crystalline order in catalytic carbons[J].Carbon, 1981, 19(3): 217-224.
    [116]K.Hernadi, A.Fonseca, J.B.Nagy, et al.Catalytic synthesis of carbon nanotubes using zeolitw support[J].Zeolite, 1996, 17(5-6): 416-423.
    [117]A.Oberlin, M.Endo, T.Koyama.Filamentous growth of carbon through benzene decomposition[J].J.Cryst.Growth, 1976, 32(3): 335-349.
    [118]N.M.Rodriguez.A review of catalytically grown carbon nanofibers[J].J.Mater.Res., 1993,8(12): 3233-3250.
    [119]M.S.Kim, N.M.Rodriguez, R.T.K.Baker.The interaction of hydrocarbons with copper-nickel in the formation of carbon filaments[J].J.Catal., 1991, 131(1): 60-73.
    [120]M.S.Kim, N.M.Rodriguez, R.T.K.Baker.The role of interfacial phenomena in the structure of carbon desposits[J].J.Catal., 1992,134(1): 253-268.
    [121]S.Motojima, M.Kawaguchi, K.Nozaki.Preparatin of coiled carbon-fibers by catalytic pyrolysis of acetylene, and its morphology and extension characteristics[J].Carbon, 1991,29(3): 379-385.
    [122]M.Ahlskog, E.Seynaeve, R.J.M.Vullers.Ring formation from catalytically synthesized carbon nanotubes[J].Chem.Phys.Lett., 1999,300(1-2): 202-206.
    [123]X.M.Wu, Y.Y.Guo, J.M.Zhou, G.D.Lin, X.Dong, H.B.Zhang.Co-decorated carbon nanotubes as a promoter of Co-Mo-K oxide catalyst for synthesis of higher alcohols from syngas[J].Appl.Catal.A: General, 2008, 340(1): 87-97.
    [124]武小满.过渡金属修饰的碳纳米管基纳米材料的制备及其在低碳醇合成和氨分解催化剂中的应用[D].厦门大学博士学位论文, 2006.
    [125]B.H.Cooper, B.B.L.Donnis.Aromatic saturation of distillates: an overview[J].Appl.Catal.A: General, 1996, 137(2): 203-223.
    [126]C.Song, X.L.Ma.New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization[J].Appl.Catal.B: Environmental, 2003, 41(1-2):207-238.
    [127]周敏,林国栋,张鸿斌.多壁碳纳米管负载铂的甲苯加氢脱芳催化剂[J].催化学报,2007, 28(3): 210-216.
    [128]周敏.碳纳米管负载/促进甲苯加氢脱芳Pt催化剂研究[D].厦门大学硕士学位论文,2006.
    [1]P.Chen.H.B.Zhang, G.D.Lin, Q.Hong, K.R.Tsai.Growth of carbon nanotubes by catalytic decomposition of CH_4 or CO on a Ni-MgO catalyst[J].Carbon, 1997, 35 (10-11): 1495-1501.
    [2]陈萍,张鸿斌,林国栋,蔡启瑞.过渡金属催化剂及用于制备均匀管径碳纳米管的方法[P].中国发 明专利, ZL961 10252.7.
    [3]X.W.Tu, H.F.Liu.Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation[J].J.Mater.Chem., 2000, 10(9): 2207-2211.
    [1]甲醇下游化学产品的开发[J].化工经济技术信息2007, 8: 17-18.
    [2]孙立兵.具有战略意义的甲醇-车用替代燃料及其生产[J].化工管理, 2008, 4: 59-61.
    [3]周楠.甲醇燃料-市场空间广阔[J].中国石油和化工, 2008, 7: 64.
    [4]张建祥.二氧化碳加氢一段法合成二甲醚催化剂的研究[D].天津大学理学学博士学位论文,2007.
    [5]S.E.Colins, D.L.Chiavassa, A.L.Bonivardi, M.A.Baltanas.Hydrogen spillover in Ga_2O_3-Pd/SiO_2 catalysts for methanol synthesis from CO_2/H_2[J].Catal.Lett., 2005, 103(1-2):83-88.
    [6]K.Sun, W.W.Lu, M.Wang, X.L.Xu.Low-temperature synthesis of DME from CO_2/H_2 over Pd-modified CuO-ZnO-Al_2O_3-ZrO_2/HZSM-5 catalysts[J].Catal.Commun., 2004, 5(7):367-370
    [7]T.Tagawa, G.Pleizier, Y.Amenomiya.Methanol synthesis from CO_2+H_2 Ⅰ.Characterization of catalysts by TPD[J].Appl.Catal., 1985, 18(2): 285-293.
    [8]Y.Amenomiya.Methanol synthesis from CO_2+H_2 I.Copper-based binary and ternary catalysts[J].Appl.Catal., 1987, 30(1): 57-68.
    [9]R.A.Koeppel, A.Baiker, C.Schild, W.Wokaun.Effect of preparation variables on catalytic behavior of copper/ziconia catalysts for the synthesis of methanol from carbon dioxide[J].Stud Surf Sci.Catal., 1991, 63: 59-68.
    [10]N.Kanoun, M.P.Astier, G.M.Pajonk.Catalytic properties of new Cu based catalysts containing Zr and/or V for methanol synthesis from a carbon dioxide and hydrogen mixture[J].Catal.Lett., 1992, 15(3): 231-235.
    [11]M.Sahibzada, D.Chadwick, I.S.Metcalfe.Hydrogenation of carbon dioxide to methanol over palladium-promoted Cu/ZnO/Al_2O_3 catalysts[J].Catal.Today, 1996, 29(1-4):367-372.
    [12]I.Melian-Cabrera, M.Lopez Granados, P.Terreros, J.L.G.Fierro.CO_2 hydrogenation over Pd-modified methanol synthesis catalysts[J].Catal.Today, 1998, 45(1-4): 251-256.
    [13]J.Toyir, P.R.de la Piscina, J.L.G.Fierro, N.Homs.Highly effective conversion of CO_2 to methanol over supported and promoted copper-based catalysts: influence of support and promoter[J].Appl.Catal.B, 2001, 29(3): 207-215.
    [14]I.Melian-Cabrera, M.Lopez Granados, J.L.G.Fierro.Pd-modified Cu-Zn catalysts for methanol synthesis from CO_2/H_2 mixtures: catalytic structures and performance[J].J.Catal.,2002.210(2): 285-294.
    [15]L.Fan, K.Fujimoto.Promotive SMSI effect for hydrogenation of carbon dioxide to methanol on a Pd-CeO_2 catalyst[J].J.Catal., 1994, 150(1): 217-220.
    [16]T.Fujitani, M.Saito, Y.Kanai, T.Watanabe, J.Nakamura, T.Uchijima.Development of an active Ga_2O_3 supported palladium catalyst for the synthesis of methanol from carbon dioxide and hydrogen[J].Appl.Catal.A: General, 1995, 125(2): 199-202.
    [17]L.Fan, K.Fujimot.Reaction mechanism of methanol synthesis from carbon dioxide and hydrogen on ceria-supported palladium catalysts with SMSI effect[J].J.Catal., 1997, 172(1):238-242.
    [18]N.Iwasa, H.Suzuki, M.Terashita, M.Arai, N.Takezawa.Methanol synthesis from CO_2 under atmospheric pressure over supported Pd catalysts[J].Catal.Lett., 2004, 96(1-2): 75-78.
    [19]张鸿斌,林国栋,蔡启瑞.碳纳米管的催化合成、结构表征和应用研究[J].厦门大学学报(自然科学版),2001, 40(2): 387-397.
    [20]J.M.Planeix, N.Coustel, B.Coq, V.Brotons, P.S.Kumbhar, R.Dutartre, P.Geneste, P.Bernier, P.M.Ajayan.Application of carbon nanotubes as supports in heterogeneous catalysis[J].J.Am.Chem.Soc., 1994, 116(17): 7935-7936.
    [21]M.S.Hoogenraad, M.F.Onwezen, A.J.Van Dillen, et al.Supported catalysts based on carbon fibers[M].J.W.Hightower, W.N.Delgass, E.Iglesia, et al.Stud.Surf.Sci.Catal.,Amsterdam: Elsevier, 1996, 101:1331-1339.
    [22]H.B.Zhang, Y.Zhang, G.D.Lin, et al.Carbon nanotubes-supported Rh-phosphine complex catalysts for propene hydroformylation[J].Stud.Surf.Sci.Catal., 2000, 130: 3885-3890.
    [23]Y.Zhang, H.B.Zhang, G.D.Lin, P.Chen, Y.Z.Yuan, K.R.Tsai.Preparation,characterization and catalytic hydroformylation properties of CNT-supported Rh-phosphine catalyst[J].Appl.Catal.A: Genaeral., 1999, 187(2): 213-224.
    [24]H.B.Chen, J.D.Lin, Y.Cai, X.Y.Wang, J.Yi, J.Wang, G.Wei, Y.Z.Lin, D.W.Liao.Novel multi-walled nanotubes-supported and alkali-promoted Ru catalysts for ammonia synthesis under atmospheric pressure[J].Appl.Surf Sci., 2001, 180(3-4): 328-335.
    [25]E.Van Steen, F.F.Prinsloo.Comparison of preparation methods for carbon nanotubes supported irons Fischer-Tropsch catalysts[J].Catal.Today, 2002, 71(3-4): 327-334.
    [26]H.B.Zhang, X.Dong, G.D.Lin, et al.ACS Symp Ser No.852.Washington DC: American Chemical Society, 2003, 195-209.
    [27]X.Dong, H.B.Zhang, G.D.Lin, Y.Z.Yuan, K.R.Tsai.Highly active CNT-promoted Cu-ZnO-Al_2O_3 catalyst for methanol synthesis from H_2/CO/CO_2[J].Catal.Lett., 2003, 85(3-4): 237-246.
    [28]P.Serp, M.Corrias, P.Kalck.Carbon nanotubes and nanofibers in catalysis[J].Appl.Catal.A General, 2003, 253(2): 337-358.
    [29]H.B.Zhang, G.D.Lin, Y.Z.Yuan.Multiwalled carbon nanotubes as novel support or promoter of catalysts[J].Current Topics in Catalysis, 2005, 4: 1-21.
    [30]陈萍,林国栋,张鸿斌.低温催化裂解烷烃法制备碳纳米管[J].高等学校化学学报,1995, 16(11): 1783-1784.
    [31]陈萍,林国栋,张鸿斌.低温催化裂解烷烃法制备碳纳米管[J].厦门大学报(自然科学版),1996, 35(1): 61-66.
    [32]P.Chen, H.B.Zhang, G.D.Lin, Q.Hong, K.R.Tsai.Growth of carbon nanotubes by catalytic decomposition of CH_4 or CO on a Ni-MgO catalyst[J].Carbon, 1997, 35(10-11): 1495-1501.
    [33]陈萍,张鸿斌,林国栋,蔡启瑞.过渡金属催化剂及用于制备均匀管径碳纳米碳的方法(P).中国发明专利,ZL 96110252.7, 1998.
    [34]P.Chen, H.B.Zhang, G.D.Lin, Q.Hong, K.R.Tsai.Growth of carbon nanotubes by catalytic decomposition of CH_4 or CO on a Ni-MgO catalyst[J].carbon, 1997, 35(10-11): 1495-1501.
    [35]陈萍,张鸿斌,林国栋,蔡启瑞.催化裂解CH_4或CO制碳纳米管结构性能的谱学表征[J].高等学校化学学报,1998, 19(5): 765-769.
    [36]H.B.Zhang, G.D.lin, Z.H.Zhou, X.Dong, T.Chen.Raman spectra of MWCNTs and MWCNT-based H_2-adsorbing system[J].Carbon, 2002, 40(13): 2429-243 6.
    [37]刘光水.《化工开发实验技术》[M].天津:天津大学出版社,1994.
    [38]S.Brunauer, L.S.Deming, W.E.Deming, E.Teller.On a theory of the van der waals adsorption of gases[J].J.Am.Chem.Soc, 1940, 62(7): 1723-1732.
    [39]S.Brunauer, L.S.Deming, W.S.Deming.Adsorption of gases in multimolecular layers[J].J.Am.Chem.Soc., 1938, 60(2): 309-319.
    [40]高正中.《适用催化》[M].北京:化学工业出版社, 2004.
    [41]周敏.碳纳米管负载/促进甲苯加氢脱芳Pt催化剂研究[D].厦门大学理学硕士学位论文,2006.
    [42]周敏,林国栋,张鸿斌.多壁碳纳米管负载铂的甲苯加氢脱芳催化剂[J].催化学报,2007, 28(3): 210-216.
    [43]周振华,武小满,王毅,林国栋,张鸿斌.氢气在碳纳米管基材料上的吸附-脱附特性[J].物理化学学报, 2002, 18(8): 692-698.
    [44]尹元根.《多相催化剂的研究方法》[M].北京:化学工业出版社,1998.
    [45]张业,刘予罕,钟柄.合成低碳醇超细Mo-Co-K催化剂的 TPD研究[J].燃料化学学报,2002, 3(30): 277-280.
    [46]罗渝然.什么是活化能[J].化学通报,1981, 4: 50-55.
    [47]甄开吉,王国甲,李荣生,毕颖丽.《催化作用基础》[M].北京:科学出版社, 2004.
    [1]王琪.镍促进高硫合成气制甲硫醇钾钼基催化剂的研究[D].厦门大学理学博士学位论文,2007.
    [2]郭岩岩.碳纳米管作为低碳醇合成CoMo氧化物基催化剂的高效促进剂[D].厦门大学理学硕士学位论文,2006.
    [3]周振华,武小满,王毅,林国栋,张鸿斌.氢气在碳纳米管基材料上的吸附-脱附特性[J].物理化学学报,2002, 18(8): 692-698.
    [4]周敏.碳纳米管负载/促进甲苯加氢脱芳Pt催化剂研究[D].厦门大学理学硕士学位论文2006.
    [5]周敏,林国栋,张鸿斌.多壁碳纳米管负载铂的甲苯加氢脱芳催化剂[J].催化学报,2007, 28(3): 210-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700