原子相干效应与纠缠光产生的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子纠缠反映的是两个或多个量子系统之间存在的非定域、非经典的强关联,它是量子力学最显著的特征之一。近年来量子纠缠的制备及其应用成为了量子信息科学的前沿领域。这不仅因为它可以用来验证实在性、定域性、隐变量以及测量理论等量子力学的基本问题,而且在量子信息处理中如量子隐形传态、量子密集编码、量子密钥分配等方面有着重要的应用。另一方面,原子相干效应是量子光学和激光物理学的重要课题,一直以来都是科学研究的热点之一。它导致了一系列有趣的物理现象,如相干布居捕获、电磁诱导透明、非线性过程增强等,这些现象对基础物理的发展和实际的应用都有着重要的价值。基于原子相干效应而制备稳定的、抗干扰能力强的、高纯度的纠缠源是本文的研究主题。本文创新性工作包括以下三个方面:
     首先我们分析了三能级Λ型和V型四波混频系统中的纠缠特性。在此混频系统中,两外加驱动场分别被应用到两个偶极允许的跃迁上,且在该跃迁上产生两腔模场。我们利用缀饰原子压缩变换模方法分析了纠缠产生的物理机制,在此表象中存在着两个离散通道。缀饰原子通过两离散通道同时吸收来自于一对压缩变换模的激发光子。正是因为双通道的存在,纠缠大大地增强。适当地选择激光场失谐与强度的比值,最好获得的态接近原始的EPR纠缠态。该方案考虑了原子的自发辐射,因此可适用于光频范围。
     接着我们提出EPR光纠缠可在微波控制的四波混频系统中获得。在此系统中,控制场和产生场有着五个量级的频率差。作为例子,我们考虑了一个三能级Λ型原子系综。其中,一个微波场共振地耦合两个亚稳态,一个激光场共振地耦合其中的一个亚稳态和激发态。通过原子从激发态到另一个亚稳态的直接跃迁,作为腔模的一对内边带被放大。该方案在缀饰原子压缩变换模表象中进行分析。适当地选择微波场和激光场的强度比值,一对类EPR算符的方差和接近于零,这对应着原始的EPR纠缠。
     最后我们提出一个制备N比特纠缠簇态的可供选择方案。我们应用一个频率可调的激光场照亮囚禁在线性泡利阱的所有热离子。通过选择激光场的调制系数,我们可得到离子内部态和外部态间的耦合和退耦合的可选择性机制。基于这一选择性机制,高度纠缠的簇态可以获得。在此方案中,振动模式是虚激发的,因此方案对声子发热不敏感。这导致了高保真的量子信息过程。
Quantum entanglement shows that there exist the nonlocal and nonclassical quantum correlations between two or more quantum systems,which is one of most striking features in quantum mechanics.Recently,the preparation of quantum entanglement and its applica tions have been the frontiers of quantum information science.Quantum entanglement not only can be used to test the fundamentals of quantum mechanics,such as realization,local-ization, hidden variable,measurement theory and so on,but also has practical applications in quantum information processing,for example,quantum teleportation,quantum dense coding and quantum key distribution.On the other hand,atomic coherence effect is an important topic in quantum optics and laser physics and it always has been one of hotspots in scientific research.Atomic coherence effect leads to many interesting physical phenom ena,such as coherent population trapping,electromagnetically induced transparency and enhanced nonlinear optical processes,which have the certain values in the process of basic physics and practical applications.Our topic is to prepare the steady noise-free entangle-ment sources with a high purity based on atomic coherence effect.The innovative contents involve the following three aspects:
     We first analyze quantum entanglement in four-wave mixing in three-level∧and V atomic systems,in which two external driving fields are applied to the dipole-allowed tran sitions and two cavity fields are generated,respectively.We analyze the physics by using dressed atomic states and squeeze transformed cavity modes.In such a representation,two dissipation channels are identified,through which dressed atoms simultaneously absorb in the excitations from the pair of squeeze transformed modes.It is in the presence of two channels that the entanglement is greatly enhanced.With the proper choice of the normal ized detuning,the best achievable state approaches the original Einstein-Podolsky-Rosen (EPR) entangled state.This scheme is applicable in the optical regime where atomic spon taneous emission has to be taken into account.
     We then show that EPR light entanglement is obtainable in the microwave controlled four wave mixing,where the control and generated fields differ in frequency by five orders of magnitude.In particular,an ensemble of three-level∧atoms is employed,in which a microwave field resonantly couples two metastable states and a laser field resonantly couples one of the metastable states to the excited state.A pair of inner sidebands as optical cavity modes are amplified via the transition from the excited state to the other of the metastable states.The analysis is presented by using the dressed-atom squeezed transformed-mode approach.For a proper ratio of the amplitudes of the microwave and the applied laser field,the sum of the variances for two EPR-like operators approaches zero, which corresponds to the EPR entanglement.
     Finally,we propose an alternative scheme for preparing N-qubit cluster state by us ing a frequency-modulated laser field to simultaneously illuminate the hot ions,which are trapped in a linear Paul trap.Selecting the index of modulation yields the selective mecha-nisms of coupling and decoupling between the internal and external states of the ions.Based on the selective mechanisms,the highly entangled cluster state is achieved.In our scheme, the vibration mode is only virtually excited.Thus the quantum operations are insensitive to the heating and lead to the high-fidelity quantum information processing.
引文
[1]E.Arimondo,Progress of Optice(ed E.Wolf)35,257(Elsevier Science,Amsterdam,1996).
    [2]D.F.Walls and G.J.Milburn,Quantum Optics(Springer-Verlag,Berlin,1994).
    [3]M.O.Scully and M.S.Zubairy,Quantum Optics(Cambridge University Press,Cambridge,1997).
    [4]J.S.Peng and G.X.Li,Introduction to Modern Quantum Optice(World Scientific,Singapore,1998).
    [5]H.R.Gray,R.M.Whitley and C.R.Stroud,Opt.Lett.3,218(1978).
    [6]S.E.Harris,Phys.Today 50(7),36(1997).
    [7]S.E.Harris,Phys.Rev.Lett.70,552(1993);72,52(1994);77,5357(1996).
    [8]M.D.Lukin,S.F.Yelin,M.Fleischhauer,and M.O.Scully,Phys.Rev.A60,3225(1999).
    [9]S.F.Yelin,V.A.Sautenkov,M.M.Kash,G.R.Welch,and M.D.Lukin,Phys.Rev.A68,063801(2003).
    [10]M.D.Lukin,Rev.Mod.Phys.75,457(2003).
    [11]Y.C.Chen,Y.A.Liao,H.Y.Chiu,J.J.Su,and I.A.Yu,Phys.Rev.A64,053806(2001).
    [12]M.Fleischhauer,A.Imanloglu,and J.P.Marangos,Rev.Mod.Phys.77,633(2005).
    [13]J.Wang,Y.F.Zhu,K.J.Jiang,and M.S.Zhan,Phys.Rev.A68,063810(2003).
    [14]X.M.Hu,J.H.zou,X.Li,D.Du,and G.L.Cheng,J.Phys.B:At Mol.Opt.Phys.38,683(2005).
    [15]O.Kocharovskaya,Phys.Rep.219,175(1992).
    [16]M.O.Scully,Phys.Rep.219,191(1992).
    [17]S.E.Harris,Phys.Rev.Lett.62,1033(1989).
    [18]Y.F.Zhu,Phys.Rev.A45,R6149(1992).
    [19]X.M.Hu and J.S.Peng,J.Phys.B:At.Mol.Opt.Phys.31,5393(1998).
    [20]S.Y.Zhu,L.M.Narducci,and M.O.Scully,Phys.Rev.A52,4791(1995).
    [21]S.Y.Zhu and M.O.Scully,Phys.Rev.Lett.76,388(1996).
    [22]E.Paspalakis and P.L.Knight,Phys.Rev.Lett.81,293(1998)
    [23]C.H.Keitel,Phys.Rev.Lett.83,1307(1999).
    [24]B.R.Mollow,Phys.Rev.188,1969(1969);F.Y.Wu,R.E.Grove,and S.Ezekiel,Phys.Rev.Lett.35,1426(1975).
    [25]Z.Ficek and H.S.Freedhoff,Phys.Rev.A48,3092(1993).
    [26]T.H.Yoon,M.S.Chung,and H.W.Lee,Phys.Rev.A60,2547(1999).
    [27]X.M.Hu,W.X.Shi,Q.Xu,H.J.Guo,J.Y.Li,and X.X.Li,Phys.Lett.A352,543(2006);X.M.Hu,Q.Xu,J.Y.Li,X.X.Li W.X.Shi,and X.Zhang,Opt.Commum.260,196(2006).
    [28]J.Sun,Z.C.Zuo,X.Mi,Z.H.Yu,Q.Jiang,Y.B.Wang,L.A.Wu,and P.M.Fu,Phys.Rev.A70,053820(2004).
    [29]Y.Wu,L.Wen,and Y.Zhu,Opt.Lett.28,631(2003).
    [30]L.Li,H.Guo,F.Xiao,X.Peng,and X.Z.Chen,Phys.Lett.A334,214(2005).
    [31]H.Schmidt and A.Imamoglu,Opt.Lett.21,1936(1996);H.Wang,D.Goorsky,and M.Xiao,Phys.Rev.Lett.87,073601(2003).
    [32]Y.Wu and L.Deng,Phys.Rev.Lett.93,143904(2004).
    [33]Y.Gu,Q.Q.Sun,and Q.H.Gong,Phys.Rev.A,69,063805(2004).
    [34]S.E.Harris,J.E.Field,and A.Imamoglu,Phys.Rev.Lett 64,1107(1990);S.E.Harris,J.E.Field,and A.Kapapi,Phys.Rev.A46,R29(1992).
    [35]M.Xiao,Y Q.Li,S.Z.Jin,and J.Gea-Banacloche,Phys.Rev.Lett.74,666(1995).
    [36]L.V.Hau,S.E.Harris,Z.Dutton,and C.H.Behroozi,Nature(London)397,594(1999).
    [37]L.J.Wang,A.Kuzmich,and A.Dogariu,Nature(London)406,277(2000)
    [38]X.M.Hu,G.L.Cheng,J.H.Zou,X.Li,and D.Du,Phys.Rev.A72,023803(2005).
    [39]M.O.Scully,Phys.Rev.Lett.55,2802(1985).
    [40]M.O.Scully and M.S.Zubairy,Phys.Rev.A35,752(1987).
    [41]J.Bergou,M.Orszag,and M.O.Scully,Phys.Rev.A38,754(1988).
    [42]K.Zaheer and M.O.Scully,Phys.Rev.A38,5227(1988).
    [43]N.A.Ansari and M.S.Zubairy,Phys.Rev.A40,5690(1989).
    [44]U.W Rathe and M.o.Scully,Phys.Rev.A52,3193(1995).
    [45]M.O.Scully,K.Wodldewicz,M.S.Zubairy,J.Bergou,N.Lu,and J.M.ter Vehn,Phys.Rev.Lett.60,1832(1988).
    [46]N.Lu and S.Y Zhu,Phys.Rev.A40,5735(1989);41,2865(1990).
    [47]N.A.Ansari,J.(Gea-Banacloche,and M.S.Zubairy,Phys.Rev.A41,5179(1990).
    [48]J.Bergou,C.Benkert,L.Davidovich,M.O.Scully'S.Y Zhu,and M.S.Zubairy,Phys.Rev.A 42,5544(1990).
    [49]M.Ohtsu and K.Y Liou,Appl.Phys.Lett.52,10(1988).
    [50]M.P Winters,J.L.Hall,and P.E.Toschek,Phys.Rev.Lett.65,3116(1990).
    [51]C.H.Bennett,F.Bessette,G.Brassard,L.Salvail,and J.Smolin,J.Crypto.5,3(1992).
    [52]C.Marand and P.D.Townsend,Opt.Lett 20,1695(1995).
    [53]W.T.Buttler,R.J.Hughes,S.K.Lamoreaux,G.L.Morgan.J.E.Nordholt.and C.G.Peterson,Phys.Rev.Lett 84,5652(2000).
    [54]D.Rosenberg,J.W.Harrington,P.R.Rice,P.A.Hiskett,C.G.Peterson,R.J.Hughes,A.E.Lita,S.W.Nam,and J.E.Nordholt,Phys.Rev.Lett 98,010503(2007).
    [55]T.Schmitt-Manderbach,H.Weier,M.Furst,R.Ursin,F.Tiefenbacher,T.Scheidl,J.Perdigues.Z.Sodnik,C.Kurtsiefer,J.G.Rarity,A.Zeilinger,and H.Weinfurter,Phys.Rev.Lett.98,010504(2007).
    [56]C.Z.Peng,J.Zhang,D.Yang,W.B.Gao,H.X.Ma,H.Yin,H.P.Zeng,T.Yang,X.B.Wang,and J.W.Pan,Phys.Rev.Lett.98,010505(2007).
    [57]M.A.Nielsen and I.L.Chuang,Quantum computation and quantum information,(Cambridge University Press,Cambridge,2000).
    [58]张永德,量子信息物理原理,(科技出版社,北京,2005).
    [59]A.Rauschenbeutel,G.Nogues,S.Osnaghi,P.Bertet,M.Brune,J.M.Raimond,and S.Haroche,Phys.Rev.Lett.83,5166(1999).
    [60]J.A.Jones,V.Vedral,A.Ekert and G.Castagnoli,Nature(London)403,869(2000).
    [61]F.Schmidt-Kaler,H.Haffner,M.Riebe,S.Gulde,G.P.T.Lancaster,T.Deuschle,C.Becher,C.F Roos,J.Eschner,and R.Blatt,Nature(London)422,408(2003).
    [62]D.Leibfried,B.DeMarco,V.Meyer,D.Lucas,M.Barrett,J.Britton,W.M.Itano,B.Jelenkovic,C.Langer,T.Rosenband,and D.J.Wineland,Nature(London)422,412(2003).
    [63]T.Yamamoto,Y.A.Pashkin2,O.Astafiev,Y Nakamura,and J.S.Tsail,Nature(London)425,941(2003).
    [64]A.Einstein,B.Podolsky,and N.Rosen,Phys.Rev.47,777(1935).
    [65]E.Schrodinger,Naturwissenschaften 23,807(1935).
    [66]J.S.Bell,Physics 1,195(1964).
    [67]A.Aspect,P.Grangier,and G.Roger,Phys.Rev.Lett,49,91(1982).
    [68]A.Aspect,J.Dalibard,and G.Roger,Phys.Rev.Lett.49,1804(1982).
    [69]C.H.Bennett,G.Brassand,C.Crepeau,R.Jozsa,A.Peres,and W.K.Wootters,Phys.Rev.Lett.70,1895(1993).
    [70]D.Bouwmeester,J.W.Pan,K.Mattle,M.Eibl,H.Weinfurter,and A.Zeilinger,Nature(London)390,575(1997).
    [71]C.H.Bennett and S.J.Wiesner,Phys.Rev.Lett.69,2881(1992).
    [72]A.Barenco and A.K.Ekert,J.Mod.Opt.42,1253(1995).
    [73]X.S.Liu,G.L.Long,D.M.Tong,and F.Li,Phys.Rev.A65,022304(2002).
    [74]A.Grudka and A.Wojcik,Phys.Rev.A66,014301(2002).
    [75]A.K.Ekert,Phys.Rev.Lett.67,661(1991).
    [76]N.Gisin and S.Massar,Phys.Rev.Lett.79,2153(1997).
    [77]M.Murao,D.Jonathan,M.B.Plenio,and V.Vedral,Phys.Rev.A 59,156(1999).
    [78]E.Hagley,X.Maitre,G.Nogues,C.Wunderlich,M.Brune,J.M.Raimond,and S.Haroche,Phys.Rev.Lett.79,1(1997).
    [79]A.Rauschenbeutel,G.Nogues,S.Osnaghi,P.Bertet,M.Brune,J.M.Railnond,and S.Haroche,Scienc 288,2024(2000).
    [80]J.M.Raimond,M.Brune,and S.Haroche,Rev.Mod.Phys.73,565(2001).
    [81]C.A.Sackett,D.Kielpinski,B.E.King,C.Langer,V.Meyer,C.J.Myatt,M.Rowe,Q.A.Turchette,W.M.Itano,D.J.Wineland,and C.Monroe,Nature(London)404,256(2000).
    [82]D.Leibfried,R.Blatt,C.Monroe,and D.Wineland,Rev.Mod.Phys.75,281(2003).
    [83]D.Bouwmeester,J.W.Pan,M.Daniell,H.Weinfurter,and A.Zeilinger,Phys.Rev.Lett.82,1345(1999).
    [84]J.W.Pan,M.Daniell,S.Gasparoni,G.Weihs,and A.Zeilinger,Phys.Rev.Lett.86,4435(2001).
    [85]I.L.Chuang,N.Gershenfeld,and M.Kubince,Phys.Rev.Lett.80,3408(1998).
    [86]L.M.K.Vandersypen and I.L.Chuang,Rev.Mod.Phys.76,1037(2004).
    [87]M.G.Moore and P.Meystre,Phys.Rev.Lett.85,5026(2000).
    [88]A.Sorensen,L.M.Duan,J.I.Cirac,and P.Zoller,Nature(London)409,63(2001).
    [89]S.L.Braunstein and A.K.Pati,Quantum Information with Continuous Variables(Kluwer,Dor-drecht,2003)
    [90]S.L.Braunstein and P.van Loock,Rev.Mod.Phys.77,513(2005).
    [91]L.Vaidman,Phys.Rev.A 49,1473(1994).
    [92]S.L.Braunstein and H.J.Kimble,Phys.Rev.Lett.80,869(1998).
    [93]A.Furusawa,J.L.Sorensen,S.L.Braunstein,C.A.Fuchs,H.J.Kimble,and E.S.Polzik,Science 282,706(1998).
    [94]S.L.Braunstein and H.J.Kimble,Phys.Rev.A61,042302(2000).
    [95]X.Y Li,Q.Pan,J.T.Jing,J.Zhang,C.D.Xie,and K.C.Peng,Phys.Rev.Lett.88,047904(2002).
    [96]T.C.Ralph,Phys.Rev.A61,010303(2000).
    [97]S.F.Pereira,Z.Y.Ou,and H.J.Kimble,Phys.Rev.A62,042311(2000).
    [98]P.van Loock and S.L.Braunstein,Phys.Rev.Lett.87,247901(2001).
    [99]J.Zhang,C.D.Xie,and K.C.Peng,Phys.Rev.A77,022316(2007).
    [100]S.Koike,H.Takahashi,H.Yonezawa,N.Takei,S.L.Braunstein,T.Aoki,and A.Furusawa,Phys.Rev.Lett.96,060504(2006)
    [101]Z.Y.Ou,S.F.Pereira,H.J.Kimble,and K.C.Peng,Phys.Rev.Lett.68,3663(1992).
    [102]Y.Zhang,H.Wang,X.Y.Li,J.T.Jing,C.D.Xie,and K.C.Peng,Phys.Rev.A62,023813(2000).
    [103]W.P.Bowen,N.Treps,R.Schnabel,and P.K.Lam,Phys.Rev.Lett.89,253601(2002).
    [104]H.Yonezawa,T.Aoki,and A.Furusawa,Nature(London) 431,430(2004).
    [105]T.Aoki,N.Takei,H.Yonezawa,K.Wakui,T.Hiraoka,A.Furusawa,and P.V.Loock,Phys.Rev.Lett.91,080404(2003).
    [106]P.V.Loock and S.L.Braunstein,Phys.Rev.Lett.84,3842(2000).
    [107]J.T.Jing,J.Zhang,Y.Yan,F.G.Zhao,C.D.Xie,and K.C.Peng,Phys.Rev.Lett.90,167903(2003).
    [108]M.K.Olsen and P.D.Drummond,Phys.Rev.A71,053803(2005).
    [109]M.K.Olsen,Phys.Rev.A73,053806(2006).
    [110]W.Leoski and A.Miranowicz,J.Opt.B:Quantum Semiclassical Opt.6,37(2004).
    [111]S.Mancini,Phys.Rev.A73,010304(R)(2006).
    [112]G.X.Li,H.T.Tan,and S.S.Ke,Phys.Rev.A74,012304(2006).
    [113]S.Mancini and H.M.Wiseman,Phys.Rev.A75,012330(2007).
    [114]C.Silberhorn,P.K.Lam,O.Weiβ,F.K(o|¨)ng,N.Korolkova,and G.Leuchs,Phys.Rev.Lett.86,4267(2001).
    [115]G.X.Li,H.T.Tan,S.P Wu,and Y.P.Yang,Phys.Rev.A70,034307(2004).
    [116]V.Josse,A.Dantan,A.Bramati,M.Pinard,and E.Giacobino,Phys.Rev.Lett.92,123601(2004).
    [117]R.J.Missori,M.C.de Oliveira,and K.Furuya,Phys.Rev.A79,023801(2009).
    [118]J.Laurat,G.Keller,C.Fabre,and T.Coudreau,Phys.Rev.A73,012333(2006).
    [119]H.Xiong,M.O.Scully,and M.S.Zubairy,Phys.Rev.Lett.94,023601(2005).
    [120]H.T.Tan,S.Y Zhu,and M.S.Zubairy,Phys.Rev.A72,022305(2005).
    [121]L.Zhou,H.Xiong,and M.S.Zubairy,Phys.Rev A74,022321(2006).
    [122]M.Kiffner,M.S.Zubairy,J.Evers,and C.H.Keitel,Phys.Rev.A75,033816(2007).
    [123]S.Qamar,H.Xiong,and M.S.Zubairy,Phys.Rev.A75,062305(2007).
    [124]H.J.Kim,A.H.Khosa,H.W.Lee,and M.S.Zubairy,Phys.Rev.A77,023817(2008).
    [125]X.Y L[u|¨],J.B.Liu,L.G.Si,and X.X.Yang,J.Phys.B:At.Mol.Opt.Phys.41,035501(2008).
    [126]S.Qamar,F.Ghafoor,M.Hillery,and M.S.Zubairy,Phys.Rev.A77.062308(2008).
    [127]S.Tesfa,Phys.Rev.A74,043816(2006).
    [128]E.Alebachew,Phys.Rev.A76,023808(2007).
    [129]Y.Ping,B.Zhang,and Z.Cheng,Phys.Lett.A366,596(2007).
    [130]X.M.Hu and J.H.Zou,Phys.Rev.A78,045801(2008).
    [131]S.Pielawa,G.Morigi,D.Vitali,and L.Davidovich,Phys.Rev.Lett.98.240401(2007).
    [132]P.B.Li,Phys.Rev.A77,015809(2008).
    [133]T.Werlang,R.Guzman,F.O.Prado,and C.J.Villas-Boas,Phys.Rev.A78,033820(2008).
    [134]M.Ikram,G.X.Li,and M.S.Zubairy,Phys.Rev.A76,042317(2007).
    [135]G.X.Li,H.T.Tan,and M.Macovei,Phys.Rev.A76,053827(2007).
    [136]G.L.Cheng,X.M.Hu,W.X.Zhong,and Q.Li,Phys.Rev.A78,033811(2008).
    [137]F.O.Prado,N.G.de Almeida,M.H.Y Moussa,and C.J.Villas-Boas,Phys.Rev.A73,043803(2006).
    [138]C.H.R.Ooi,Phys.Rev.A76,013809(2007).
    [139]M.Macovei and G.-X.Li,Phys.Rev.A76,023818(2007).
    [140]L.Allen and J.H.Eberly,Optical resonance and two-level atoms,(Wiley,New York,1975).
    [141]M.Sargent Ⅲ,M.O.Scully,and W.E.Lamb,Jr.,Laser Physics,(Addison-Wesley,Massachusetts,1974).
    [142]C.Cohen-Tannoudji,J.Dupont-Roc,and G.Grynberg,Atom-Photon Interactions(Wiley,New York,1992).
    [143]M.D.Reid and D,F,Walls.Phys.Rev.A34,4929(1986).
    [144]D.A.Holm and M.SargentⅢ,Phys.Rev.A35,2150(1987).
    [145]Y.R.Shen,The Principles of Nonlinear Optics,(Wiley,New York,1984).
    [146]D.M.Greenberger,M.A.Home,A.Shimony,and A.Zeilinger,Am.J.Physics58,1131(1990).
    [147]W.Dur,G.Vidal,and J.I.Cirac,Phys.Rev.A62,062314(2000).
    [148]H.J.Briegel and R.Raussendorf,Phys.Rev.Lett.86,91O(2001).
    [149]D.L.Zhou,B.Zeng,Z.Xu,and C.P.Sun,Phys.Rev.A68,062303(2003).
    [l50]M.A.Nielsen,Phys.Rev.Lett.93,040503(2004).
    [151]S.M.Barnett and P.M.Radmore,Methods in Theoretical Quautum Optics,(Clarendon,Oxford,1997).
    [152]U.Leonhardt,Measuring the Quantum State of Lighf,(Cambridge University Press,Cambridge,1997).
    [153]A.Peres,Phys.Rev.Lett.77,1413(1996).
    [154]R.Simon,Phys.Rev.Lett 84,2726(2000).
    [155]A.Ferraro.S.Olivares,Paris,and M.G.A.Paris,quant-ph/0503237.
    [156]L.M.Duan,G.Giedke,J.I.Cirac,and P.Zoller,Phys.Rev.Lett.84,2722(2000).
    [157]G.Vidal and R.F Werner,Phys.Rev.A 65,032314(2002).
    [158]G.Giedke,M.M.Wolf,O.Kruger,R.F.Werner,and J.I.Cirac,Phys.Rev.Lett 91,107901(2003).
    [159]M.M.Wolf,G.Giedke,O.Kruger,R.F Werner,and J.I.Cirac,Phys.Rev.A 69,052320(2004).
    [160]G.Adesso,A.Serafini,and F.Illuminati,Phys.Rev.Lett.92,087901(2004).
    [161]E.Solano,G.S.Agarwal,and H.Walther,Phys.Rev.Lett.90,027903(2003).
    [162]P.Lougovski,E.Solano,and H.Walther,Phys.Rev.A 71,013811(2005).
    [163]X.L.Feng,Z.S.Wang,C.F Wu,L.C.Kwek,C.H.Lai,and C.H.Oh,Phys.Rev.A 75,052312(2007).
    [164]W.H.Louisell,Quanturn Statistical Properties of Radiation,(Wiley,New York,1973).
    [165]C.W.Gardiner and P.Zoller Quantum Noise,(Springer-Verlag,Berlin,1999).
    [166]A.S.Zibrov,A.B.Matsko,and M.O.Scully,Phys.Rev.Lett 89,103601(2002).
    [167]O.Kocharovskaya.R.Kolesov,and Y.Rostovtsev,Phys.Rev.Lett.82,3593(1999).
    [168]D.McGloin and M.H.Dunn,J.Mod.Opt.47,1887(2000).
    [169]Y.Zhao,C.K.Wu,B.S.Ham,M.K.Kim,and E.Awad,Phys.Rev.Lett.79,641(1997).
    [170]J.Q.Liang,M.Katsuragawa,F.L.Kien,and K.Hakuta,Phys.Rev.Lett.85,2474(2000).
    [171]N.Kiesel,C.Schmid,U.Weber,G.Toth,O.Gahne,R.Ursin,and H.Weinfurter,Phys.Rev.Lett.95,210502(2005).
    [172]Y.Wu and X.X.Yang,Phys.Rev.Lett 78,3086(1997).
    [173]S.B.Zheng,Phys.Rev.A73,065802(2006);W.X.Yang,Chin.Phys.Lett.24,104(2007).
    [174]Z.Y.Xue and Z.D.Wang,Phys.Rev.A75,064303(2007).
    [175]G.Chen,Z.D.Chen,L.X.Yu,and J.Q.Liang,Phys.Rev.A76,024301(2007).
    [176]J.Benhelm,G.Kirchmair,U.Rapol,T.Korber,C.F Roos,and R.Blatt,Phys.Rev.A75,032506(2007).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700