土—水—作物系统中镉的分布特征及风险评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国地质调查局先后在长江流域的四川、重庆、湖北等9个省及直辖市进行了调查,结果发现从长江源头的沱沱河直至长江入海口、沿江及两岸平原区出现宽度达几十至数百公里贯穿全流域的镉等重金属异常带。“五毒之首”的镉元素是一种危险的有害物质,在环境系统中迁移较为活跃,是作物极易富集的重金属元素之一,不仅会导致作物减产和品质下降,而且会通过食物链进入人体,严重威胁着人体健康。
     黄石市位于湖北省东南部、长江中游南岸,是我国中部地区重要的原材料工业基地和国务院批准的沿江开放城市、长江经济开发带的重要支点、武汉城市圈的副中心城市和鄂东区域经济龙头。黄石市郊沿江冲积农田主要种植蔬菜和粮食,其镉含量及上面生长的作物(主要为蔬菜)是否受到Cd的污染,是否符合国家食品卫生标准,这方面的报道比较少,特别是该区土壤对镉的吸附特征、土壤水中镉的含量及土壤镉的生物有效性方面的研究几乎没有。因此,本文以黄石为例,研究土-水-作物系统中镉的分布特征,探讨土壤镉的生物有效性,为在研究区合理布局种植结构、建设无公害蔬菜以及镉的污染防治提供科学依据。
     通过实地调查,在黄石沿江典型地段的作物地及下陆区杨家畈蔬菜生产基地用无锈钢铁铲采集表层土壤样36个,同时用土壤水分计(MPM-160, Australia)测定土壤含水量;用麻花钻钻取剖面7个,分别在距土壤表层20、40、60、80、120、160cm处采集土样;在对应采集了表层土样的14个点埋置自制陶土头式土壤水取样器28根(每个点2根),野外定期用真空泵抽取其中的土壤水;并在采集了表层土样的相应点采集成熟的作物样,有高粱、玉米、辣椒等,都分为根、茎、可食部分(本文主要指果实)。室内测定分析了所有土样、土壤水样和作物样中镉的全量;用tessier连续浸提法测定了22个表层土样不同形态的镉含量,用常规分析方法对其基本物理化学性质,如土壤pH、有机质、颗粒组分、阳离子交换量等进行了测定分析;并选取4个土样作为代表,进行了镉的吸附-解吸实验。参照国家土壤环境质量二级标准和大冶有色金属冶炼厂附近A层土壤的背景值尝试评价了土壤镉富集和污染程度;研究了土壤中镉赋存形态分布及其与土壤理化性质的关系;分析了土壤镉的静态吸附、解吸特征及影响因素;讨论了不同作物对土壤中镉的吸收富集及同一作物不同部位镉的分配情况;探讨了土壤镉的生物有效性;依据国家标准食品中镉限量值及国际辐射防护委员会(International Commission Radiological Protection, ICRP)推荐的最大可接受风险水平和我国居民平均食物消费结构评价了这些农产品对于当地人群的潜在健康风险,初步提出了研究区镉危害的一些预防措施。主要研究结论如下:
     1.研究区36个表层土壤样的镉含量均高于国家土壤环境标准的二级标准值,为轻度-重度污染(异常)。黄石下陆区杨家畈蔬菜生产基地土壤镉在表层(0-20cm)有明显累积现象,随着深度增加,镉含量递减,深度大于2米时降至1mg/kg以下。
     2.研究区土壤中各形态镉平均含量为残渣态>铁锰氧化物结合态>碳酸盐结合态>有机质结合态>可交换态。生物不可利用态镉和生物潜在可利用态镉含量较高,可利用态镉含量很低。交换态镉与有机质结合态镉关系最密切,土壤总镉的增加在一定程度上会造成可交换态镉含量的增加,会显著影响残渣态镉及铁-锰氧化物结合态含量。对研究区土壤总镉含量及不同形态镉含量影响显著的环境因子主要是土壤pH、有机质含量和粘粒含量。
     3.研究区潮土对镉的吸附等温线均可用Langmuir方程、Freundlich方程和Temkin方程来描述,总体看Langmuir方程拟合效果更佳。解吸镉的数量随吸附量的增加而增加。在实验条件下,Cd的吸附和解吸过程都可分成两个阶段,40min之前的快反应和60min之后的慢反应。土壤对镉的吸附很大程度上受到土壤有机质含量、阳离子交换量、土壤粘粒和粉粒所占比例的控制。研究区土壤对镉的吸附潜力较大。
     4.不同作物对镉的吸收富集能力不同,同一作物的不同部位对镉的富集能力也存在较大差异。空心菜和茄子、辣椒等茄果类蔬菜较易富集镉,而高粱、玉米等粮食类作物和豆类作物不易富集镉。作物不同部位Cd的总体分布特征为根部>茎部>可食部分。镉在作物内的总体迁移能力为根部一茎部>茎部一可食部分。研究区作物中空心菜、辣椒和茄子已受到污染,存在轻微的健康风险,其他蔬菜和粮食类作物都较为安全,不存在健康风险。
     5.研究区土壤水中镉含量很低,基本上小于国家农业灌溉水标准中的镉限定值5μg/L。土壤水中镉,浅部比深部稍高;少雨秋季比多雨夏季高;下陆杨家畈蔬菜生产基地土壤水中的镉含量(如SW0314 7.67μg/L)大于黄石沿江作物地土壤水中的镉含量(如SW03070.60μg/L)。
     6.作物根部和茎部吸收的镉主要与土壤可交换态镉、铁锰氧化物结合态镉、碳酸盐结合态镉和土壤总镉的含量密切相关,而可食部分的镉含量与土壤各形态镉相关性不明显,与土壤水中镉的含量显著正相关。表明土壤水的镉具有较高的生物有效性,土壤总镉含量只能初步指示镉的生物有效性大小,土壤可交换态镉、铁锰氧化物结合态镉和碳酸盐结合态镉含量是研究区镉生物有效性大小的重要指标。
     7.研究区土壤镉异常已经对研究区作物的安全造成了一定影响,建议有关部门予以高度关注并采取有效应对措施,如严格规范工矿企业的排放标准,鼓励农民多施用有机肥料少用废水进行灌溉等等。
China Geological Survey conducted investigations in 9 provinces and municipalities along the Yangtze River such as Sichuan, Chongqing, Hubei and so on, and found that there was abnormal belt of cadmium and other heavy metals with width of tens to several hundred kilometers through the whole drainage basin, from the Tuotuo River to the Yangtze River estuary and in the plains along the Yangtze River. As"the first of five evils", cadmium is a dangerous harmful substance, it migrates actively in the environment system, is one of the highly enriched heavy metals in crops. It not only leads to decreased crop yields and quality, but also comes into the human body through the food chain, which is a serious threat to human health.
     Huangshi City located in the southeast of Hubei Province and the south bank of the midstream of the Yangtze River, is an important raw material industrial base in Central China and the open city approved by State Council, an important fulcrum of economic development zone along the Yangtze River, deputy central city of Wuhan city circle and economic leader of eastern regional of Hubei province. In alluvial farmland along the Yangtze River in the outskirts of Huangshi City, the main crops are vegetables and grains. Reports about if the soils and growing crops (mainly vegetables) are subject to Cd contamination and meet the national food hygiene standard are relatively little, especially the adsorption characteristics of cadmium in the soil of the area, the content of cadmium in soil water and cadmium bioavailability of the soil are hardly researched. Therefore, taking Huangshi City as an example in this paper, we studied distribution characteristics of cadmium in soil-water-crop system, explored and discussed the bioavailability of Cd in the soil, provided scientific basis for citizens in Huangshi City on rational layout of planting structure, pollution-free vegetables construction and cadmium contamination prevention.
     Through field investigation, in farmlands of typical section along the Yangtze River and Yang Jiafan vegetable production base of Huangshi City, we collected 36 surface soil samples with a rust-free steel blade, measured soil water content using soil moisture meter (MPM-160, Australia) at the same time; digged 7 soil profiles with a twist drill, sampled the soil at the depth of 20,40,60,80,120,160 cm from the soil surface respectively; embedded 28(two for one site) homemade soil water samplers of pottery clay head type at the corresponding 14 sites collected surface soils, sampled soil water with vacuum extraction regularly in field; and collected mature crops like sorghums, maizes, hot peppers, etc, at the corresponding sites collected surface soils, which were divided into roots, stems, edible parts (here mainly refer to the fruits). Indoor cadium contents of all soil samples, soil water samples and crop samples were measured and analyzed; with tessier sequential extraction method, the contents of different speciations of cadmium of 22 surface soil samples were determined, with conventional analysis methods their basic physical and chemical properties, such as soil pH, organic matter, particle composition, cation exchange capacity, etc, were determined and analyzed; and selected four soil samples as representative for the cadmium adsorption-desorption experiment. Levels of cadmium accumulation and contamination were assessed according to national soil environmental quality standard and the background value of Cd in A layer of the soil near Daye Nonferrous Metal Smelter; studied distribution characteristics of speciations of cadmium in the soil and the relationship with the soil properties; analyzed static adsorption-desorption characteristics of cadmium of the soils and their influence factors; discussed about the absorption and accumulation of the cadmium of different crops and distribution characteristics of the cadmium in different parts of them; explored and discussed about Cd bioavailability in the soils; evaluated the potential risk of these crops to local people health according to the limited value of cadmium in national food hygiene standard, maximum acceptable level of risk recommended by International Commission Radiological Protection and the average consumption structure of these agricultural products of Chinese residents, preliminaryly putted forward some preventive measures against cadmium harm for the study area. The main conclusions are as follows:
     1.The cadmium contents of 36 soil samples in the study area are all above second-level standard value of the national soil environment standard, appeare mild to severe contamination (abnormity). Cadmium is significantly accumulated in surface soils (0-20cm) of Yang Jiafan vegetable production base in Huangshi City, with the depth increase, the content of cadmium decrease, when the depth is more than 2 meters, the content of cadmium is lower than 1mg/kg.
     2.The average contents of different speciations of cadmium in the soils of the study area follow the order of residual>Fe-Mn oxides bound>carbonate bound>organic bound>exchangeable. The contents of speciations of cadmium which are unavailable and potentially available to biology are relatively high, while that of the available speciation is very low. Exchangeable Cd and organic bound Cd are closely related, with the increasing in total cadmium of the soil, the content of exchangeable cadmium increases to a certain extent, and it significantly influences the contents of residual cadmium and iron-manganese oxides bound cadmium. The environmental factors that significantly influence the content of total cadmium and different speciations of cadmium are mainly soil pH, organic matter content and clay content.
     3.Cd adsorption isotherms of the soils in the study area all can be described by Langmuir equation, Freundlich equation and Temkin equation, overall Langmuir equation fits better. With the quantity of adsorbed cadmium increased,desorbed cadmium is also increased. Under the experimental conditions, Cd adsorption and desorption process can be divided into two stages, the fast reaction stage before 40min and the slow stage after 60min. The content of Cd adsorbed by the soil are mianly controlled by organic matter content, cation exchange capacity, soil clay and silt. The potential ability to adsorb Cd of the soil in the study area is relatively strong.
     4.Accumulation ability of cadmium of different crops are different, that of different parts of the same crop are also quite different. Water spinaches and eggplants, hot peppers and other fruit vegetables are easy to accumulate cadmium, while sorghums, corns and other grain crops and legumes are not. In general, the contents of Cd in different parts of crops follow the order of roots>stems>edible parts. The overall migration ability of cadmium in crops are roots-stems> stems-edible parts. Water spinaches, peppers and eggplants in the study area, have been contaminated, which have slight health risk, other vegetables and grain crops are relatively safe, having no health risk.
     5.The content of cadmium in soil water of the study area is very low, basically less than the limited value 5ug/L of national agriculture irrigation standard. Cadmium in soil water appear that the cadmium content of the deep is slightly higher than the shallow; in dry autumn higher than in rainy summer; in Yang Jiafan vegetable production base higher (for instance SW0314 7.67μg/L) than in farmlands along the Yangtze River (for instance SW0307 0.60μg/L).
     6.The contents of cadmium absorbed by crop roots and stems are closely related to that of exchangeable cadmium, iron-manganese oxides bound cadmium, carbonate bound cadmium and total cadmium in the soil, while the contents of cadmium in edible parts are not that related to all the speciations of cadmium in the soil, but are significantly positively correlated to cadmium in soil water. It showes that cadmium in soil water has a relatively high bioavailability, total cadmium content of the soil is just initial indicator of the cadmium bioavailability, exchangeable cadmium, iron and manganese oxides bound cadmium and carbonate bound cadmium are important indicators of cadmium bioavailability in the study area.
     7. Cadmium abnormity in the soil of the study area has influenced the safety of crops to some degree, it is recommended that relevant departments pay high attention to and take effective countermeasures to control the food safety in the area, such as setting up strict emission standards for industrial and mining enterprises, encouraging farmers to use more organic fertilizer and less wastewater for irrigation and so on.
引文
[1]朱志勤,孙宏飞,王五一,等.土壤中重金属的形态及其生物有效性[J].现代农业科技,2008,12:178-180.
    [2]徐海娟,师荣光,赵玉杰,等.土壤重金属Cd作物效应的区域分异研究[J].安徽农业科学,2008,36(19):8272-8274.
    [3]曾希柏,李莲芳,梅旭荣.中国蔬菜地土壤重金属含量及来源分析[J].中国农业科学,2007,40(11):2507-2517.
    [4]崔玉静,赵中秋,刘文菊,等.镉在土壤-植物-人体系统中迁移积累及其影响因子[J].生态学报,2003,23(10):2133-2143.
    [5]成杭新,杨忠芳,奚小环,等.长江流域沿江镉异常示踪与追源的战略与战术[J].第四纪研究,2005,25(3):285-290.
    [6]李瑞敏,刘永生.农业地质地球化学评价方法研究-土地生态安全之地学探索[M].北京:地质出版社.2007,1:6-7.
    [7]马振东,张德存,闭向阳,等.武汉沿长江、汉江Cd高值带成因初探[J].地质通报,2005,24(8):740-743.
    [8]成杭新,杨忠芳,奚小环等.长江流域沿江镉异常源追踪与定量评估的研究框架[J].地学前缘,2005,12(1):261-272.
    [9]高永华,王金.污灌区土壤-植物系统中重金属分布与迁移转化特征研究[J].河北农业大学学报,2006,29(5):52-56.
    [10]皮运清,王学锋.新乡市污灌土壤中重金属含量及植物质量评价[J].安徽农业科学,2007,35(12):3634-3635.
    [11]黄顺生,华明,金洋.南京郊区某菜地土壤镉污染水平及其来源调查[J].土壤通报,2008,39(1):129-131.
    [12]王勇,窦森.长春市郊区土壤—水稻体系重金属含量及迁移规律[J].吉林农业大学学报,2008,30(5):716-720.
    [13]Zhuang P, Zou B, Li N Y, et al. Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China:implication for human health. Environ Geochem Health[J],2009,31:707-715.
    [14]Granel T, Robinson B, Mills T. Cadmium accumulation by willow clones used for soil conservation, stock fodder and phytoremediation[J]. Australian Journal of Soil Research, 2002,40:1331-1337.
    [15]Sikka R, Nayyar V, Sidhu S S. Monitoring of Cd pollution in soils and plants irrigated with untreated sewage water in some industrialized cities of Punjab, India[J]. Environ Monit Assess,2009,154:53-64.
    [16]Jalali M, Khanlari Z V. Environmental contamination of Zn, Cd, Ni, Cu, and Pb from industrial areas in Hamadan Province, western Iran[J]. Environ Geol,2008,55:1537-1543.
    [17]Violina A, Krasimir I. Bio-accumulation and distribution of heavy metals in black mustard (Brassica nigra Koch)[J]. Environ Monit Assess,2009,153:449-459.
    [18]Brunetti G, Soler-Rovira P, Farrag K, et al. Tolerance and accumulation of heavy metals by wild plant species grown in contaminated soils in Apulia region, Southern Italy[J]. Plant Soil, 2009,318:285-298.
    [19]Mahin K, Majid A, Yahya R, et al. Heavy metal uptake by wheat from a sewage sludge-amended calcareous soil[J]. Nutr Cycl Agroecosyst,2009,83:51-61.
    [20]陈媛.土壤中镉及镉的赋存形态研究进展[J].广东微量元素科学,2007,14(7):9-13.
    [21]梁彦秋,刘婷婷,铁梅,等.镉污染土壤中镉的形态分析及植物修复技术研究[J].环境科学与技术,2007,30(2):58-60.
    [22]董建军.合肥地区农田土壤重金属形态特征及其生物有效性研究[D].合肥:安徽农业大学,2007.
    [23]袁浩,王雨春,顾尚义,等.黄河水系沉积物重金属赋存形态及污染特征[J].生态学杂志,2008,27(11):1966-1971.
    [24]李涛,刘汉湖,鲁璐.剩余污泥中重金属形态分析研究[J].环境研究与监测,2008,21(1):14-16.
    [25]陈孝杨,严家平,况敬静,等.淮河流域安徽段水系沉积物中重金属的分布与赋存形态[J].合肥工业大学学报,2009,32(3):299-304.
    [26]OLAJIRE A A, AYODELE E T, OYEDIRDAN G O, et al. Levels and Speciation of Heavy Metals in Soils of Industrial Southern Nigeria[J]. Environmental Monitoring and Assessment, 2003,85(2):135-155.
    [27]ABOLLINO O, GIACOMINO A, MALANDRINO M, et al. ASSESSMENT OF METAL AVAILABILITY IN A CONTAMINATED SOIL BY SEQUENTIAL EXTRACTION[J]. Water, Air,& Soil Pollution,2006,173:315-338.
    [28]Daniel F, Fisseha I, Mats O. Total Contents and Sequential Extraction of Heavy Metals in Soils Irrigated with Wastewater, Akaki, Ethiopia[J]. Environ Manage,2007,39:178-193.
    [29]Pueyo M, Mateu J, Rigol A, et al. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils[J]. Environmental Pollution,2008,152:330-341.
    [30]Simmons R W, Noble A D, Pongsakul P, et al. Analysis of field-moist Cd contaminated paddy soils during rice grain fill allows reliable prediction of grain Cd levels[J]. Plant Soil, 2008,302:125-137.
    [31]尚爱安,刘玉荣,梁重山.土壤中重金属的生物有效性研究进展[J].土壤,2000,6:294-300.
    [32]王学锋,杨艳琴.土壤-植物系统重金属形态分析和生物有效性研究进展[J].化工环 保,2004,24(1):24-27.
    [33]赵宁,寇渊博.土壤对镉(Cd)生物有效性影响的研究[J].河南科学,2009,27(9):1089-1092.
    [34]朱亮,邵孝侯.耕作层中重金属Cd形态分布规律及植物有效性研究[J].河海大学学报,1997,25(3):50-56.
    [35]王英,李正文,贺紫荆.不同水稻品种积累镉的差异及其动态变化[J].广西农业生物科学,2007,26(增刊):28-58.
    [36]汤丽玲.作物吸收Cd的影响因素分析及籽实Cd含量的预测[J].农业环境科学学报,2007,26(2):699-703.
    [37]李冰,王昌全,代天飞.水稻子实对不同形态重金属的累积差异及其影响因素分析[J].植物营养与肥料学报,2007,13(4):602-610.
    [38]张磊,孟湘萍.不同水分条件下镉在土壤中形态转化的动态过程[J].安徽农业科学,2008,36(17):7332-7334.
    [39]穆晓慧,李世清,党蕊娟.黄土高原不同土壤中Cd形态分级及其生物有效性研究[J].西北农林科技大学学报(自然科学版),2008,36(4):135-142.
    [40]ANTONIADIS V, ALLOWAY B J. AVAILABILITY OF Cd, Ni AND Zn TO RYEGRASS IN SEWAGE SLUDGE-TREATED SOILS AT DIFFERENT TEMPERATURES[J]. Water, Air,& Soil Pollution,2001,132:201-214.
    [41]Kashem M A, Singh B R. Metal availability in contaminated soils:Ⅱ. Uptake of Cd, Ni and Zn in rice plants grown under flooded culture with organic matter addition[J]. Nutrient Cycling in Agroecosystems,2001,61:257-266.
    [42]Golia E E, Dimirkou A, Mitsios I K. Influence of Some Soil Parameters on Heavy Metals Accumulation by Vegetables Grown in Agricultural Soils of Different Soil Orders[J]. Bull Environ Contam Toxicol,2008,81:80-84.
    [43]Eleni M, Nicolas K. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L):metal uptake in relation to salinity[J]. Environ Sci Pollut Res,2009,16:844-854.
    [44]Enamorado S, Abril J M, Mas J L, et al. Transfer of Cd, Pb, Ra and U from Phosphogypsum Amended Soils to Tomato Plants[J]. Water Air Soil Pollut,2009,203:65-77.
    [45]Matthieu F, Cynthia Grant AE, Raphae"l Lambert,et al. Prediction of cadmium and zinc concentration in wheat grain from soils affected by the application of phosphate fertilizers varying in Cd concentration[J]. Nutr Cycl Agroecosyst,2009,83:125-133.
    [46]宗良纲,徐晓炎.土壤中镉的吸附解吸研究进展[J].生态环境,2003,12(3):331-335.
    [47]李程峰,刘云国,曾光明,等.pH值影响Cd在红壤中吸附行为的实验研究[J].农业环境科学学报,2005,24(1):84-88.
    [48]许春雪,潘小菲,王亚平,等.北京城近郊区土壤对镉的吸附特征研究[J].岩矿测试,2005,24(3):161-166.
    [49]郭观林,周启星.重金属镉在黑土和棕壤中的解吸行为比较[J].环境科学,2006,27(5):1013-1019.
    [50]胡宁静,骆永明,宋静.长江三角洲地区典型土壤对镉的吸附及其与有机质、pH和温度的关系[J].土壤学报,2007,44(3):437-443.
    [51]单奇华,张彩峰,俞元春,等.土壤Cu2+和Cd2+的吸附解吸特征及差异分析[J].安徽农业科学,2007,35(19):5808-5810.
    [52]李仁英,杨浩.Cd和Zn在滇池沉积物中的吸附-解吸特征[J].土壤,2007,39(2):274-278.
    [53]Lu S G, Xu Q F. Competitive adsorption of Cd, Cu, Pb and Zn by different soils of Eastern China[J]. Environ Geol,2009,57:685-693.
    [54]Lisbeth M O, Henrik K.H, Pernille E J. Relation Between pH and Desorption of Cu, Cr, Zn, and Pb from Industrially Polluted Soils[J].Water Air Soil Pollut,2009,201:295-304.
    [55]HUANG S, ZHANG R D, ZHANG J Y. Effects of pH and soil texture on the adsorption and transport of Cd in soils[J]. Sci China Ser E-Tech Sci,2009,52(11):3293-3299.
    [56]Calace N, Deriu D, Petronio B M, et al. Adsorption Isotherms and Breakthrough Curves to Study How Humic Acids Influence Heavy Metal-Soil Interactions[J]. Water Air Soil Pollut, 2009,204:373-383.
    [57]Unuabonah E I, Adebowale K O, Ofomaja A E. Two-stage Batch Adsorber Design: ATime-Dependent Langmuir Model for Adsorption of Pb2+and Cd2+onto Modified Kaolinite Clay[J]. Water Air Soil Pollut,2009,200:133-145.
    [58]He J, Xue H X, Lu C W, et al. The impacts of common ions on the adsorption of heavy metal[J]. Environ Geol,2009,58:1499-1508.
    [59]邵学新,吴明,蒋科毅.西溪湿地土壤重金属分布特征及其生态风险评价[J].湿地科学,2007,5(3):253-259.
    [60]李剑,马建华,宋博.郑汴路路旁土壤-小麦系统重金属积累及其健康风险评价[J].植物生态学报,2009,33(3):624-628.
    [61]Jain C K, Harish G, Chakrapani G J. Monitoring of Cd pollution in soils and plants irrigated with untreated sewage water in some industrialized cities of Punjab, India[J]. Environ Monit Assess,2008,141:35-47.
    [62]Rodriguez-Barroso M R, Benhamou Y, Moumni B El, et al. Evaluation of metal contamination in sediments from north of Morocco:geochemical and statistical approaches[J]. Environ Monit Assess,2009,159:169-181.
    [63]Riffat N M, Naila Z. Assessment of environmental contamination using feathers of Bubulcus ibis L, as a biomonitor of heavy metal pollution, Pakistan[J]. Ecotoxicology,2009, 18:522-536.
    [64]Dehghan M S, Savary A, Parham H, et al. Determination of the level of contamination in Khuzestan coastal waters (Northern Persian Gulf) by using an ecological risk index[J]. Environ Monit Assess,2009,159:521-530.
    [65]史瑞和.土壤农化分析[M].北京:农业出版社,1998,2:29-113.
    [66]国家环境保护总局.HJ/T166-2004,土壤环境监测技术规范[s].北京:中国环境出版社, 2004.
    [67]Tessier A, Campbell P, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Anal Chem,1979,51:844-850.
    [68]GB/T 5009.15-1996,食品中镉的测定方法[s].
    [69]中国地质调查局.DD2005-03,生态地球化学评价样品分析技术要求试行[s].
    [70]魏复盛,王惠琪,郑春江等编著.土壤元素的近代分析方法(第一版)[M].北京:中国环境科学出版社,1992.
    [71]黄昌勇.土壤学(第一版)[M].北京:中国农业出版社,2000.
    [72]陈华勇,欧阳建平,马振东.大冶有色冶炼厂附近农田镉污染的现状与治理对策[J].土壤,2003,1:76-82.
    [73]黄顺生,华明,金洋,等.南京郊区某菜地土壤镉污染水平及其来源调查[J].土壤通报,2008,39(1):129-132.
    [74]侯青叶,杨忠芳,杨晓燕等.成都平原区水稻土成土剖面Cd形态分布特征及影响因素研究[J].地学前缘,2008,15(4):36-46.
    [75]曹淑萍.重金属污染元素在天津土壤剖面中的纵向分布特征[J].地质找矿论丛,2004,19(4):270-274.
    [76]宋书巧,吴欢,黄胜勇.重金属在土壤一农作物系统中的迁移转化规律研究[J].广西师院学报,1999,16(4):87-92.
    [77]KRISHNAMURTIG S R, HUANG PM, VAN REES, et al. Speciation of particulate-bound cadmium in soils and its bioavailability [J].Analyst,1995,120:659-665·
    [78]周国华,黄怀曾,何红蓼,等.北京市东南郊自然土壤和模拟污染影响下Cd赋存形态及其变化[J].农业环境科学学报,2003,22(1):25-27.
    [79]郭平.长春市土壤重金属污染机理与防治对策研究[D].吉林:吉林大学博士学位论文,2005.
    [80]钟晓兰,周生路,黄明丽等.土壤重金属的形态分布特征及其影响因素[J].生态环境学报,2009,18(4):1266-1273.
    [81]侯青叶,杨忠芳,杨晓燕等.成都平原区水稻土成土剖面Cd形态分布特征及影响因素研究[J].地学前缘,2008,15(4):36-46.
    [82]杜富芝.城乡交错区土壤镉污染研究-以重庆市歇马镇为例[D].重庆:西南大学,2009.
    [83]陈高式.重庆都市圈土壤重金属元素迁移富集及生态效应研究[D].成都:成都理工大学,2008.
    [84]彭景,李泽琴,侯家渝.地积累指数法及生态危害指数评价法在土壤重金属污染中的应用及探讨[J].广东微量元素科学,2007,14(8):13-17.
    [85]倪吾钟,龙新宪,杨肖娥.菜园土壤镉吸附-解吸特性的研究[J].广东微量元素科学,2000,7(10):11-15.
    [86]符娟林,章明奎,黄昌勇.长三角和珠三角农业土壤对Pb、Cu、Cd的吸附解吸特性[J].生态与农村环境学报,2006,22(2):59-64.
    [87]杨金燕,杨肖娥,何振立,等.土壤中铅的吸附-解吸行为研究进展[J].生态环 境,2005,14(1):102-107.
    [88]王亚平,周继华,李艳艳等.土壤中Cd离子地球化学行为模拟实验—以山西的典型土壤为例[J].地质通报,2008,27(2):212-221.
    [89]王晓芳,罗立强.铅锌银矿区蔬菜中重金属吸收特征及分布规律[J].生态环境学报,2009,18(1):143-148.
    [90]唐文,吴颖,刘琰青.蔬菜中镉、铅、锌的含量及分布规律分析[J].长江蔬菜(学术版),2008,12b:31-33.
    [91]胡慧玲,玉素甫.艾力,阿布力米提.阿布都卡德尔.乌鲁木齐市安宁渠区蔬菜中重金属的分布特征研究[J].新疆大学学报(自然科学版),2003,20(3):260-263.
    [92]郑雪虹.黄石市郊蔬菜基地重金属含量及评价[J].农业环境科学学报,2007,26(增刊):691-693.
    [93]李晓晨,赵丽,赵星明.南京市郊区蔬菜重金属污染特征的研究[J].安徽农业科学,2007,35(30):9650-9651.
    [94]丁园,宗良纲,何欢,等.蔬菜中重金属含量及其评价[J].安徽农业科学,2007,35(33):10672-10674.
    [95]张竹青,杨玉华.荆州市蔬菜重金属和砷污染现状及影响因素[J].湖北农学院学报,2001,21(2):141-143.
    [96]王晓芳,罗立强.铅锌银矿区蔬菜中重金属吸收特征及分布规律[J].生态环境学报,2009,18(1):143-148.
    [97]王静,张彦峰,姜春晓,等.天津市污灌区重金属在土壤—蔬菜体系中的迁移积累[J].城市环境与城市生态,2008,21(2):38-41.
    [98]Brown S L, Chaney R L, Angle J S, et al. The phytoavailability of cadmium to lettuce in long-term biosolids-amended soils[J]. J. Environ Qual.,1998,27:1-8.
    [99]Kadar I. Effect of heavy metal load on soil and crop. Acta Agronomica Hungarica,1995, 43:3-9.
    [100]Reber H H. Threshold levels of cadmium for soil respiration and growth of spring wheat (T riticum aestivum L)and difficulties with their determination[J]. Biol Fertil Soils,1989,7: 152-157.
    [101]宋菲,郭玉文,刘孝义,等.土壤中重金属镉锌铅复合物的研究[J].环境科学学报,1996,16(4):431-435.
    [102]LORENZ S E, HAMON R E. Cadmium and zinc in plants and soil solutions from contaminated soils[J]. Plant and Soil,1997,189:21-31.
    [103]Vangronsveld J, Cunningham S D. Introduction to the concepts [A].In:Vangronsveld J, Cunningham S D, eds. Metal Contaminated Soils:in situ Inactivation and Phytorestoration [C]. New York:Springer,1998,1-15.
    [104]刘霞,刘树庆.土壤重金属形态分布特征与生物效应的研究进展[J].农业环境科学学报,2006,25(增刊):407-410.
    [105]Abdul-Wahab O. El-Rjoob, Adnan M M, Mohammad N O. Evaluation of Pb, Cu, Zn, Cd, Ni and Fe levels in Rosmarinus officinalis labaiatae (Rosemary) medicinal plant and soils in selected zones in Jordan[J]. Environ Monit Assess,2008,140:61-68.
    [106]王学峰,罗晓东,姚远鹰.新乡市卫河两岸蔬菜中重金属含量及污染评价[J].安徽农业科学,2009,37(25):12125-12126.
    [107]GB2762—2005,食品中污染物限量国家标准[S].
    [108]柳絮,范仲学,张斌等.我国土壤镉污染及其修复研究[J].山东农业科学,2007,6:94-97.
    [109]李明德,童潜明,汤海涛等.海泡石对镉污染土壤改良效果的研究[J].土壤肥料及机理初探,2005,1:42-44.
    [110]吴双桃.紫茉莉修复镉污染土壤的研究[J].污染防治技术,2006,19(4):17-18.
    [111]马淑敏,孙振钧,王冲.蚯蚓-甜高粱复合系统对土壤镉污染的修复作用[J].农业环境科学学报,2008,27(1):0133-0138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700