用于饮用水体系载银抑菌球的制备与性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饮用水的卫生安全是保障居民健康的基本要求。饮用水一旦发生安全问题便会导致严重的后果。目前我国城市饮用水在运输和储存过程中,很容易发生二次污染。本论文旨在研制一种成本低廉、使用方便、抑菌效果好的新型表面载纳米银抑菌球,并将其应用于居民住宅的储水箱中,达到改善饮用水水质的目的。
     本研究在制备出CTS-SiO2共混膜、CTS-SiO2-Ag+共混膜以及CTS-SiO2-Ag共混膜的基础上,又使用硅胶球作为载体,制备出机械性能优良、抑菌性能优异且持续抑菌性能稳定的表面包覆CTS-SiO2-Ag功能层的抑菌球。实验过程中研究了反应温度、反应时间、Ag+加入量、热处理条件等因素对共混膜和抑菌球性能的影响,确定了最佳制备方法。同时利用傅里叶红外光谱仪IR、电子扫描电镜SEM等对共混膜进行了表征分析。
     研究结果表明,SiO2和CTS之间存在较强的氢键作用,有利于SiO2和CTS共混反应的进行。另外Ag+与CTS分子结构中的氨基(-NH2)发生了配合作用,增强了共混膜的交联程度。CTS-SiO2共混膜较纯CTS膜结构更加致密,表面更加平整。CTS-SiO2-Ag共混膜内纳米Ag颗粒的粒径和分散度与Ag+加入量有关:低Ag+加入量时,纳米Ag粒径小,分散度高;高Ag+加入量时,纳米Ag粒径大,分散度低。表面包覆CTS-SiO2-Ag功能层抑菌球的抑菌性能与功能层中Ag的含量、纳米Ag颗粒的粒径及分散程度有关:粒径越小,分散性越高,抑菌性能越好;粒径越大,分散性越低,抑菌性能越差。
     热处理可以有效提高功能层的交联程度,既能改善功能层的机械性能,又能防止功能层内纳米Ag组分的流失,有效地提高了抑菌球的抑菌性能。抑菌球制备过程中,Ⅰ次热处理温度为60℃,Ⅱ次热处理温度为50℃,Ⅰ次、Ⅱ次热处理时间均为2 h。
     通过单因素试验确定了制备表面包覆CTS-SiO2-Ag功能层抑菌球的最佳条件:共混反应温度为30℃,共混反应时间为2 h,干燥温度为30℃,采用浓度为80%的水合肼N2H4·H2O作为还原剂,室温下反应时间为6 h。当CTS-SiO2-Ag功能层内Si02的质量浓度ρSiO2=2%,CTS的质量浓度ρCTS=2.5%,20 mL铸膜液中Ag+的加入量VAg+(0.01mol/L)=0.6 mL时,选用硅胶作为载体,可以制备出机械性能良好、抑菌性能优异且持续抑菌性能稳定的表面包覆CTS-SiO2-Ag功能层抑菌球,其质量损失率P=2.11%,抑菌率ψ=98.8%。
The health security of drinking water is the basic requirement. Drinking water of low quality will lead to serious consequences. Drinking water of residents confronts serious secondary pollution in the transport and storage. This study aims to develop a kind of new holding nano-Ag anti-bacteria balls which are low-cost, easy to use and efficient antibacterial effect. These anti-bacteria balls are applied to tanks in residential buildings, to improve the quality of drinking water.
     In this study, CTS-SiO2 blend films, CTS-SiO2-Ag+ blend films and CTS-SiO2-Ag blend films was prepared based on chitosan by blend reaction, and study the physical and chemical properties and antibacterial properties of these blend films. On this basis, using silicone as the carrier of the ball, and prepare the surface coating CTS-SiO2-Ag layer of the anti-bacteria balls with excellent mechanical properties, favorable, stability and continuous antibacterial properties. This paper study the influence of blend films and anti-bacteria balls' properties on the reaction temperature of experiment, the reaction time of experiment, the input amount of Ag+ and heat treatment condition, choose the best preparation method finally. At the same time, this study characterize the blend films by using IR and SEM.
     The results show that, there are strong hydrogen bonds between SiO2 and the CTS, and favor the CTS blend SiO2 reaction. There are coordination bonds between Ag+ and amino(-NH2) in the molecular structure of CTS, enhanc the cross-linked extent of blend films. CTS-SiO2 blend films compared with pure CTS films structure is more compact, surface is smoother. The scatter properties and size of nano-Ag particle in CTS-SiO2-Ag blend films lie on the input amount of Ag+:fewer input amount of Ag+, the nano-Ag particle's size is smaller, scattered better; more input amount of Ag+, the nano-Ag particles'size is larger, scattered more badly. The antibacterial properties of surface coating CTS-SiO2-Ag layer anti-bacteria balls lie on nano-Ag particles' size and scatteration degree:the smaller the particle size, the higher the scatteration degree, the better antibacterial properties; the greater the particle size, the lower the scatteration degree, the worse the antibacterial properties.
     Heat treatment can improve the cross-linked extent of function layer, on the one hand, it can improve the mechanical properties of function layer, on the other hand it can prevent losing of nano-Ag in function layer, effectively promote the antibacterial properties of anti-bacteria balls. On the preparation process of anti-bacteria balls, first heat treatment temperature is 60℃, second heat treatment temperature is 50℃, first& second heat treatment time is 2 h conformably.
     Determined the best method by single-factor test preparation surface coating CTS-SiO2-Ag layer anti-bacteria balls:the blend reaction temperature is 30℃, the blend reaction time is 2 h, drying temperature is 30℃, with concentrations of 80% hydrazine hydrate N2H4·H2O as a reducing agent, at room temperature and reaction time is 6h. When SiO2 concentration of massρSiO2=2%, CTS concentration of massρCTS=2.5%, Ag+ concentration of volumeφAg+(0.01mol/L)=3%, in the CTS-SiO2-Ag functional layer, choosing silicone as a carrier, can be prepared surface coating CTS-SiO2-Ag layer anti-bacteria balls with excellent mechanical properties, favorable, stability&continuous antibacterial properties, its mass loss rate P=2.11%, antibacterial rateψ=98.8%.
引文
[1]胡粉娥.银系抗菌材料在饮用水源水中的应用研究[D].昆明理工大学,2006,38-43.
    [2]朱延美,许宁,张文平.我国饮用水安全性研究现状[J].北方环境,2004,(06):24-26.
    [3]王晓昌.隐胞子虫—水系传染病寄生虫[J].中国给水排水,1996,(04):13-19.
    [4]张荣,田向红,刘保华.我国饮用水现状及卫生标准发展[J].中国卫生工程学,2004,(03):14-19.
    [5]深圳自来水公司.国际饮用水水质汇编[M].中国建筑工业出版社,2001.
    [6]CLEMENT J A. Overview of American disinfectant resid. Unl practice [J]. J Wat SRT-Aqua,1999,48(2):59-63.
    [7]CLARK R M, ADAMS J Q. Control of microbial contam-inan ts and disinfection by-product for drinking wat in the US:cost and performance [J]. J wat SRT-Aqua, 1998,47(6):255-265.
    [8]罗启达,王海亮,姜庆云,钱庆玲.水处理中二氧化氯的应用[J].城市公用事业,1999,(04):22-24.
    [9]RUFFELL K M, RENNECKER J L, MARINAS B J. In-activation of crypto spori-dium parvum oocysts with chlorine dioxide[J]. Water Res,2000,34(3):868-876.
    [10]许保玖,安鼎年.给水处理理论与设计[M].北京:中国建筑工业出版社.1992.
    [11]邸伟,潘玉.基于臭氧技术的食品安全相关问题研究[A].2007年学术年会论文集[C],2007:27-32.
    [12]周云,梅胜.给水处理中的臭氧副产物[J].中国给水排水,1999,(02):27-28.
    [13]沈健.高纯水与紫外线技术[J].给水排水,1998,(12):40-43.
    [14]PARROTYA M J, BEKDASH F. UV disinfection of small groundwater supplies[J]. J AWWA,1998,90(2):71-81.
    [15]CLANCY J L, HARGY T M. UV light inactivation of cryptosporidium oocyst[J]. J AWWA,1998,90(9):92-102.
    [16]郑绍聪.氨/水在无机复合膜上的气/液分离过程[D].昆明理工大学,2006.
    [17]JACANGELQ J G, ADHAM S S. Mechanism of cryptosporidium giardia and Ms2 virus removal by MF and UF[J]. J AWWA,1995, (9):107-121.
    [18]李梅,王庆瑞.抗菌材料的发展及其应用[J].化工新型材料,1998,(05):29-32.
    [19]DRIEDGER A M, RENNECKER J L, MARINAS B J. Inactivation of monochloramine at low temperature[J]. Wat Res,2001,35(1):41-48.
    [20]邓红.银离子消毒饮用水的机制[J].国外医学(卫生学分册),1999,(01):37-41.
    [21]吴跃辉,徐丽金.银杀菌材料及其杀菌作用[J].江西化工,2001,(03):11-13.
    [22]林爱红,秦彦珉,饶健,黄惠英.纳米抗菌剂抑菌杀菌性能研究[J].实用预防医学,2003,(02):27-37.
    [23]DRIEDGER A M, RENNECKER J L, MARINAS B J. Inactivation of Cryptospori low temperature[J]. fat Res,2001,35(1):41-48.
    [24]Stawon RM et al. Arch Microbiol,1992,158(6):398-404.
    [25]Liu ZM et al. J Infect Dis,1994,169(4):919-922.
    [26]库利斯基·A主编.水消毒过程的强化.蔡梅亭译.上海:上海科学技术文献出版社,1981a-41.
    [27]Berger TJ et al. Antimicrob Agents Chemoth-er,1976,10(5):856.
    [28]加藤秀树.银系无机抗菌剂.新素材(日),1996,3(10):22-26.
    [29]Charles F., Heining J. Ag-new catalyst technology and Engineering for aqueous phasesanition. International Ozone Society,1993,15:535-546.
    [30]Greun LC. Biochim Biophys Acta 1975,386:270-274.
    [31]刘红,李焕兰.银离子消毒饮用水的机制.外医学卫生学分册,1999,26(1):45-47
    [32]季君晖,史维明[M].抗菌材料.北京:化学工业出版社,2003.
    [33]Uchida M. Practical lecture of inorganic antibaterial agents.6. Inorgantiantifungal agents silver, copper zinc/phosphate. Silver zeolite. Boa1996,24(11):735-742.
    [34]Markovic N. M, Ross Jr P. N. Surface Science Roports.2002,286,1.
    [35]周连江,乐志强,扬春荣等.无机盐工业手册[M].北京:化学工业出版社,2000.
    [36]Beck J S, Vartuli J C, Roth W J. J Am[J]. Chem. Soc,1992,114:10834-10843.
    [37]Oya A, Wakahara T, Yohsida S. Preparation of pitch-based antibacterial activated carbon fiber[J]. Carbon,1993,31(8):1243-1247.
    [38]Ch Y Li, Y Z Wan, Y L Wang, et al. Antibacterial pitch-based activated carbon fibersupporting silver[J]. Carbon,1998,36(1-2):61-65.
    [39]黄美卿,张紫虹,钟显文.纳米消毒凝胶杀菌效果及毒性的试验观察[J].华南预防医,2003,29(2):58-59.
    [40]林爱红,琴彦氓等.纳米抗菌剂抑菌杀菌性能研究[J].实用预防医学,2003,10(2):168-170.
    [41]李梅,王庆瑞.抗菌材料的发展及其应用[J].化工新型材料,1998,26(5):8-11.
    [42]武汉大学主编.分析化学[M].北京:高等教育出版社,1998,336-337.
    [43]高毅颖.银系纳米无机抗菌材料的制备及其抑菌效果检测[D].昆明:昆明理工大学,2004.
    [44]张若愚,夏雪山,胡亮等.载银硅藻土的表征及其对禽流感病毒的杀灭研究[J].贵金属,2004,25(2):28-32.
    [45]陈亨国,梁恒国,方振东.载银硅藻土烧结滤芯除菌性能实验研究[J].给排水,2004,26(1):9-11.
    [46]王岭.载银活性炭的研究[J].饮用水净化,1994,48(2):9-14.
    [47]黄成彦,张若愚等.中国硅藻土及其应用[M].北京:科学出版社,1983.
    [48]柳纷华,许文耀,江茂生,陈超.纳米银对15种植物病原菌物的毒力[A].华东地区农学会学术年会暨福建省科协第七届学术年会农业分会场论文集[C],2007.
    [49]Edwards N, Mitchell, Pratt A. Silver compound antimicrobial composite[J]. European patent Application,1987, EP0251,783.
    [50]张文钊,王广文.纳米银抗菌材料研发现状[J].化工新型材料,2003,31(2):43.
    [51]Fitz-Gerald J, Pennycook S, Gao H. Synthesis and properties of nanofunctiona particulate materials[J]. Nanostructured materials,1999,12:1167-1171.
    [52]曹茂盛.超微颗粒制备科学与技术[M].哈尔滨:哈尔滨工业大学出版社,1996
    [53]XuJ, Yin J S, Ma E. Nanocrystalline Ag formed by low-temperature high-energy mechanical attrition[J]. Nanostructured Materials,1997,8(1):91-100.
    [54]Chang HB, Sang HN, Seung MP. Formation of silver nanoparticles by laser ablation of a silver target in NaCI solution[J]. Applied Surface Science,2002, 197-198:628-634.
    [55]Chen W, Zhang J. Ag nanoparticles hosted in monolithic mesoporous silica by thermal decomposition method[J]. Scripta Materialia,2003,49:321-325.
    [56]黄磊,凌国平,丽口剑.纳米Ag-A1203复合粉末的制备[J].浙江大学学报(工学版),2003,37(1):65-69.
    [57]Zhou HS, Wada T, Sasabe H, et al. Synthesis of nanometer-size silver coated polymerized diacetylene composite particles[J]. Applied physics letters,1996, 68(9):1288-1290.
    [58]Hou JQ, Wang Yan, Xu Wentao, et al. Synthesis and characterization of Ag-C60 nanostructure film[J]. Applied physics letters,1997,70(23):3110-3112.
    [59]赵斌,马海燕,张宗涛等.银超细粉末的制备[J].华东理工大学学报,1996:221-226.
    [60]Tan Y, Li Y, Zhu D. Preparation of silver Nanocrystals in the presence of aniline[J]. Journal of Colloid and Interface Science,2003,258:244-251.
    [61]Sondi L, Goia Dan V. Preparation of highly concentrated stable nanoparicles [J]. Journal of Colloid and Interface Science,2003,260:75-81.
    [62]Sun L, Dang H. A novel method for preparation of silver nanoparticles[J]. Materials Letters,2003,57:3874-3879.
    [63]Esumi K, Hosoya T, Suzuki A. Formation of Gold and Silver Nanoparticles in Aqueous Solution of Sugar-Persubstituted Poly(amidoamine) Dendrimers[J]. Journal of Colloid and Interface Science,2000,226:346-352.
    [64]陈祖报,朱英杰,陈敏等.γ-射线辐照制备金属和金属氧化物纳米级超细粉[J].化学通报,1996,(1):44-45.
    [65]Zhou Y, Yu SH, Wang CY, et al. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites[J]. Advanced Materials,1999,11(10):850-852.
    [66]廖学红,李鑫.电化学制备纳米银[J].黄冈师范学院学报,2001,21(5):58-59.
    [67]廖学红,朱俊杰,赵小宁等.纳米银的电化学合成[J].高等学校化学学报,2000,12(21):1837-1839.
    [68]Rong M, Zhang M, Liu H. Synthesis of silver nanoparticles and their selforga behavior in epoxy resin[J]. Polymer,1999,40:6169-6178.
    [69]赵庆美,逯全县,田勇.甲壳素、壳聚糖及其衍生物在生物医药领域中的应用研究近况[J].化工时刊,2006,20(5):74-77.
    [70]Sabnis S, Block L H. Improved imfrared spectroscopic method for the analysis of degree of N-deacetylation of chitosan[J]. Polym Bull,1997,39(1):67-71.
    [71]Ferreira M C, Duarte M L, Marvao M R. Determination of the degree of acetylation of chitosan by FT-IR spectroscopy:KBr discs vs films[C]. In: Proceedings of the third Asia-Pacific chitin and chitosan symposium, Keelung.1998.129-133.
    [72]Kurita K. Controlled functionalization of the polysaccharide chitin[J]. Prog Polym Sci,2001, (26):1921-1971.
    [73]李松晔.水溶性壳聚糖衍生物的合成与抗菌机理研究[D].天津大学硕士学位论文,2004:16-17.
    [74]Davies D H, Hayes E R. Determination of the degree of acetylation of chitin and chitosan[J]. Methods in Enzymology,1988, (161):442-446.
    [75]Sannan T, Kurita K, Iwakura Y. Studies on chitin 2:Effect of deacetylation on solubility[J]. Makromol Chem,1976,177(12):3589-3600.
    [76]汪玉庭,刘玉红,张淑琴.甲壳素、壳聚糖的化学改性及其衍生物应用研究进展[J].功能高分子学报,2002,15(1):107-114.
    [77]王爱勤,俞贤达.烷基化壳聚糖衍生物的制备与性能研究[J].功能高分子学报,1998,11(1):83-86.
    [78]张文清,柴平海,金鑫荣等.壳聚糖及其衍生物在化妆品中的应用[J].高分子通报,1999,2:73-76.
    [79]Garolan CA, Blair HS, Allen SJ, et al. N, O-carboxymethyl chitosan, a water soluble derivative and potential "Green" food preservative[J]. Chem Eng Res Des, 1991,69(3):195-196.
    [80]郭开宇,赵谋明.甲壳素/壳聚糖的研究进展及其在食品工业中的应用[J].食品与发酵工业,2001,26(1):59-64.
    [81]方波,宋道云,陈鸿雁等.微球型壳聚糖胺基吸附剂的制备及性能[J].化工科技,2000,8(3):20-23.
    [82]Tozaki H, Fujita T, Odoriba T, et al. Colon-specific delivery of R68070, a new Thromboxanesynthase inhibitor, using chitosan capsules:therapeutic effects against 2,4,6-trinitrobenzene sulfonic acid-induced ulcerative colitis in rats[J]. Life Sci,1999,64(13):1155-1162
    [83]武志刚,高建峰.溶胶-凝胶法制备纳米材料的研究进展[J].精细化工,2010, (01): 21-25
    [84]Dagani R. Putting the "nano" into Composites:from Nanoparticles to Nanotubes Ultrasmall Building Blocks lead to New and Improved Properties better Performance[J]. Chem Eng News,1999,77(23):25-28
    [85]Hobson ST, Shea KJ. Bridged Bisimide Polysilsesquioxane Xerogels:New Hybrid Organic-Inorganic Materials[J]. Chew. Matter,1997,9:616-623
    [86]Vrieling E G, Beelen T P M, van Santen R A, et al. Mes-ophases of (bio)polymer silica particles inspire a model for silica biomineralization in Diatoms [J]. Angew Chem Int Ed.2002.41:1543-1546.
    [87]Uragami T, Matsugi H, Miyata T. Pervaporation character-istics of organic-organic hybrid films composed of poly (viny alcohol-co-arcylic acid) and tetraethoxy-silane for water/ethanol separation[J]. Macromolecules,2005,38: 8440-8446.
    [88]Sharma G, Ballauff M. Cationic spherical polyelectrolyte brushes as nanoreactors for the generation of gold particles[J]. Macromol Rapid Commun,2004,25: 547-552.
    [89]李旭华,袁荞龙,王得宁.杂化材料的性能、制备及应用[J].功能高分子学报,2000,13(2):211-218.
    [90]Oan G A, Manners I, Mac Lachlan M J. New Faces:Polymers and Materials [J]. Adv Mater,2000,12:675-681.
    [91]陈刚,刘光明.有机硅/SiO2杂化材料的制备与表征[D].南昌航空大学.2009.5
    [92]汪玉庭,刘玉红,张淑琴.甲壳素、壳聚糖的化学改性及其衍生物应用研究进展[J].功能高分子学报,2002,15(1):107-114
    [93]徐铜文.膜化学与技术教程[M].合肥:中国科学技术大学出版社,2003.
    [94]徐又一,徐志康.高分子膜材料[M].北京:化学工业出版社,2005
    [95]章汝平.膜抑菌实验介绍[J].医疗卫生,2007,38(12):2004-2007.
    [96]刘生,张军平.球状活性炭的研制[D].北京化工大学.2005.6.
    [97]杨俊兵,凌立成,刘朗.固化和炭化条件对酚醛树脂基球形活性炭机械强度与吸附性能的影响[J].炭素技术,1999,102(4):10-14.
    [98]林英光,杨卓如,陈江.纳米掺锶羟基磷灰石的制备及其抗茵性能研究.化工新型材料[J].2006,34(9):52-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700