贵金属纳米材料的电化学合成和物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电沉积是比较可控地制备纳米材料的一种方法。通过控制沉积电位、电解液浓度和表面剂等很多因素可以合成大量不同形貌的金属、半导体和导电聚合物等纳米结构。其中最具有代表性的是模板法电沉积一维纳米结构和非模板法电沉积多面体以及复杂纳米结构。这些电化学合成的纳米结构具有很多新颖的物理、化学特性,在光学、电学、磁学、传感器和催化等领域有着重要的应用。基于以上原因,本论文的工作将主要建立在使用模板法电化学沉积金属钯、铜及其二元金属的一维纳米结构,以及非模板法电沉积复杂的树枝状银纳米结构,并研究合成产物的性质和应用。论文的工作主要包括以下几方面的内容:
     1.树枝状和花状银纳米结构的合成及其表面增强拉曼性质
     在导电玻璃(FTO)衬底上,通过电沉积的方法可以制备银的树枝状纳米结构。并且这些合成的纳米结构有着很强的表面增强拉曼(SERS)性能。我们合成方法的特点是通过改变沉积电位、表面剂的种类以及硝酸银的浓度来控制银树枝状纳米结构的尺寸、形状和分枝密度。树枝状结构生长的一般趋势也得到了解释清楚。所以,我们可以准确的控制树枝状银产物颗粒间的距离,并且可以调节表面等离子体共振等去选择最适合做表面增强拉曼衬底的结构。其中,在PVP做表面剂的溶液中合成出来的尺寸60-100 nm、颗粒间距绝大部分在10 nm以下的树枝状银纳米结构的SERS灵敏度比在PVP/柠檬酸中合成出来的尺寸20-50 nm、颗粒间距大部分在10 nm以上的树枝状银纳米结构强很多。前者作为SERS衬底可以清楚的检测浓度低于10-10 M的若丹明6G分子。这种可控的合成方法也可以用来合成其他的金属和合金的树枝状纳米结构。
     除了树枝状Ag纳米结构,我们还合成了由树叶状的薄片堆积成的三维的花状结构。其生长模型可以用瞬时成核和扩散控制来解释。随着电沉积时间的延长,衬底上较少有新的核生成,仅仅是原来的核尺寸变大,这使其尺寸可以由沉积时间来控制。由于单个的银颗粒可以在显微镜下清晰的分辨出来,这种花状颗粒具有高的SERS灵敏度的同时有很好的可再现性。
     2.钯铜二元金属纳米管的合成以及其在硝酸根离子催化上的应用
     我们在氧化铝模板(AAO)中采用电沉积的方法一步合成了Pd/Cu二元金属纳米管和纳米线。所施加的电位决定着产物形貌是管还是线。在高的负电位下,沉积速率快,模板孔道内的离子被耗尽,沉积由扩散控制,形成纳米管结构。相反的,在较低的负电位下形成的是纳米线结构。纳米管是由几个纳米的Pd,Cu金属颗粒构成。电解液中的线性扫描伏安曲线测试说明了Pd和Cu。是分别沉积的,而且排除了因氢气析出而导致纳米管形成的可能性。在硝酸根离子的电催化实验中,相比于Pd/Cu薄膜,在低的电位下,纳米管受反应中间产物的吸附影响更大,催化性能相对较差;在有氢气析出的高电位时,纳米管的催化受氢气的影响相对较小。在空气中放置六个月后,Pd/Cu二元金属纳米管被氧化成均一的氧化物纳米管。
     3.超细氧化亚铜纳米线的合成
     我们利用PVP辅助的电沉积合成出来了尺寸10 nm以下的超细Cu2O纳米线。通过电位的控制,可以在一定尺度内控制超细纳米线的尺寸和长度。通过HRTEM和XPS以及吸收光谱表明这种合成的超细纳米线的结构是Cu2O的核和一层非常薄(~1 nm)的CuO壳。这层CuO的壳层使合成的纳米线结构非常稳定。从沉积条件(pH为2的酸性溶液)以及产物最初的HRTEM像判断出最初的产物是Cu纳米线,在去完模板清洗后在空气中自然氧化成Cu2O/CuO核壳纳米线结构。
     我们认为超细纳米线的形成是因为电解液中的PVP在电场的作用下在氧化铝模板中有序排列作为Cu沉积的软模板。这种有序排列是吸附阳离子的PVP链因为静电排斥作用展开成刷子状后在电场的作用下相互平行。铜离子和PVP的配位作用使沉积同时在PVP链上发生。对比实验也表明PVP是超细纳米线生长的必要条件。模板对于PVP的有序排列也很重要,在没有模板的情况下得不到超细纳米线的产物。这种超细的纳米线的生长也受电解液浓度的影响,高的浓度会导致颗粒的聚集而形成不了超细纳米线结构。这种10 nm以下的纳米线也表现出明显的量子限域效应,其吸收峰的蓝移非常明显。
1. Controllable Electrochemical Synthesis of Silver Dendritic Nanostructures and Their SERS Properties
     Ag dendritic nanostructures have been fabricated on FTO covered glass substrates by the electrodepositon method and have been used as SERS substrates which exhibit extremely high SERS activity. An advantage of the prepared method reported here is that the size, shape, and branch density of the silver dendrites can be varied by the applied potential, the surfactants and the concentration of AgN03. The general trends in the formation of the structures have been also identified. The dendrite surfaces can therefore be precisely tailored to tune the interparticle spacings and surface plasmon modes to match the requirements of the SERS experiment. The Ag dendrites prepared in PVP solution with diameter of 60-100 nm and many sub-10 nm interparticle spacings exhibit much better surface enhanced Raman scattering than those dendrites with diameter of 20-50 nm and interparticle spacings larger than 10 nm prepared in mixed PVP/citrate solution, which was able to clearly detect rhodamine 6G concentrations up to 10-10 M. Alloy or composite dendrites for further applications could also be prepared by this easy controlled electrodeposition method.
     3-D flower-like microstructure deposited at low driving force follows diffusion controlled growth and deposition occurs by an instantaneous mechanism. Once all of the nucleation sites are occupied, further increasing the deposition time would only increase the size of the nanocrystals and not their number density because no new nucleation sites are created. Individual flowerlike Ag particles were investigated by optical microscopy. Both sensitivity and reproducibility can be found at the same time.
     2. Electrodeposition Pd/Cu Bimetallic Nanotubes and Their Application in Nitrate Electroreduction.
     We have synthesized Pd/Cu bimetallic nanotubes and nanorods in AAO membranes by a one-step coelectrodeposition. Whether nanotubes or nanorods would be finally formed is determined by the applied potential. Fast deposition induced by a higher negative potential can deplete metal ions near the end of a tube in a channel of the membrane, thus the deposition is dominated by ions diffusing to the growth sites, which results in formation of nanotubes. Contrarily, the alloy nanorods are formed in a deposition-dominated process at a lower negative potential. The Pd/Cu nanotubes are formed by Pd and Cu nanoparticles. Electrochemical measurment demonstrated that the Pd/Cu bimetallic nanotube electrode is less sensitive to hydrogen poisoning compared to Pd/Cu films though the catalysis of films was better at the low potential. The Pd/Cu bimetallic nanotubes were oxidized to uniform PdxCu1-xO nanotubes after the bimetallic nanotubes exposed to air for six months.
     3. Synthesis of sub-10 nm Cu2O Nanowires by Poly(vinyl yrrolidone)-Assisted Electrodeposition
     Ordered sub-10nm cuprous oxide nanowires were synthesized by electrodeposition in anodic aluminum oxide (AAO) membranes assisted with poly(vinyl pyrrolidone) (PVP) as soft templates. High-resolution transmission electron microscopy and X-ray photoelectron spectroscopy demonstrate that a nanowire has a core of Cu2O and a thin shell of CuO. The formation of the copper oxide was attributed to the oxidized process of Cu nanowires.
     The formation of ultrathin nanowires is attributed to the arrangement of the PVP in the channels of AAO membranes under an electric field. The diameter and the length of the nanowires depend on the applied potential in the electrodeposition. PVP is the key of the formation of ultrathin nanowires. The growth of the ultrathin nanowires also depends on the concentration of CuCl2·2H2O, and the confinement of the channels in the AAO membrane. UV-vis absorption spectroscopy shows the quantum confinement effect of the Cu2O nanowires.
引文
[1]白春礼。2001,纳米科技及其发展前景。科学通报,46:4-6.
    [2]张立德,牟季美。2001,纳米材料与纳米结构;第一版,科学出版社:北京。
    [3]available at http://zh. wikipedia.org/zh-cn/
    [4]徐彦辉。2008,纳米材料的直接电化学制备及电化学生物传感器的研究;中国科学技术大学博士论文:合肥。
    [5]Bard, A.J. and Faulkner, L. R. (1980) Electrochemical Methods, John Wiley & Sons, New York,
    [6]韩新海。2006,准—维ZnO纳米材料的可控制备和物性:中国科学技术大学博士论文:合肥。
    [7]Hulteen, J. C. and C. R. Martin (1997). "A general template-based method for the preparation of nanomaterials." Journal of Materials Chemistry 7(7):1075-1087.
    [8]Fleisher, R.L, Price, P.B and Walker RM. (1975) Nuclear Tracks in Solids. Berkeley: University of California Press;.
    [9]Tonucci, R. J., B. L. Justus, et al. (1992). "Nanochannel Array Glass." Science 258(5083): 783-785.
    [10]Possin, G.E. (1970) Rev. Sci. Instrum.41:772.
    [11]Wu, C. G. and T. Bein (1994). "Conducting Polyaniline Filaments in a Mesoporous Channel Host." Science 264(5166):1757-1759.
    [12]Fan, S. S., M. G. Chapline, et al. (1999). "Self-oriented regular arrays of carbon nanotubes and their field emission properties." Science 283(5401):512-514.
    [13]Enzel, P., J. J. Zoller, et al. (1992). "Intrazeolite Assembly and Pyrolysis of Polyacrylonitrile." Journal of the Chemical Society-Chemical Communications(8):633-635.
    [14]Guerret-Piecourt, C., Y. Lebouar, et al. (1994). "Relation between Metal Electronic-Structure and Morphology of Metal-Compounds inside Carbon Nanotubes." Nature 372(6508): 761-765.
    [15]Knez, M., A. M. Bittner, et al. (2003). "Biotemplate synthesis of 3-nm nickel and cobalt nanowires." Nano Letters 3(8):1079-1082.
    [16]Nielsch, K., F. Muller, et al. (2000). "Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition." Advanced Materials 12(8):582-586.
    [17]Lai, M. and D. J. Riley (2008). "Templated electrosynthesis of nanomaterials and porous
    structures." Journal of Colloid and Interface Science 323(2):203-212.
    [18]Foss, C. A., M. J. Tierney, et al. (1992). "Template Synthesis of Infrared-Transparent Metal Microcylinders-Comparison of Optical-Properties with the Predictions of Effective Medium Theory." Journal of Physical Chemistry 96(22):9001-9007.
    [19]Hornyak, G. L., C. J. Patrissi, et al. (1997). "Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites:The nonscattering Maxwell-Garnett limit." Journal of Physical Chemistry B 101(9):1548-1555.
    [20]Bera, D., S. C. Kuiry, et al. (2003). "Palladium nanoparticle arrays using template-assisted electrodeposition." Applied Physics Letters 82(18):3089-3091.
    [21]Xu, L. B., L. D. Tung, et al. (2003). "Synthesis and magnetic behavior of periodic nickel sphere arrays. "Advanced Materials 15(18):1562.
    [22]Choi, J., G. Sauer, et al. (2003). "Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio." Chemistry of Materials 15(3):776-779.
    [23]Enculescu, I., Z. Siwy, et al. (2003). "Copper nanowires electrodeposited in etched single-ion track templates." Applied Physics a-Materials Science & Processing 77(6):751-755.
    [24]Chu, S. Z., K. Wada, et al. (2002). "Fabrication and characteristics of ordered Ni nanostructures on glass by anodization and direct current electrodeposition." Chemistry of Materials 14(11):4595-4602.
    [25]Zeng, H., M. Zheng, et al. (2000). "Magnetic properties of self-assembled Co nanowires of varying length and diameter." Journal of Applied Physics 87(9):4718-4720.
    [26]Benfield, R. E., D. Grandjean, et al. (2001). "Structure of metal nanowires in nanoporous alumina membranes studied by EXAFS and X-ray diffraction." European Physical Journal D 16(1-3):399-402.
    [27]Whitney, T. M., J. S. Jiang, et al. (1993). "Fabrication and Magnetic-Properties of Arrays of Metallic Nanowires." Science 261(5126):1316-1319.
    [28]Cherevko, S., J. Fu, et al. (2009). "Electrodeposition Mechanism of Palladium Nanotube and Nanowire Arrays." Journal of Nanoscience and Nanotechnology 9(5):3154-3159.
    [29]Huang, Y. H., H. Okumura, et al. (2002). "CoPt and FePt nanowires by electrodeposition." Journal of Applied Physics 91(10):6869-6871.
    [30]de Horne, F. D., L. Piraux, et al. (2005). "Fabrication and physical properties of Pb/Cu multilayered superconducting nanowires." Applied Physics Letters 86(15):152510.
    [31]Tian, M. L., N. Kumar, et al. (2008). "Evidence of local superconductivity in granular Bi nanowires fabricated by electrodeposition." Physical Review B 78(4).
    [32]Zhang, Y., G. H. Li, et al. (2002). "Antimony nanowire arrays fabricated by pulsed electrodeposition in anodic alumina membranes." Advanced Materials 14(17):1227.
    [33]Dobrev, D., J. Vetter, et al. (1999). "Electrochemical growth of copper single crystals in pores of polymer ion-track membranes." Applied Physics a-Materials Science & Processing 69(2): 233-237.
    [34]Li, L., Y. Zhang, et al. (2005). "A new routine to fabricate Bi single crystalline tapering junction nanowire arrays." Applied Physics a-Materials Science & Processing 80(5): 1053-1055.
    [35]Jin, C. G., G. W. Jiang, et al. (2003). "Fabrication of large-area single crystal bismuth nanowire arrays." Journal of Materials Chemistry 13(7):1743-1746.
    [36]Tian, M. L., J. U. Wang, et al. (2003). "Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism." Nano Letters 3(7): 919-923.
    [37]Liu, L. F., E. Pippel, et al. (2009). "Nanoporous Pt-Co Alloy Nanowires:Fabrication, Characterization, and Electrocatalytic Properties." Nano Letters 9(12):4352-4358.
    [38]Brumlik, C. J. and C. R. Martin (1991). "Template Synthesis of Metal Microtubules." Journal of the American Chemical Society 113(8):3174-3175.
    [39]Tao, F. F., M. Y. Guan; et al. (2006). "An easy way to construct an ordered array of nickel nanotubes:The triblock-copolymer-assisted hard-template method." Advanced Materials 18(16): 2161.
    [40]Routkevitch, D., T. Bigioni, et al. (1996). "Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates." Journal of Physical Chemistry 100(33): 14037-14047.
    [41]Pena, D. J., J. K. N. Mbindyo, et al. (2002). "Template growth of photoconductive metal-CdSe-metal nanowires." Journal of Physical Chemistry B 106(30):7458-7462.
    [42]Chen, R. Z., D. S. Xu, et al. (2003). "Electrodeposition of thin films and single-crystalline nanowires of Ag7Te4." Chemical Physics Letters 377(1-2):205-209.
    [43]Wang, Q. T., G. Z. Wang, et al. (2005). "Non-aqueous cathodic electrodeposition of large-scale uniform ZnO nanowire arrays embedded in anodic alumina membrane." Materials Letters 59(11):1378-1382.
    [44]Lai, M. and D. J. Riley (2006). "Templated electrosynthesis of zinc oxide nanorods." Chemistry of Materials 18(9):2233-2237.
    [45]Yoo, B., F. Xiao, et al. (2007). "Electrodeposition of thermoelectric superlattice nanowires." Advanced Materials 19(2):296
    [46]Martin-Gonzalez, M., G. J. Snyder, et al. (2003). "Direct electrodeposition of highly dense 50 run Bi2Te3-ySey nanowire arrays." Nano Letters 3(7):973-977.
    [47]Penner, R.M. and Martin, C.R. (1987). "Controlling the Morphology of Electronically Conductive Polymers" J. Electrochem. Soc.133 2206.
    [48]Martin, C. R., L. S. Vandyke, et al. (1990). "Template Synthesis of Organic Microtubules.' Journal of the American Chemical Society 112(24):8976-8977.
    [49]Chen, J. H., Z. P. Huang, et al. (2001). "Electrochemical synthesis of polypyrrole/carbon nanotube nanoscale composites using well-aligned carbon nanotube arrays." Applied Physics a-Materials Science & Processing 73(2):129-131.
    [50]Keating, C. D. and M. J. Natan (2003). "Striped metal nanowires as building blocks and optical tags." Advanced Materials 15(5):451-454.
    [51]Nicewarner-Pena, S. R., R. G. Freeman, et al. (2001). "Submicrometer metallic barcodes.' Science 294(5540):137-141.
    [52]Guo, Y. G., L. J. Wan, et al. (2003). "Ordered Ni-Cu nanowire array with enhanced coercivity." Chemistry of Materials 15(3):664-667.
    [53]Pena, D. J., J. K. N. Mbindyo, et al. (2002). "Template growth of photoconductive metal-CdSe-metal nanowires." Journal of Physical Chemistry B 106(30):7458-7462.
    [54]Park, S., J. H. Lim, et al. (2004). "Self-assembly of mesoscopic metal-polymer amphiphiles." Science 303(5656):348-351.
    [55]Lai, M. and D. J. Riley (2008). "Templated electrosynthesis of nanomaterials and porous structures." Journal of Colloid and Interface Science 323(2):203-212.
    [56]Lahav, M., E. A. Weiss, et al. (2006). "Core-shell and segmented polymer-metal composite nanostructures." Nano Letters 6(9):2166-2171.
    [57]Bartlett, P. N., P. R. Birkin, et al. (2000). "Electrochemical deposition of macroporous platinum, palladium and cobalt films using polystyrene latex sphere templates." Chemical Communications(17):1671-1672.
    [58]Sumida, T., Y. Wada, et al. (2001). "Macroporous ZnO films electrochemically prepared by templating of opal films." Chemistry Letters(1):38-39.
    [59]Bartlett, P. N., P. R. Birkin, et al. (2001). "Electrochemical syntheses of highly ordered macroporous conducting polymers grown around self-assembled colloidal templates." Journal of Materials Chemistry 11(3):849-853.
    [60]Attard, G. S., P. N. Bartlett, et al. (1997). "Mesoporous platinum films from lyotropic liquid crystalline phases." Science 278(5339):838-840.
    [61]Bartlett, P. N. and J. Marwan (2003). "Electrochemical deposition of nanostructured (H-1-e) layers of two metals in which pores within the two layers interconnect." Chemistry of Materials 15(15):2962-2968.
    [62]Bartlett, P. N. and J. Marwan (2003). "Preparation and characterization of H-1-e rhodium films." Microporous and Mesoporous Materials 62(1-2):73-79.
    [63]Braun, P. V., P. Osenar, et al. (2005). "Macroscopic nanotemplating of semiconductor films with hydrogen-bonded lyotropic liquid crystals." Advanced Functional Materials 15(11): 1745-1750.
    [64]Lai, M., A. N. Kulak, et al. (2007). "Profiting from nature:macroporous copper with superior mechanical properties." Chemical Communications(34):3547-3549.
    [65]Tian, N., Z. Y. Zhou, et al. (2007). "Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity." Science 316(5825):732-735.
    [66]Xiao, Z. L., C. Y. Han, et al. (2004). "Tuning the architecture of mesostructures by electrodeposition." Journal of the American Chemical Society 126(8):2316-2317.
    [67]Mullin, J.W. (1971). Crystallization, Butterworths, London.
    [68]Mann, S. (2000). "The chemistry of form." Angewandte Chemie-International Edition 39(19): 3393-3406.
    [69]Siegfried, M. J. and K. S. Choi (2005). "Directing the architecture of cuprous oxide crystals during electrochemical growth." Angewandte Chemie-International Edition 44(21): 3218-3223.
    [70]Hara, M., T. Kondo, et al. (1998). "Cu2O as a photocatalyst for overall water splitting under visible light irradiation." Chemical Communications(3):357-358.
    [71]Zhang, J. T., J. F. Liu, et al. (2006). "Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors." Chemistry of Materials 18(4): 867-871.
    [72]Zhang, H. G., Q. S. Zhu, et al. (2007). "One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties." Advanced Functional Materials 17(15):2766-2771.
    [73]White, B., M. Yin, et al. (2006). "Complete CO oxidation over Cu2O nanoparticles supported on silica gel." Nano Letters 6(9):2095-2098.
    [74]Yu, H.G., J. G. Yu, et al. (2007). "Template-free hydrothermal synthesis of CuO/Cu2O composite hollow microspheres." Chemistry of Materials 19(17):4327-4334.
    [75]Siegfried, M. J. and K. S. Choi (2004). "Electrochemical crystallization of cuprous oxide with systematic shape evolution." Advanced Materials 16(19):1743.
    [76]Siegfried, M. J. and K. S. Choi (2006). "Elucidating the effect of additives on the growth and stability of Cu2O surfaces via shape transformation of pre-grown crystals." Journal of the
    American Chemical Society 128(32):10356-10357.
    [77]Salzemann, C., I. Lisiecki, et al. (2004). "Collections of copper nanocrystals characterized by different sizes and shapes:Optical response of these nanoobjects." Journal of Physical Chemistry B 108(35):13242-13248.
    [78]Mott, D., J. Galkowski, et al. (2007). "Synthesis of size-controlled and shaped copper nanoparticles." Langmuir 23(10):5740-5745.
    [79]Read, C. G., E. M. P. Steinmiller, et al. (2009). "Atomic Plane-Selective Deposition of Gold Nanoparticles on Metal Oxide Crystals Exploiting Preferential Adsorption of Additives." Journal of the American Chemical Society 131(34):12040.
    [80]Radi, A., D. Pradhan, et al. (2010). "Nanoscale Shape and Size Control of Cubic, Cuboctahedral, and Octahedral Cu-Cu2O Core-Shell Nanoparticles on Si(100) by One-Step, Templateless, Capping-Agent-Free Electrodeposition." Acs Nano 4(3):1553-1560.
    [81]Henry, C. R. (2005). "Morphology of supported nanoparticles." Progress in Surface Science 80(3-4):92-116.
    [82]Wang, Z. L. (2000). "Transmission electron microscopy of shape-controlled nanocrystals and their assemblies." Journal of Physical Chemistry B 104(6):1153-1175.
    [83]Zhang, Z., G. W. Meng, et al. (2010). "Aligned ZnO Nanorods with Tunable Size and Field Emission on Native Si Substrate Achieved via Simple Electrodeposition." Journal of Physical Chemistry C 114(1):189-193.
    [84]Zheng, X. J., Z. Y. Jiang, et al. (2007). "Growth of silver nanowires by an unconventional electrodeposition without template." Electrochemistry Communications 9(4):629-632.
    [85]Zach, M. P., K. H. Ng, et al. (2000). "Molybdenum nanowires by electrodeposition." Science 290(5499):2120-2123.
    [86]Favier, F., E. C. Walter, et al. (2001). "Hydrogen sensors and switches from electrodeposited palladium mesowire arrays." Science 293(5538):2227-2231.
    [87]Walter, E. C., B. J. Murray, et al. (2003). ""Beaded" bimetallic nanowires:Wiring nanoparticles of metal 1 using nanowires of metal 2." Advanced Materials 15(5):396-399.
    [88]Liu, H., F. Favier, et al. (2001). "Size-selective electrodeposition of meso-scale metal particles: a general method." Electrochimica Acta 47(5):671-677.
    [89]Huang, X. J., O., Yarimaga, et al. (2009). "Substrate surface roughness-dependent 3-D complex nanoarchitectures of gold particles from directed electrodeposition." Journal of Materials Chemistry 19(4):478-483.
    [90]Bera, D., S. C. Kuiry, et al. (2004). "Kinetics and growth mechanism of electrodeposited palladium nanocrystallites." Journal of Physical Chemistry B 108(2):556-562.
    [91]Wang, Y., J. J. Deng, et al. (2009). "Electrodeposition of large size gold nanoparticles on indium tin oxide glass and application as refractive index sensor." Electrochemistry Communications 11(5):1034-1037.
    [92]Liu, G. Q., W. P. Cai, et al. (2008). "Trapeziform ag nanosheet arrays induced by electrochemical deposition on Au-coated substrate." Crystal Growth & Design 8(8): 2748-2752.
    [93]Jia, F. L., K. W. Wong, et al. (2009). "Direct growth of highly catalytic palladium nanoplates array onto gold substrate by a template-free electrochemical route." Electrochemistry Communications 11(3):519-521.
    [94]Fang, J. X., H. Hahn, et al. (2009). "Silver nanowires growth via branch fragmentation of electrochemically grown silver dendrites." Chemical Communications(9):1130-1132.
    [95]Foss, C. A., G. L. Hornyak, et al. (1994). "Template-Synthesized Nanoscopic Gold Particles-Optical-Spectra and the Effects of Particle-Size and Shape." Journal of Physical Chemistry 98(11):2963-2971.
    [96]Cepak, V. M. and C. R. Martin (1998). "Preparation and stability of template-synthesized metal nanorod sols in organic solvents." Journal of Physical Chemistry B 102(49): 9985-9990.
    [97]Mock, J. J., S. J. Oldenburg, et al. (2002). "Composite plasmon resonant nanowires." Nano Letters 2(5):465-469.
    [98]Sun, L., P. C. Searson, et al. (2000). "Finite-size effects in nickel nanowire arrays." Physical Review B 61(10):R6463-R6466.
    [99]Zeng, H., M. Zheng, et al. (2000). "Magnetic properties of self-assembled Co nanowires of varying length and diameter." Journal of Applied Physics 87(9):4718-4720.
    [100]Piraux, L., J. M. George, et al. (1994). "Giant Magnetoresistance in Magnetic Multilayered Nanowires." Applied Physics Letters 65(19):2484-2486.
    [101]Chen, M., P. C. Searson, et al. (2003). "Micromagnetic behavior of electrodeposited Ni/Cu multilayer nanowires." Journal of Applied Physics 93(10):8253-8255.
    [102]Blondel, A., J. P. Meier, et al. (1994). "Giant Magnetoresistance of Nanowires of Multilayers." Applied Physics Letters 65(23):3019-3021.
    [103]Park, S., J. H. Lim, et al. (2004). "Self-assembly of mesoscopic metal-polymer amphiphiles." Science 303(5656):348-351.
    [104]Salem, A. K., M. Chen, et al. (2004). "Directed assembly of multisegment Au/Pt/Au nanowires." Nano Letters 4(6):1163-1165.
    [105]Love, J. C., A. R. Urbach, et al. (2003). "Three-dimensional self-assembly of metallic
    rods with submicron diameters using magnetic interactions." Journal of the American Chemical Society 125(42):12696-12697.
    [106]Hangarter, C. M. and N. V. Myung (2005). "Magnetic alignment of nanowires." Chemistry of Materials 17(6):1320-1324.
    [107]Park, S., S. W. Chung, et al. (2004). "Hybrid organic-inorganic, rod-shaped nanoresistors and diodes." Journal of the American Chemical Society 126(38):11772-11773.
    [108]Liu, K. I., C. L. Chien, et al. (1998). "Structural and magneto-transport properties of electrodeposited bismuth nanowires." Applied Physics Letters 73(15):2222.
    [109]Lee, S. J., A. R. Morrill, et al. (2006). "Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy." Journal of the American Chemical Society 128(7): 2200-2201.
    [110]Qiu, T., W. J. Zhang, et al. (2009). "Controlled Assembly of Highly Raman-Enhancing Silver Nanocap Arrays Templated by Porous Anodic Alumina Membranes." Small 5(20): 2333-2337.
    [111]Ko, H., S. Singamaneni, et al. (2008). "Nanostructured Surfaces and Assemblies as SERS Media." Small 4(10):1576-1599.
    [112]Li, Y., W. Z. Jia, et al. (2007). "Superhydrophobicity of 3D porous copper films prepared using the hydrogen bubble dynamic template." Chemistry of Materials 19(23):5758-5764.
    [113]Zhang, X., F. Shi, et al. (2004). "Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters:toward super-hydrophobic surface." Journal of the American Chemical Society 126(10):3064-3065.
    [114]Qu, M. N., G. Y. Zhao, et al. (2008). "Fabrication of superhydrophobic surfaces by a Pt nanowire array on Ti/Si substrates." Nanotechnology 19(5).
    [115]Gu, C. D. and T. Y. Zhang (2008). "Electrochemical Synthesis of Silver Polyhedrons and Dendritic Films with Superhydrophobic Surfaces." Langmuir 24(20):12010-12016.
    [116]Zhang, X. Y., W. Lu, et al. (2009). "Porous platinum nanowire arrays for direct ethanol fuel cell applications." Chemical Communications(2):195-197.
    [117]Zhou, W. J., Z. H. Zhou, et al. (2003). "Pt based anode catalysts for direct ethanol fuel cells." Applied Catalysis B-Environmental 46(2):273-285.
    [118]Kowal, A., M. Li, et al. (2009). "Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2." Nature Materials 8(4):325-330.
    [1]Tao, A. R., S. Habas, et al. (2008). "Shape control of colloidal metal nanocrystals." Small 4(3): 310-325.
    [2]Lim, B., M. J. Jiang, et al. (2009). "Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction." Science 324(5932):1302-1305.
    [3]Peng, Z. M. and H. Yang (2009). "Synthesis and Oxygen Reduction Electrocatalytic Property of Pt-on-Pd Bimetallic Heteronanostructures." Journal of the American Chemical Society 131(22):7542.
    [4]Peng, Z. M., J. B. Wu, et al. (2010). "Synthesis and Oxygen Reduction Electrocatalytic Property of Platinum Hollow and Platinum-on-Silver Nanoparticles." Chemistry of Materials 22(3):1098-1106.
    [5]Adams, B. D., G. S. Wu, et al. (2009). "Facile Synthesis of Pd-Cd Nanostructures with High Capacity for Hydrogen Storage." Journal of the American Chemical Society 131(20):6930.
    [6]Rashid, H. and T. K. Mandal (2007). "Synthesis and catalytic application of nanostructured silver Dendrites." Journal of Physical Chemistry C 111(45):16750-16760.
    [7]Shi, F., Y. Y. Song, et al. (2006). "Facile method to fabricate a large-scale superhydrophobic surface by galvanic cell reaction." Chemistry of Materials 18(5):1365-1368.
    [8]Fang, J. X., B. J. Ding, et al. (2008). "How a silver dendritic mesocrystal converts to a single crystal." Applied Physics Letters 92:173120
    [9]Xiao, J. P., Y. Xie, et al. (2001). "Novel ultrasonically assisted templated synthesis of palladium and silver dendritic nanostructures." Advanced Materials 13(24):1887-1891.
    [10]Zheng, X. J., Z. Y. Jiang, et al. (2007). "Growth of silver nanowires by an unconventional electrodeposition without template." Electrochemistry Communications 9(4):629-632.
    [11]Gu, C. D. and T. Y. Zhang (2008). "Electrochemical Synthesis of Silver Polyhedrons and Dendritic Films with Superhydrophobic Surfaces." Langmuir 24(20):12010-12016.
    [12]Zhang, X., F. Shi, et al. (2004). "Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters:toward super-hydrophobic surface." Journal of the American Chemical Society 126(10):3064-3065.
    [13]Song, Y. J., J. Y. Kim, et al. (2009). "Synthesis of Pd Dendritic Nanowires by Electrochemical Deposition." Crystal Growth & Design 9(1):505-507.
    [14]O'Mullane, A. P., S. J. Ippolito, et al. (2009). "Premonolayer Oxidation of Nanostructured Gold:An Important Factor Influencing Electrocatalytic Activity." Langmuir 25(6):3845-3852.
    [15]Albert Gutes, Carlo Carraro,et al. (2010). "Silver dendrites from galvanic displacement on commercial aluminum foil as an effective SERS substrate" J.Am.Chem.Soc.132,1476-1477.
    [16]Kang, Z. H., E. B. Wang, et al. (2005). "Surfactant-assisted electrochemical method for dendritic silver nanocrystals with advanced structure." Materials Letters 59(18):2289-2291.
    [17]Kaniyankandy, S., J. Nuwad, et al. (2007). "Electrodeposition of silver nanodendrites." Nanotechnology 18:125610-125616.
    [18]You, H. J., J. X. Fang, et al. (2008). "Morphological Evolution of Fractal Dendritic Silver Induced by Ions Walking within the Diffusion Layer." Journal of Physical Chemistry C 112(42): 16301-16305.
    [19]Anteneodo, C. and W. A. M. Morgado (2007). "Critical scaling in standard biased random walks." Physical Review Letters 99:180602.
    [20]Gonzalez, G., M. Rosso, et al. (2008). "Transition between two dendritic growth mechanisms in electrodeposition." Physical Review E 78:011601.
    [21]Xia, Y., Y. J. Xiong, et al. (2009). "Shape-Controlled Synthesis of Metal Nanocrystals:Simple Chemistry Meets Complex Physics?" Angewandte Chemie-International Edition 48(1):60-103.
    [22]Sun, Y. G., B. Mayers, et al. (2003). "Polyol synthesis of uniform silver nanowires:A plausible growth mechanism and the supporting evidence." Nano Letters 3(7):955-960.
    [23]Sun, Y. G., B. Mayers, et al. (2003). "Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process." Nano Letters 3(5):675-679.
    [24]Wang, Z. L. (2000). "Transmission electron microscopy of shape-controlled nanocrystals and their assemblies." Journal of Physical Chemistry B 104(6):1153-1175.
    [25]Ko, H., S. Singamaneni, et al. (2008). "Nanostructured Surfaces and Assemblies as SERS Media." Small 4(10):1576-1599.
    [26]Shen, X. S., G. Z. Wang, et al. (2009). "Nanospheres of silver nanoparticles:agglomeration, surface morphology control and application as SERS substrates." Physical Chemistry Chemical Physics 11(34):7450-7454.
    [27]Huang, T., P. D. Nallathamby, et al. (2008). "Photostable Single-Molecule Nanoparticle Optical Biosensors for Real-Time Sensing of Single Cytokine Molecules and Their Binding Reactions." Journal of the American Chemical Society 130(50):17095-17105.
    [28]Wang, Y. L., P. H. C. Camargo, et al. (2008). "A Facile, Water-Based Synthesis of Highly Branched Nanostructures of Silver." Langmuir 24(20):12042-12046.
    [29]Nie, S. M. and S. R. Emery (1997). "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering." Science 275(5303):1102-1106.
    [30]Laurence, T. A., G. Braun, et al. (2009). "Rapid, Solution-Based Characterization of Optimized SERS Nanoparticle Substrates." Journal of the American Chemical Society 131(1): 162-169.
    [31]Qian, L. H., X. Q. Yan, et al. (2007). "Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements." Applied Physics Letters 90:153120.
    [32]Wang, H., C. S. Levin, et al. (2005). "Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates." Journal of the American Chemical Society 127(43):14992-14993.
    [33]Liang, H. Y., Z. P. Li, et al. (2009). "Highly Surface-roughened "Flower-like" Silver Nanoparticles for Extremely Sensitive Substrates of Surface-enhanced Raman Scattering." Advanced Materials 21(45):4614-4618.
    [34]Tao, A., P. Sinsermsuksakul, et al. (2006). "Polyhedral silver nanocrystals with distinct scattering signatures." Angewandte Chemie-International Edition 45(28):4597-4601.
    [35]Jin, R. C., Y. W. Cao, et al. (2001). "Photoinduced conversion of silver nanospheres to nanoprisms." Science 294(5548):1901-1903.
    [36]Washio, I., Y. J. Xiong, et al. (2006). "Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates." Advanced Materials 18(13):1745.
    [37]Fang, J. X., H. Hahn, et al. (2009). "Silver nanowires growth via branch fragmentation of electrochemically grown silver dendrites." Chemical Communications(9):1130-1132.
    [38]Huang, X. J., O. Yarimaga, et al. (2009). "Substrate surface roughness-dependent 3-D complex nanoarchitectures of gold particles from directed electrodeposition." Journal of Materials Chemistry 19(4):478-483.
    [39]Fleury, V. (1997). "Branched fractal patterns in non-equilibrium electrochemical deposition from oscillatory nucleation and growth." Nature 390(6656):145-148.
    [40]Borodko, Y, S. M. Humphrey, et al. (2007). "Charge-transfer interaction of poly(vinylpyrrolidone) with platinum and rhodium nanoparticles." Journal of Physical Chemistry C 111(17):6288-6295.
    [41]Gentry, S. T. and S. D. Levit (2009). "Stochastic Control:Transition from Differentiated to Undifferentiated Kinetic Growth in Ag Nanoprisms." Journal of Physical Chemistry C 113(28): 12007-12015.
    [42]Yin, B. S., H. Y. Ma, et al. (2003). "Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone)." Journal of Physical Chemistry B 107(34):8898-8904.
    [43]Zarkadas, G. M., A. Stergiou, et al. (2005). "Influence of citric acid on the silver electrodeposition from aqueous AgN03 solutions." Electrochimica Acta 50(25-26):5022-5031.
    [44]Qiu, T., X. L. Wu, et al. (2008). "Silver fractal networks for surface-enhanced Raman scattering substrates." Applied Surface Science 254(17):5399-5402.
    [45]Schwartzberg, A. M., C. D. Grant, et al. (2004). "Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate." Journal of Physical Chemistry B 108(50):19191-19197.
    [46]Zhang, J. T., X. L. Li, et al. (2005). "Surface enhanced Raman scattering effects of silver colloids with different shapes." Journal of Physical Chemistry B 109(25):12544-12548.
    [47]Shi, F., Y. Y. Song, et al. (2006). "Facile method to fabricate a large-scale superhydrophobic surface by galvanic cell reaction." Chemistry of Materials 18(5):1365-1368.
    [48]Huang, X. J., O. Yarimaga, et al. (2009). "Substrate surface roughness-dependent 3-D complex nanoarchitectures of gold particles from directed electrodeposition." Journal of Materials Chemistry 19(4):478-483.
    [1]Sanchez-Castillo, M. A., C. Couto, et al. (2004). "Gold-nanotube membranes for the oxidation of CO at gas-water interfaces." Angewandte Chemie-International Edition 43(9):1140-1142.
    [2]Tan, H., E. Y. Ye, et al. (2006). "Alumina-template synthesis of fluorescent RuO2 nanotubes derived from Ru-3(CO)(12) clusters." Advanced Materials 18(5):619.
    [3]Sun, Y. G., B. Mayers, et al. (2003). "Metal nanostructures with hollow interiors." Advanced Materials 15(7-8):641-646.
    [4]Liu, Z. Q., D. H. Zhang, et al. (2005). "Single crystalline magnetite nanotubes." Journal of the American Chemical Society 127(1):6-7.
    [5]Sui, Y. C., R. Skomski, et al. (2004). "Nanotube magnetism." Applied Physics Letters 84(9): 1525-1527.
    [6]Yu, S. F., U. Welp, et al. (2005). "Fabrication of palladium nanotubes and their application in hydrogen sensing." Chemistry of Materials 17(13):3445-3450.
    [7]Sun, Y. G., Z. L. Tao, et al. (2004). "Ag nanowires coated with Ag/Pd alloy sheaths and their use as substrates for reversible absorption and desorption of hydrogen." Journal of the American Chemical Society 126(19):5940-5941.
    [8]Chen, J. Y, D. L. Wang, et al. (2007). "Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells." Nano Letters 7(5):1318-1322.
    [9]Brumlik, C. J. and C. R. Martin (1991). "Template Synthesis of Metal Microtubules." Journal of the American Chemical Society 113(8):3174-3175.
    [10]Lee, W., M. Alexe, et al. (2005). "Metal membranes with hierarchically organized nanotube arrays." Chemistry of Materials 17(13):3325-3327.
    [11]Zhao, Y., Y. G. Guo, et al. (2004). "Fabrication and characterization of highly ordered Pt nanotubule arrays." Physical Chemistry Chemical Physics 6(8):1766-1768.
    [12]Sehayek, T., M. Lahav, et al. (2005). "Template synthesis of nanotubes by room-temperature coalescence of metal nanoparticles." Chemistry of Materials 17(14):3743-3748.
    [13]Steinhart, M., Z. H. Jia, et al. (2003). "Palladium nanotubes with tailored wall morphologies." Advanced Materials 15(9):706-709.
    [14]Cao, H. Q., L. D. Wang, et al. (2006). "Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays." Chemphyschem 7(7):1500-1504.
    [15]Tao, F. F., M. Y. Guan, et al. (2006). "An easy way to construct an ordered array of nickel nanotubes:The triblock-copolymer-assisted hard-template method." Advanced Materials
    18(16):2161
    [16]Xu, X. J., S. F. Yu, et al. (2008). "Magnetic and thermal expansion properties of vertically aligned Fe nanotubes fabricated by electrochemical method." Journal of Physical Chemistry C 112(11):4168-4171.
    [17]Wang, Q. T., G. Z. Wang, et al. (2005). "Controllable template synthesis of Ni/Cu nanocable and Ni nanotube arrays:A one-step coelectrodeposition and electrochemical etching method." Journal of Physical Chemistry B 109(49):23326-23329.
    [18]Min, Y. S., E. J. Bae, et al. (2003). "Ruthenium oxide nanotube arrays fabricated by atomic layer deposition using a carbon nanotube template." Advanced Materials 15(12):1019.
    [19]Wang, Y., K. Takahashi, et al. (2005). "Synthesis and electrochemical properties of vanadium pentoxide nanotube arrays." Journal of Physical Chemistry B 109(8):3085-3088.
    [20]Li, W. Y, L. N. Xu, et al. (2005). "Co3O4 nanomaterials in lithium-ion batteries and gas sensors." Advanced Functional Materials 15(5):851-857.
    [21]Guo, S. J., S. J. Dong, et al. (2008). "A general method for the rapid synthesis of hollow metallic or bimetallic nanoelectrocatalysts with urchinlike morphology." Chemistry-a European Journal 14(15):4689-4695.
    [22]Gu, D. F., H. Baumgart, et al. (2010). "Synthesis of Nested Coaxial Multiple-Walled Nanotubes by Atomic Layer Deposition." Acs Nano 4(2):753-758.
    [23]Yoo, W. C. and J. K. Lee (2004). "Field-dependent growth patterns of metals electroplated in nanoporous alumina membranes." Advanced Materials 16(13):1097.
    [24]Kamalakar, M. V. and A. K. Raychaudhuri (2008). "A novel method of synthesis of dense arrays of aligned single crystalline copper nanotubes using electrodeposition in the presence of a rotating electric field." Advanced Materials 20(1):149.
    [25]Philippe, L. and J. Michler (2008). "A kinetic model enabling controlled electrosynthesis of stacked metallic nanotubes and nanowires." Small 4(7):904-907.
    [26]Inguanta, R., S. Piazza, et al. (2008). "Influence of electrodeposition techniques on Ni nanostructures." Electrochimica Acta 53(19):5766-5773.
    [27]Guo, Y. G., J. S. Hu, et al. (2005). "Tin/platinum bimetallic nanotube array and its electrocatalytic activity for methanol oxidation." Advanced Materials 17(6):746.
    [28]Lee, W., R. Scholz, et al. (2005). "A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes." Angewandte Chemie-International Edition 44(37): 6050-6054.
    [29]Xue, S. H., C. B. Cao, et al. (2005). "Synthesis and magnetic properties of Fe0.32M0.68 alloy nanotubes." Nanotechnology 16(9):1495-1499.
    [30]Favier, F., E. C. Walter, et al. (2001). "Hydrogen sensors and switches from electrodeposited palladium mesowire arrays." Science 293(5538):2227-2231.
    [31]Dasari, R. and F. P. Zamborini (2008). "Hydrogen Switches and Sensors Fabricated by Combining Electropolymerization and Pd Electrodeposition at Microgap Electrodes." Journal of the American Chemical Society 130(48):16138.
    [32]Adams, B. D., G. S. Wu, et al. (2009). "Facile Synthesis of Pd-Cd Nanostructures with High Capacity for Hydrogen Storage." Journal of the American Chemical Society 131(20):6930.
    [33]Sun, Y. G., Z. L. Tao, et al. (2004). "Ag nanowires coated with Ag/Pd alloy sheaths and their use as substrates for reversible absorption and desorption of hydrogen." Journal of the American Chemical Society 126(19):5940-5941.
    [34]Ghodbane, O., M. Sarrazin, et al. (2008). "Electrochemical reduction of nitrate on pyrolytic graphite-supported Cu and Pd-Cu electrocatalysts." Journal of the Electrochemical Society 155(6):F117-F123.
    [35]Pronkin, S. N., P. A. Simonov, et al. (2007). "Model Pd-based bimetallic supported catalysts for nitrate electroreduction." Journal of Molecular Catalysis a-Chemical 265(1-2):141-147.
    [36]Son, S. U., I. K. Park, et al. (2004). "Synthesis of Cu2O coated Cu nanoparticles and their successful applications to Ullmann-type amination coupling reactions of aryl chlorides." Chemical Communications(7):778-779.
    [37]Milhano, C. and D. Pletcher (2008). "The electrodeposition and electrocatalytic properties of copper-palladium alloys." Journal of Electroanalytical Chemistry 614(1-2):24-30.
    [38]Reyter, D., D. Belanger, et al. (2009). "Elaboration of Cu-Pd Films by Coelectrodeposition: Application to Nitrate Electroreduction." Journal of Physical Chemistry C 113(1):290-297.
    [39]Reyter, D., D. Belanger, et al. (2008). "Study of the electroreduction of nitrate on copper in alkaline solution." Electrochimica Acta 53(20):5977-5984.
    [40]Petrii, O. A. and T. Y. Safonova (1992). "Electroreduction of Nitrate and Nitrite Anions on Platinum Metals-a Model Process for Elucidating the Nature of the Passivation by Hydrogen Adsorption." Journal of Electroanalytical Chemistry 331(1-2):897-912.
    [41]Xiong, Y. J., J. Y. Chen, et al. (2005). "Size-dependence of surface plasmon resonance and oxidation for pd nanocubes synthesized via a seed etching process." Nano Letters 5(7): 1237-1242.
    [42]Sun, Y, L. H. Zhang, et al. (2007). "Seedless and templateless synthesis of rectangular palladium nanoparticles." Chemistry of Materials 19(8):2065-2070.
    [1]Cademartiri, L. and G. A. Ozin (2009). "Ultrathin Nanowires-A Materials Chemistry Perspective." Advanced Materials 21(9):1013-1020.
    [2]Cui, Y. and C. M. Lieber (2001). "Functional nanoscale electronic devices assembled using silicon nanowire building blocks." Science 291(5505):851-853.
    [3]Nhut, J. M., L. Pesant, et al. (2003). "Mesoporous carbon nanotubes for use as support in catalysis and as nanosized reactors for one-dimensional inorganic material synthesis." Applied Catalysis a-General 254(2):345-363.
    [4]Yavuz, C. T., J. T. Mayo, et al. (2006). "Low-field magnetic separation of monodisperse Fe3O4 nanocrystals." Science 314(5801):964-967.
    [5]Yuan, J. K., X. G. Liu, et al. (2008). "Superwetting nanowire membranes for selective absorption." Nature Nanotechnology 3(6):332-336.
    [6]Whitesides, G. M. (2006). "The origins and the future of microfluidics." Nature 442(7101): 368-373.
    [7]Decher, G. (1997). "Fuzzy nanoassemblies:Toward layered polymeric multicomposites." Science 277(5330):1232-1237.
    [8]Dresselhaus, M. S., G. Chen, et al. (2007). "New directions for low-dimensional thermoelectric materials." Advanced Materials 19(8):1043-1053.
    [9]Arutyunov, K. Y. (2008). "Negative magnetoresistance of ultra-narrow superconducting nanowires in the resistive state." Physica C-Superconductivity and Its Applications 468(4): 272-275.
    [10]Teng, X. W., W. Q. Han, et al. (2008). "Synthesis of ultrathin palladium and platinum nanowires and a study of their magnetic properties." Angewandte Chemie-International Edition 47(11):2055-2058.
    [11]Zhao, X. Y., C. M. Wei, et al. (2004). "Quantum confinement and electronic properties of silicon nanowires." Physical Review Letters 92(23):4.
    [12]Boukai, A. I., Y. Bunimovich, et al. (2008). "Silicon nanowires as efficient thermoelectric materials." Nature 451(7175):168-171.
    [13]Hochbaum, A. I., R. K. Chen, et al. (2008). "Enhanced thermoelectric performance of rough silicon nanowires." Nature 451(7175):163-165.
    [14]Kondo, Y. and K. Takayanagi (2000). "Synthesis and characterization of helical multi-shell gold nanowires." Science 289(5479):606-608.
    [15]Suzuki, T., H. Miyata, et al. (2008). "Platinum thin film consisting of well-aligned nanowires and its optical behavior." Journal of Physical Chemistry C 112(6):1831-1836.
    [16]Wu, Y., Y. Cui, et al. (2004). "Controlled growth and structures of molecular-scale silicon nanowires." Nano Letters 4(3):433-436.
    [17]Wang, C., Y. L. Hou, et al. (2007). "A general strategy for synthesizing FePt nanowires and nanorods." Angewandte Chemie-International Edition 46(33):6333-6335.
    [18]Liu, Z. P., D. Xu, et al. (2005). "Growth of Cu2S ultrathin nanowires in a binary surfactant solvent." Journal of Physical Chemistry B 109(21):10699-10704.
    [19]Cademartiri, L., R. Malakooti, et al. (2008). "Large-scale synthesis of ultrathin Bi2S3 necklace nanowires." Angewandte Chemie-International Edition 47(20):3814-3817.
    [20]Malakooti, R., L. Cademartiri, et al. (2008). "Ultrathin Sb2S3 nanowires and nanoplatelets." Journal of Materials Chemistry 18(1):66-69.
    [21]Yu, T., J. Joo, et al. (2006). "Single unit cell thick samaria nanowires and nanoplates." Journal of the American Chemical Society 128(6):1786-1787.
    [22]Yu, T. Y., J. Joo, et al. (2005). "Large-scale nonhydrolytic sol-gel synthesis of uniform-sized ceria nanocrystals with spherical, wire, and tadpole shapes." Angewandte Chemie-International Edition 44(45):7411-7414.
    [23]Tang, Z. Y., N. A. Kotov, et al. (2002). "Spontaneous organization of single CdTe nanoparticles into luminescent nanowires." Science 297(5579):237-240.
    [24]Pradhan, N., H. F. Xu, et al. (2006). "Colloidal CdSe quantum wires by oriented attachment." Nano Letters 6(4):720-724.
    [25]Barnard, A. S., H. F. Xu, et al. (2006). "Modelling the formation of high aspect CdSe quantum wires:axial-growth versus oriented-attachment mechanisms." Nanotechnology 17(22): 5707-5714.
    [26]Panda, A. B., S. Acharya, et al. (2005). "Ultranarrow ZnSe nanorods and nanowires:Structure, spectroscopy, and one-dimensional properties." Advanced Materials 17(20):2471.
    [27]Cho, K. S., D. V. Talapin, et al. (2005). "Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles." Journal of the American Chemical Society 127(19): 7140-7147.
    [28]Patla, I., S. Acharya, et al. (2007). "Synthesis, two-dimensional assembly, and surface pressure-induced coalescence of ultranarrow PbS nanowires." Nano Letters 7(6):1459-1462.
    [29]Wu, Y Y., T. Livneh, et al. (2004). "Templated synthesis of highly ordered mesostructured nanowires and nanowire arrays." Nano Letters 4(12):2337-2342.
    [30]Lu, Q. Y., F. Gao, et al. (2004). "Ordered SBA-15 nanorod arrays inside a porous alumina membrane." Journal of the American Chemical Society 126(28):8650-8651.
    [31]Son, S. U., I. K. Park, et al. (2004). "Synthesis of Cu2O coated Cu nanoparticles and their successful applications to Ullmann-type amination coupling reactions of aryl chlorides." Chemical Communications(7):778-779.
    [32]Johnson, S. A., D. Khushalani, et al. (1998). "Polymer mesofibres." Journal of Materials Chemistry 8(1):13-14.
    [33]Yin, M., C. K. Wu, et al. (2005). "Copper oxide nanocrystals." Journal of the American Chemical Society 127(26):9506-9511.
    [34]Palkar, V. R., P. Ayyub, et al. (1996). "Size-induced structural transitions in the Cu-O and Ce-O systems." Physical Review B 53(5):2167-2170.
    [35]Borgohain, K., N. Murase, et al. (2002). "Synthesis and properties of Cu2O quantum particles." Journal of Applied Physics 92(3):1292-1297.
    [36]Sun, Y. G. and Y. N. Xia (2002). "Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process." Advanced Materials 14(11):833-837.
    [37]Ma, H. Y., Y. L. Jiao, et al. (2004). "Spontaneous organization of individual silver nanoparticles into one-dimensionally ordered nanostructures." Chemphyschem 5(5): 713-716.
    [38]Li, D. X., Q. He, et al. (2008). "Two-stage pH response of poly(4-vinylpyridine) grafted gold nanoparticles." Macromolecules 41(19):7254-7256.
    [39]Sidorenko, A., I. Tokarev, et al. (2003). "Ordered reactive nanomembranes/nanotemplates from thin films of block copolymer supramolecular assembly." Journal of the American Chemical Society 125(40):12211-12216.
    [40]Huo, Q. S., D. I. Margolese, et al. (1994). "Organization of Organic-Molecules with Inorganic Molecular-Species into Nanocomposite Biphase Arrays." Chemistry of Materials 6(8): 1176-1191.
    [41]Tan, Y. W., S. Srinivasan, et al. (2005). "Electrochemical deposition of mesoporous nickel hydroxide films from dilute surfactant solutions." Journal of the American Chemical Society 127(10):3596-3604.
    [42]Choi, K. S., H. C. Lichtenegger, et al. (2002). "Electrochemical synthesis of nanostructured ZnO films utilizing self-assembly of surfactant molecules at solid-liquid interfaces." Journal of the American Chemical Society 124(42):12402-12403.
    [43]Kuo, C. H., C. H. Chen, et al. (2007). "Seed-mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm." Advanced Functional Materials 17(18):3773-3780.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700