家蚕BmCP8蛋白的功能初探与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无论是在脊椎或无脊椎动物中,胰岛素/胰岛素样生长因子信号系统调控着生物个体的代谢与生长发育。作为该系统中一种重要的效应因子,胰岛素样生长因子结合蛋白(IGFBPs)家族对维持体内血糖平衡,促进细胞的增殖分化等生命过程发挥着至关重要的作用。昆虫也具有胰岛素样肽,而目前对无脊椎动物IGFBPs的功能同系物少有报道。
     作为昆虫先天性免疫系统中一个重要的组成部分,酚氧化酶原级联反应在宿主抵御外源微生物侵染的过程中发挥着重要的作用。其通过产生黑色素,以毒性的醌类物质和活性氧、氮中间产物对微生物进行杀灭。但过度黑化会导致机体损伤,所以需要如丝氨酸蛋白酶抑制剂这样的负调控因子对黑化反应进行精确控制。
     家蚕具有开放式血液循环系统,血淋巴中的蛋白会参与新陈代谢,物质能量转运以及免疫防控。本文通过对家蚕血淋巴蛋白BmCP8的功能进行了初步分析,发现其可能是一种具有双重功能的家蚕血淋巴碱性小分子量蛋白,即参与了两种不同的生命进程:胰岛素样肽通路和黑化反应。主要的研究结果如下:
     1.家蚕BmCP8蛋白的生物信息学分析
     根据BmCP8的氨基酸序列,通过Uniprot的UniprotKB数据库进行BLASTP发现BmCP8与柞蚕真菌蛋白酶抑制剂AmFPI-1以及哺乳动物的IGFBPs的N端保守区域相似,其序列上都富含半胱氨酸。进行多重序列比对后发现,BmCP8具有AmFPI-1的活性区域,而BmCP8的“GCGCCXXCV"序列与IGFBPs N端结构域中保守的GCGCCXXCA"序列相似。
     2.家蚕BmCP8蛋白的纯化与富集
     为了大量富集BmCP8蛋白,本研究在原有纯化策略的基础上进行了改进,即将五龄三天的家蚕血液通过硫酸铵沉淀法,两次凝胶过滤与一次离子交换层析的策略纯化出单一的目的蛋白。
     3.不同时期高糖饲料喂养家蚕后表型和BmCP8基因表达的分析
     从三龄起和五龄起分别用含5%和20%葡萄糖的人工饲料喂养家蚕,于五龄三天对各处理组进行形态学分析,以及调查其脂肪体中BmCP8基因和头中BombyxinA2基因的表达情况。结果发现,加糖饲料喂养的家蚕个头小,发育迟缓。同时,长期喂食含糖饲料使得BombyxinA2和BmCP8基因表达水平也在各处理组中呈现出下降的趋势。
     4. BmCP8蛋白对家蚕卵巢细胞生长情况的影响
     用不同浓度(0、0.5、1、5、10μg/孔)的BmCP8蛋白与处于对数生长期的卵巢细胞共培养,用家蚕表皮蛋白CPR56作为蛋白对照。培养48小时后,对卵巢细胞生长情况进行检测发现BmCP8并不能促进其生长。
     5. BmCP8蛋白对酚氧化酶级联反应的影响
     对五龄三天的家蚕幼虫分别注射大肠杆菌(Eescherichia coli)、白僵菌(Beauveria bassiana)、黑胸败血芽孢杆菌(Bacillus bombyseptieus)和对照(0.85%生理盐水),选取5个时间点即1、3、6、12、24小时。通过荧光定量PCR检测BmCP8的表达情况,发现在注射黑胸败血芽孢杆菌1小时后,BmCP8基因高量表达,在随后的23个小时里表达量则逐渐减少,但整体表达水平都比对照组高。说明BmCP8能在短时间内对黑胸败血芽孢杆菌的诱导做出快速而持续的应答。BmCP8蛋白同时还能抑制黑化反应。肽聚糖和葡聚糖能诱发黑化反应,而当肽聚糖和葡聚糖与2ug/ul BmCP8共同加入到SLP试剂中时,黑化反应却受到了明显的抑制。
Insulin and insulin-like growth factors (IGFs) signal system control growth and metabolism in both vertebrates and invertebrates. As an important effective factor, insulin-like growth factor binding proteins (IGFBPs) play the essential role on the life-process, such as maintaining the balance of blood glucose level, promoting cell proliferation et al. Although researchers found the insulin-like peptide in some insect species, there are still no reports about the functional homologue of IGFBPs in invertebrate.
     As an important part of the innate immune system, PO (Phenoloxidase) cascade system protects the host from the infection of exogenous microorganisms. This immune response will kill the pathogen through melanin or Quinones, reactive oxygen species, NO, which were the by-products produced during the melanin formation. However, the excessive.melanization would be harmful to the host too. So the negative-regulator in the PO system will need to be required to control the over melanization.
     Silkworm larvae own the open blood vascular system. Hemolymph protein will be involved in metabolism, mass-energy conversion, immune response, et al. During the functional analysis of BmCP8, the results could be fall into two different divisions:the insulin-like peptide signal and PO cascade system. The main results are as follows:
     1. Bioinformatics analysis of BmCP8
     Based on the B1ASTP in the UniprotKB database, the alignment of amino acid sequences of the BmCP8 with A. mylitta fungal proteinase inhibitor AmFPI-1 and N-terminal domain sequence of mammalian IGFBPs founds the sequence similarity, all of them were rich in the cysteine residues. Multiple sequence comparison demonstrated that BmCP8 also contained the reactive site of AmFPI-1 and the sequence "GCGCCXXV" from BmCP8 owns a high similarity with the "GCGCCXXCA" in the conserved region of N-terminal domain sequence of IGFBPs.
     2. Purification of BmCP8 protein
     In order to obtain more native BmCP8, we improved the original purification strategy into ammonium sulfate precipitation, twice gel filtration and cation ion-exchange chromatography, which could effectively get more products.
     3. Phenotype and BmCP8 gene expression pattern analysis after the high-glucose diet treated.
     From the third and fifth instar respectively, Silkworm larvae were fed on the artificial diet containing 5% and 20% glucose. Investigating gene expression of BmCP8 and Bombyxin A2 was conducted at the fifth instar day 3, following phenotype analysis. The result demonstrated that the high-glucose diet treated silkworm larvae was characterized by the small size and delayed growth. Compared to the control, BmCP8 gene and Bombyxin A2 gene were down-regulated with glucose-treatment.
     4. Effects of BmCP8 protein on the growth of silkworm ovarian cells
     The BmCP8 protein with different concentrations (0,0.5,1,5,10 ug/hole) were incubated with the silkworm ovarian cells in logarithmic growth phase. In this experiment, the silkworm cuticle protein CPR56 was taken as the protein control. After being incubated for 48 h, the growth of the ovarian cells was measured. The results showed that BmCP8 can not stimulate the growth of ovarian cells.
     5. Effects of BmCP8 on the PO cascade system.
     Injecting fifth day 3 silkworm larva with E. coli, B.bassiana and B. bomyseptieus, the gene expression of BmCP8 was analyzed by q-PCR. Results revealed that the expression of BmCP8 was suffered an acute up-regulation after infected with B. bombyseptieus one hour later. The expression of BmCP8 will be gradually reduced during the following hours. But compared with the control, the expression of BmCP8 still stayed in a high level even at the later 24 hours. The experiment data demonstrated that BmCP8 will quickly and persistently response to the infection of B. bomyseptieus. Meanwhile, the experiment proved that BmCP8 own the ability to inhibit the PO system. When 2ug/ul BmCP8 were add to the SLP reagent which were induced by PGN and BGN, the effect of melanism will be repressed by BmCP8.
引文
[1]Salmon WD, Daughaday WH. A hormonally controlled serum factor which stimulates sulfate in corporation by cartilage in vitro. J Lab Clin Med,1957,49:825-836.
    [2]Claeys I,Simonet G, et al. Insulin-related peptides and their conserved signal transduction pathway.Peptides.2002,23(4):807-816
    [3]Holly J. Physiology of the IGF system. Novartis Found Symp 2004; 262:19-26.
    [4]Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 2008,8: 915-928
    [5]Bobe J, Nguyen T, Jalabert B. Targeted gene expression profiling in the rainbow trout (Oncorhynchus mykiss) ovary during maturational competence acquisition and oocyte maturation. Biol Reprod,2004,71:73-82
    [6]Ohlsson C, Mohan S, Sjogren K, Tivesten A, Isgaard J, Isaksson O, Jansson JO, Svensson J. The role of liver-derived insulin-like growth factor-Ⅰ. Endocr Rev,2009,30:494-535
    [7]Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature,2003,421:182-187
    [8]Sutherland BW, Knoblaugh SE, Kaplan-Lefko PJ, Wang F, Holzenberger M, Greenberg NM. Conditional deletion of insulin-like growth factor-Ⅰ receptor in prostate epithelium. Cancer Res, 2008,68:3495-3504
    [9]Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev,2009,30: 586-623
    [10]LeRoith D, Roberts Jr CT. The insulin-like growth factor system and cancer. Cancer Lett,2003 195: 127-137
    [11]Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer,2008,8: 915-928
    [12]Siogren K, Wallenius K, liu JL, et al. Liver-derived IGF-I is of importance for normal carboloydrate and lipid metabolism. J Diabetes,2001,50(2):1539-1545.
    [13]Frick F, Linden D, Ameen C, et al. Interaction between growth hormone and insulin in the regulation of lipoprotein metabolism in the rat. Am J physiol,2002,283(5):E1023-1031
    [14]Beroukhim R, Mermel CH, et al. The landscape of somatic copy-number alteration across human cancers. Nature,2010,463:899-905
    [15]Dervis A, et al, Insulin-like growth factor-binding protein 5 (Igfbp5) compromises survival growth, muscle development and fertility in mice.PANS,2004,101(12):4314-4319.
    [16]Rutanen EM, et al. Human mononuclear phagocytes express the insulin-like growth factor receptor.Cell Mol.1991,4:555.
    [17]Chandrashekaran IR, Yao S, Wang CC, Bansal PS.The N-terminal subdomain of insulin-like growth factor binding protein 6.Structure and interaction with IGFs. Biochemistry.2007,46(11):3065-3074.
    [18]Rajaram S, et al. Insulin-like growth factor-binding proteins in serum and other biological fluids. Endocr Rev,1997,18:801-831.
    [19]Zheng W, et al. Insulin-like growth factor-1:a neuroprotective trophic factor acting via the Akt kinase path way.J.Neural Transm.2000,261-272.
    [20]Manjinder S,et al Insulin like growth factor-Ⅰ,IGBBP,their biologic inteactions and colorectal cancer.J nati Cancer inst.2004,94:972-980.
    [21]Maaria Ikonen, et al. Interaction between the Alzheimer's survival peptide humanin and insulin-like growth factor-binding protein 3 regulates cell survival and apoptosis. PNAS,2004,100: 13042-13047.
    [22]Lee,P,et al. Insulin like growth factor binding protein-1 recent findings and new directions.Proc soc exp boil med.1997,216:357-359
    [23]Jones, J.I., Gockerman, A., Busby, W.H., Wright, G., Clemmons, D.R.,1993. Insulin-like growth factor-binding protein-1 stimulates cell.
    [24]Gleeson, L.M, Chakraborty, C., McKinnon, T., Lala, P.K.,. Insulin-like growth factor-binding protein 1 stimulates human trophoblast migration by signaling through alpha 5 beta 1 integrin via mitogen-activated protein kinase pathway. J. Clin. Endocr. Metab.2001,86,2484-2493.
    [25]Butt, A.J. Williams, A.C.,. IGFBP-3 and apoptosis-a licence to kill? Apoptosis,2001,6,199-205.
    [26]Hong, J., Zhang, G., Dong, F., Rechler, M.M. Insulin-likegrowth factor (IGF)-binding protein-3 mutants that do not bind IGF-I or IGF-II stimulate apoptosis in human prostate cancer cells. J. Biol. Chem.2002,277,10489-10497.
    [27]Leal, S.M., Huang, S.S., Huang, J.S. Interactions of high ability insulin-like growth factor-binding proteins with the type V transforming growth factor-P receptor in mink lung epithelial cells. J. Biol. Chem.1999,274,6711-6717.
    [28]Leal, S.M., Liu, Q.J., Huang, S.S., Huang, J.S. The type V transforming growth factor beta receptor is the putative insulin-like growth factor-binding protein 3 receptor. J. Biol. Chem.1997,272, 20572-20576.
    [29]Fanayan, S., Firth, S.M., Baxter, R.C., Signaling through the Smad pathway by insulin-like growth factor-binding protein-3 in breast cancer cells—relationship to transforming growth factor signaling. J. Biol. Chem.2002,277,7255-7261.
    [30]Li, W.L., Fawcett, J., Widmer, H.R., Fielder, P.J., Rabkin, R., Keller, G.A. Nuclear transport of insulin-like growth factor-Ⅰ and insulin-like growth factor binding protein-3 in opossum kidney cells. Endocrinology,1997,138,1763-1766.
    [31]Schedlich, L.J., Young, T.F., Firth, S.M., Baxter, R.C. Insulin-like growth factor-binding protein (IGFBP)-3 and IGFBP-5 share a common nuclear transport pathway in T47D human breast carcinoma cells. J. Biol. Chem.1998,273,18347-18352.
    [32]Schedlich, L.J., Le Page, S.L., Firth, S.M., Briggs, L.J., Jans, D.A., Baxter, R.C. Nuclear import of insulin-like growth factor-binding protein-3 and -5 is mediated by the important subunit. J. Biol. Chem.2000,275,23462-23470.
    [33]White, M. E., Diao, R., Hathaway, M. R., Mickelson, J. and Dayton, W. R. Molecular cloning and sequence analysis of the porcine insulin-like growth factor binding protein-5 complementary deoxyribonucleic acid. Biochem. Biophys.Res. Commun,1996,218:248-253.
    [34]Andress, D.L., Birnbaum, R.S. Human osteoblast-derived insu-lin-like growth factor (IGF) factor binding protein 5 stimulates osteoblast mitogenesis and potentiates IGF action. J. Biol. Chem.1992, 267,22467-22472.
    [35]Andress, D.L., Loop, S.M., Zapf, J., Kiefer, M.C. Carboxyl-truncated insulin-like growth factor-binding protein-5 stimulates mitogenesis in osteoblast-like cells. Biochem. Biophys. Res. Commun.1993,195,25-30.
    [36]Kanatani, M., Sugimoto, T., Nishiyama, K., Chihara, K. Stimulatory effect of insulin-like growth factor binding protein-5 on mouse osteoclast formation and osteoclastic bone-resorbing activity. J. Bone Miner. Res.2000,15,902-910.
    [37]Richman, C., Baylink, D.J., Lang, K., Dony, C., Mohan, S. Recombinant human insulin-like growth factor-binding protein-5 stimulates bone formation parameters in vitro and in vivo. Endocrinology 1999,140,4699-4705.
    [38]Hsieh, T., Gordon, R.E., Clemmons, D.R., Busby, W.H., Duan, C. Regulation of vascular smooth muscle cell responses to insulin-like growth factor (IGF)-I by local IGF-binding proteins. J. Biol. Chem.2003,278,42886-42892.
    [39]Abrass, C.K., BerWeld, A.K., Andress, D.L. Heparin binding domain of insulin-like growth factor binding protein-5 stimulates mesangial cell migration. Am. J. Physiol.1997,273, F899-F906.
    [40]McCaig, C., Perks, C.M., Holly, J.M.P. Intrinsic actions of IGFBP-3 and IGFBP-5 on Hs578T breast cancer epithelial cells:inhibition or accentuation of attachment and survival is dependent upon the presence of Wbronectin. J. Cell Sci.2002,115,4293-4303.
    [41]Perks, C.M., McCaig, C., Holly, J.M.P. DiVerential insulin-like growth factor (IGF)-independent interactions of IGF binding protein-3 and IGF binding protein-5 on apoptosis in human breast cancer cells. Involvement of the mitochondria. J. Cell. Biochem.2000,80,248-258.
    [42]Perks, C.M., McCaig, C., Clarke, J.B., Clemmons, D.R., Holly, J.M.P. effect of a non-IGF binding mutant of IGFBP-5 on cell death in human breast cancer cells. Biochem. Biophys. Res. Commun. 2002,294,995-1000.
    [43]Diehl D, et al.IGF binding protein-4:biochemical characteristics and functional consequences.J Endorcinol,2003,178(2):177-193.
    [44]Lopez-Bermejo A, Khosravi J, Fernandez-Real JM, Hwa V, Pratt KL,Casamitjana R, Garcia-Gil MM, Rosenfeld RG, Ricart W:Insulin resistance is associated with increased serum concentration of IGF-binding protein-related protein 1 (IGFBP-rP1/MAC25).Diabetes,2006,55:2333-2339.
    [45]Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR. Oncogenic BRAF induces senescence and apoptosis throughpathways mediated by the secreted protein IGFBP7. Cell 2008,132:363-374.
    [46]Guler HP, Zapf J, Froesch ER. Short-term metabolic effects of recombinant human insulin-like growth factor Ⅰ in healthy adults. NEnglJMed 1987; 317:137-140.
    [47]Frystyk J, Grofte T, Skjaerbaek C, Orskov H. The effect of oral glucose on serum free insulin-like growth factor-Ⅰ and-Ⅱ in health adults. J Clin Endocrinol Metab 1997; 82:3124-3127.
    [48]LeRoith D, Werner H, Beitner-Johnson D, Roberts CT Jr. Molecular and cellular aspects of the insulin-like growth factor Ⅰ receptor. Endocr Rev 1995; 16:143-163.
    [49]Alexandrides T, Moses AC, Smith RJ. Developmental expression of receptors for insulin, insulin-like growth factor Ⅰ (IGF-Ⅰ), and IGF-Ⅱ in rat skeletal muscle. Endocrinology 1989; 124: 1064-1076.
    [50]Federici M, Giaccari A, Hribal ML, et al. Evidencefor glucose/hexosamine in vivo regulation of insulin/IGF-Ⅰ hybrid receptor assembly. Diabetes 1999; 48:2277-2285.
    [51]Federici M, Lauro D, D'Adamo M, et al. Expression of insulin/IGF-Ⅰ hybrid receptors is increased in skeletal muscle of patients with chronic primary hyperinsulinemia. Diabetes 1998; 47:87-92.
    [52]Federici M, Porzio O, Lauro D, et al. Increased abundance of insulin/insulin-like growth factor-Ⅰ hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity. J Clin Endocrinol Metab 1998; 83:2911-2915.
    [53]Federici M, Porzio O, Zucaro L, et al. Increased abundance of insulin/IGF-Ⅰ hybrid receptors in adipose tissue from NIDDM patients. Mol Cell Endocrinol 1997; 135:41-47.
    [54]Federici M, Zucaro L, Porzio O, et al. Increased expression of insulin/insulin-like growth factor-Ⅰ hybrid receptors in skeletal muscle of noninsulin-dependent diabetes mellitus subjects. JClinInvest 1996; 98:2887-2893.
    [55]Sesti G, Sciacqua A, Cardellini M, et al. Plasma concentration of IGF-Ⅰ is independently associated with insulin sensitivity in subjects with different degrees of glucose tolerance. Diabetes Care 2005; 28:120-125.
    [56]Zapf J, Hauri C, Waldvogel M, Froesch ER. Acute metabolic effects and half-lives of intravenously administered insulin-like growth factors Ⅰ and Ⅱ in normal and hypophysectomized rats. JClinlnvest 1986; 77:1768-1775.
    [57]Zenobi PD, Guler HP, Zapf J, Froesch ER. Insulin-like growth factors in the Gottingerminiature-pig. Acta Endocrinol (Copenh) 1988; 117:343-352.
    [58]ZenobiPD, GrafS, UrsprungH, FroeschER. Effects of insulin-like growth factor-Ⅰ on glucose tolerance, insulin levels, and insulin secretion. JClinInvest 1992; 89:1908-1913.
    [59]Schmid C, Bianda T, Zwimpfer C, Zapf J, Wiesli P. Changes in insulin sensitivity induced by short-term growth hormone (GH) and insulin-like growth factor Ⅰ (IGF-Ⅰ) treatment in GH-deficient adults are not associated with changes in adiponectin levels. Growth Horm IGF Res 2005; 15: 300-303.
    [60]Zenobi PD, Glatz Y, Keller A, et al. Beneficial metabolic effects of insulin-like growth factor Ⅰ in patients with severe insulin-resistant diabetes type A. Eur J Endocrinol 1994; 131:251-257.
    [61]Cheetham TD, Holly JM, Clayton K, Cwyfan-Hughes S, Dunger DB. The effects of repeated daily recombinant human insulin-like growth factor Ⅰ administration in adolescents with type 1 diabetes. Diabet Med 1995; 12:885-892.
    [62]Saukkonen T, Amin R, Williams RM, et al. Dose-dependent effects of recombinant human insulin-like growth factor (IGF)-Ⅰ/IGF binding protein-3 complex on overnight growth hormone secretion and insulin sensitivity in type 1 diabetes. JClin Endocrinol Metab 2004; 89:4634-4641.
    [63]Zenobi PD, Jaeggi-Groisman SE, Riesen WF, Roder ME, Froesch ER. Insulin-like growth factor-Ⅰ improves glucose and lipid metabolism in type 2 diabetes mellitus. JClinInvest 1992; 90: 2234-2241.
    [64]Woods KA, Camacho-Hubner C, Barter D, Clark AJ, Savage MO. Insulin-like growth factor Ⅰ gene deletion causing intrauterine growth retardation and severe short stature. Acta Paediatr Suppl 1997; 423:39-45.
    [65]Woods KA, Camacho-Hubner C, Bergman RN, Barter D, Clark AJ, Savage MO. Effects of insulin-like growth factor Ⅰ (IGF-Ⅰ) therapy on body composition and insulin resistance in IGF-Ⅰ gene deletion. J Clin Endocrinol Metab 2000; 85:1407-1411.
    [66]Luo J, Murphy LJ. Differential expression of the insulin-like growth factor binding proteins in spontaneously diabetic rats. J Mol Endocrinol 1992; 8:155-163.
    [67]Nyomba BL, Berard L, Murphy LJ. Free insulin-like growth factor Ⅰ (IGF-Ⅰ) in healthy subjects: relationship with IGF-binding proteins and insulin sensitivity. J Clin Endocrinol Metab 1997; 82: 2177-2181.
    [68]Thierry van Dessel HJ, Lee PD, Faessen G, Fauser BC, Giudice LC. Elevated serum levels of free insulin-like growth factor I in polycystic ovary syndrome. J Clin Endocrinol Metab,1999; 84: 3030-3035.
    [69]Lang CH, Vary TC, Frost RA. Acute in vivo elevation of insulin-like growth factor (IGF) binding protein-1 decreases plasma free IGF-I and muscle protein synthesis. Endocrinology 2003; 144: 3922-3933.
    [70]Lewitt MS, Denyer GS, Cooney GJ, Baxter RC. Insulin-like growth factor-binding protein-1 modulates blood glucose levels. Endocrinology 1991; 129:2254-2256.
    [71]Manetta J, Brun JF, Maimoun L, Callis A, Prefaut C, Mercier J. Effect of training on the GH/IGF-I axis during exercise in middle-aged men:relationship to glucose homeostasis. Am J Physiol Endocrinol Metab 2002; 283:E929-E936.
    [72]Wheatcroft SB, Kearney MT, Shah AM, et al. IGF-binding protein-2 protects against the development of obesity and insulin resistance. Diabetes 2007; 56:285-294.
    [73]Yamanaka Y, Fowlkes JL, Wilson EM, Rosenfeld RG, Oh Y. Characterization of insulin-like growth factor binding protein-3 (IGFBP-3) binding to human breast cancer cells:kinetics of IGFBP-3 binding and identification of receptor binding domain on the IGFBP-3 molecule. Endocrinology 1999; 140:1319-1328.
    [74]Ishizaki H., Suzuki A. The brain secretory peptides that control moulting and metamorphosis of the silkworm, Bombyx mori.Int. J. Dev. Biol.,1994,38:301-310.
    [75]Brogiolo W, Stocker H, Ikeya T, et al. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. J Curr. Biol.,2011,11:213-221.
    [76]Vanden B J. Neuropeptides and their precursors in the fruitfly, Drosophila melanogaster. J Peptides, 2001,22:241-254.
    [77]Adams M D, Celniker S E, Holt R A, et al. The genome sequence of Drosophlia melanogaster. J Science,2000,287:2185-2195.
    [78]Rulifson E., Kim S. K., Nusse R. Ablation of insulin-producing neurons in flies:growth and diabetic phenotypes.Science,2002,296 (5570):1118-1120.
    [79]Colombani J., Bianchini L., Layalle S., et al. Antagonistic actions of ecdysone and insulins determine final size in Drosophila. Science,2005,310 (5748):667-670.
    [80]Riehle F., Garczynski S. F., CrimJ.W., et al. Neuropeptides and Peptide Hormones in Anopheles gambiae. Science,2002,298 (5591):172-175.
    [81]Kawakami A, Iwami M, Nagasawa H, et al. Structure and organization of four clustered genes that encode Bombyxin, an insulin-related brain secretory peptide of the silkmoth Bombyx mori. J PNAS, 1989,86:6843-6847.
    [82]Iwami M, Kawakami A, Ishizaki H, et al. Cloning of a gene encoding Bombyxin, an insulin-like brain secretory peptide of the silkmoth, Bombyx mori with prothoracicotropic activity. J Dev. Growth Differ.,1989,31:31-37
    [83]Iwami M, Furuya I, Kataoka H. Bombyxin-related peptides:cDNA structure and expression in the brain of the hornworm Agrius convolvuli. J Insect Biochem. Mol. Biol.,1996,26:25-32.
    [84]Yashida I, Tsuzuki S, Abdel Salam S E, et al. Bombyxin F1 gene that forms a pair with Bombyxin B10 gene. J Zoolog. Sci.,1997,14:615-622.
    [85]Yoshida I, Moto K, Sakurai S, et al. A novel member of Bombyxin gene family:structure and expression of Bombyxin G1 gene, an insulin-related peptide gene of the silkmoth Bombyx mori. J Dev. Genes Evol.,1998,208:407-410.
    [86]Masafumi Iwami. Bombyxin:An Insect Brain Peptide that Belongs to the Insulin Family. ZOOLOGICAL SCIENCE,2000,17:1035-1044.
    [87]Makoto Masumura,et al. Glucose Stimulates the Release of Bombyxin, an Insulin-related peptide of the Silkworm Bombyx mori. General and Comparative Endocrinology,2000,118:393-399.
    [88]H. Frederik Nijhout, Laura W. Grunert. Bombyxin is a growth factor for wing imaginal disks in Lepidoptera.PNAS.2002,99(24):15446-15450.
    [89]Naoki Okamoto, et al. An ecdysteroid-inducible insulin-like growth factor-like peptide regulates adult development of the silkmoth Bombyx mori. FEBS Journal,2009,276:1221-1232.
    [90]Takashi Koyama, et al. Insulin/IGF signaling regulates the change in commitment in imaginal discs and primordia by overriding the effect of juvenile hormone. Developmental Biology. 2008,324:258-265.
    [91]Gillespie,J. P., M. R Kanost, and T. Trenczek.1997. Biological mediators of insect immunity. Anuu. Rev. Entomol.42:611-643.
    [92]Nappi, A. J., and B. M. Christensen.2005. Melanogenesis and associated cytotoxic reactions: Applications to insect innate immunity. Insect Biochem. Mol. Biol.35:443-459.
    [93]Ferrando, D., J. et al.2007. The Drosophila systemic immune response:Sensing and signaling during bacterial and fungal infections. Nature Rev. Immunol.7:862-874.
    [94]Lavine, M. D., and M. R. Strand.2002. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol.32:1295-1309.
    [95]Jiravanichpaisal, P., B. L. Lee. And K. Soderhall.2006. Cell-mediated immunity in arthropods: Hematopoiesis, coagulation, melanization and opsonization. Immunobiol.211:213-236.
    [96]Jiang, H. and Kanost, M.R.2000. The clip-domain family of serine proteinases in arthropods. Insect Biochem. Mol. Biol.30,95.
    [97]Ryu, K., Park, J., Kurokawa, K., Matsushita, M.& Lee, B. The molecular activation and regulation mechanisms of proteolytic Toll signaling cascade in insect innate immunity. Invert Survival J,2010, 7,181-191.
    [98]An, C.& Kanost, M.R. Manduca sexta serpin-5 regulates prophenoloxidase activation and the Toll signaling pathway by inhibiting hemolymph proteinase HP6. Insect biochemistry and molecular biology 2010,40,683-689.
    [99]Yoshida, H., Ochiai, M.& Ashida, M.β-1,3-glucan receptor and peptidoglycan receptor are present as separate entities within insect prophenoloxidase activating system. Biochemical and biophysical research communications,1986,141,1177-1184.
    [100]Piao, S. et al. Crystal structure of a clip-domain serine protease and functional roles of the clip domains. The EMBO journal,2005,24,4404-4414.
    [101]Satoh, D., Horii, A., Ochiai, M.& Ashida, M. Prophenoloxidase-activating enzyme of the silkworm, Bombyx mori. Journal of Biological Chemistry,1999,274,7441-7453.
    [102]Parkinson, N., Smith, I., Weaver, R. and Edwards, J. P. Anew form of arthropod phenoloxidase is abudndant in venom of the parasitoid wasp Pimpla hypochondriaca. Insect Bichem. Mol. Biol., 2001,31,57-63
    [103]Cerenius, L. and Sderhll, K. The prophenoloxidase-activating system in invertebrates. Immunol. Rev.,2004,198,116-126.
    [104]Kan, H. et al. Molecular control of phenoloxidase-induced melanin synthesis in an insect. Journal of Biological Chemistry,2008,283,25316-25323.
    [105]吕鸿声.昆虫免疫学原理,(上海科学技术出版社,2008)
    [106]Nappi A J, Vass E, Frey F, et al. Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. Eur J Cell Biol,1995,68:450-456.
    [107]Otlewski, J., Krowarsch, D. and Apostoluk, W. Protein inhibitors of serine proteinases. Acta Biochim. Pol.,1999,46,531.
    [108]Laskowski Jr, M. Interaction of standard mechanism, canonical protein inhibitors with serine proteinases. Protein-protein recognition,2000,223.
    [109]Creighton T E. Homology of protein structures:proteinase inhibitors (J). Nature,1975,255: 743-745.
    [110]Pellegrini, A., Thomas, U., Bramaz, N., Klauser, S., Hunziker, P. and vo Fellengerg, R. Identification and isolation of the bactericidal domains in the proteinase inhibitor aprotinin. Biochem. Biophys. Res. Commun.,1996,222,559-565
    [111]Brown, M.T., McGrath, W.J., Toledo, D.L. and Mangel, W.F. Different modes of inhibition of human adenovirus proteinase, probably a cysteine proteinase, by bovine pancreatic Trypsin inhibitor. FEBS Lett.,1996,388,233-237.
    [112]He, N., Yakiyama, M.,Fujii, H., Banno, Y. and Yamamoto, K. Genomic structure and expression analysis of the gene encoding a silkworm basic Kuniz-type chymotrypsin inhibitor. Biochimicaet Biophysica Acta(BBA)-Gene Structure and Expression,2003,1628,71-33
    [113]He, N., Aso, Y., Fujii, H., Banno, Y. and Yamamoto, K. In vivio and in vitro interations of the Bombyx mori chymotrypsin inhibitor b1 with Escherichia coli. Biosci. Biotechnol. Biochem.,2004, 68,835-840
    [114]Gettins, P.G.W. Serpin structure, mechanism, and function. Chemical reviews,2002,102, 4751-4804.
    [115]Reichhart, J. M. Tip of another iceberg:Drosophila serpins. Trends Cell Biol.,2005,15, 659-665.
    [116]Suwanchaichinad, C. and Kanost, M.R. The serpin gene family in Anopheles gambiae. Gene, 2009,442,47-54:
    [117]Zou, Z., Picheng, Z., Weng, H., Mita, K. and Jiang, H. A comparative analysis of serpin genes in the silkworm genome. Genomics,2009,93,367:375.
    [118]Tong, Y., Jiang, H. and Kanost, M.R. Identification of Plasma Proteases Inhibited by Manduca sexta Serpin-4 and Serpin-5 and Their Association with Components of the Prophenol Oxidase Activation Pathway. J. Biol. Chem.,2005,280,14932-14942.
    [119]Jiang, H. B., Y. Wang, X. Q. Yu, Y. F. Zhu, and M. Kanost.. Prophenoloxidase-activating proteinase-3(PAP-3) from Manduca sexta hemolymph:Aclip-domain serine proteinase regulated by serpin-IJ and serine proteinase homologs. Insect Biochem. Mol. Biol.2003,33,1049-1060.
    [120]Zhu, Y. F., Y. wang, M. J. Gorman, H. B. Jiang, and M. R. Kanost. Manduca sexta serpin-3 regulates prophenoloxidase activation in response to infection by inhibiting prophenoloxidase-activating proteinases. J. Biol. Chem.2003,278,4556-46564.
    [121]Wang, Y, and H. B. Jiang. Purification and characterization of Maduca sexta serpin-6:A serine proteinase inhibitor that selectively inhibits prophenoloxidase-activting protainase-3. Insect Biochem. Mol. Biol.,2004,34,387-395.
    [122]Kawaguchi N, Komano H, Natori S. Involvement of Sarcophaga lectin in the development of imaginal discs of Sarcophaga peregrine in an autocrine manner. Dev Biol,1991,144,86-93.
    [123]Nagasawa, Y., Kurata S., Komono H., Natori.S. Purification and Heterogeneous Localization of Sarcophaga Lectin Receptor on the Surface of Imaginal Discs of Sarcophaga peregrina (Flesh Fly). Development, Growth and Differentiation,1993,35,331-340.
    [124]Natori S. Relation between insect defense proteins and development of the flesh fly, Sarcophaga peregrine. Melecular Mechanisms of Immune Responses in Insects,2008,1007, 245-260.
    [125]Ling E, Rao XJ, Ao JQ, Yu XQ. Purification and characterization of a small cationic protein from the tobacco hornworm Manduca sexta. Insect Biochem Mol Biol.2009,4:263-71.
    [126]Kim C. H., Shin Y. P., Noh M.Y., Jo Y.H., Han Y.S., Seong Y.S., Lee I.H. An insect multiligand recognition protein functions as an opsonin for the phagocytosis of microorganisms. J Biol Chem. 2010,285:25243-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700