链条炉选择性非催化还原脱除氮氧化物模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对已有氮氧化物(NOx)脱除技术和中小锅炉燃烧过程特点的比较分析,针对在链条炉内利用选择性非催化还原(SNCR)脱除NOx过程中存在的反应温度窗口狭窄和停留时间较短,以及因链条炉燃烧方式和炉膛结构尺寸与煤粉炉不同而难以参考煤粉炉上SNCR过程的问题,本文开展了链条炉炉内燃烧过程和SNCR脱除NOx过程的模拟研究,并对加入甲烷促进其反应过程的可行性进行了初步的模拟分析。
     本文利用单元体方法对一台35t/h链条炉炉排上方煤层燃烧过程建立了数学模型,对炉排上煤的燃烧过程进行了数值模拟;利用炉排燃烧过程模拟结果作为炉膛空间模拟的边界条件,采用计算流体力学(CFD)软件FLUENT对链条炉内的温度和流场分布进行了模拟,以此为基础对此锅炉上的SNCR过程进行了初步设计,进而对SNCR过程进行了模拟,并采用简化反应动力学模型和CFD结合的方法对加入CH4促进SNCR脱除NOx的过程进行了模拟,以期为实际应用提供参考和理论基础。
     模拟结果与实测数据的对比表明,本文建立的煤燃烧模型可较准确地模拟和预测典型链条炉排的燃烧过程,进而为研究层燃炉排的燃烧过程和炉排优化设计提供参考。炉内工况模拟结果表明链条炉适合SNCR反应的位置处于炉拱上部的炉膛中部狭窄区域。在此基础上在前墙和后墙各平均布置了5个矩形喷嘴对SNCR系统进行了初步的设计。在前期研究的基础上,采用CFD结合简化反应模型的方法对加入适量的甲烷促进脱除NOx过程进行了初步模拟分析,结果表明,加入适量甲烷可使常规SNCR的NOx脱除效率提高9%左右,氨泄漏降低至50ppm,可为实际应用提供指导。
Based on comparison and analysis of the existing DeNOx technologies and characteristics of the combustion process of small and medium-sized boilers, simulation study of the combustion process and SNCR for grate-firing furnace was carried out, and the feasibility of promoting SNCR with methane additive was analyzed to solve issues of narrow temperature window and short residence time of SNCR, and to accout for difference in combustion mode, structure and scale of the grate-firing furnace from pulverized coal fired furnace.
     A mathematical model for combustion process on the grate for a grate-firing furnace of 35t/h steam production was developed by using micro-element method, and the computational simulation for coal combustion process was conducted. Results of coal combustion process on the grate was used as the boundary conditions for the simulation of the furnace, and temperature and velocity distribution in the furnace was simulated by using a computational fluid dynamics (CFD) software, FLUENT. SNCR process of the grate-firing furnace was designed preliminarily and simulated. The process of promoting SNCR with methane additive for the furnace was investigated by integrating simplified reaction dynamics and CFD aiming at providing reference and theoretical foundation for actual application.
     Based on comparison of the simulated results with the experimental data, the coal combustion process on the grate can be predicted by the combustion model developed, and the modeling results can provide reference to the optimization and design for the grate-firing furnace. The simulated results for the furnace indicate that zone suit for SNCR is a narrow region of furnace central part which is above the front arch and rear arch. Five rectangular nozzles can be arranged uniformly in the front and the back wall of the furnace for SNCR of the grate-firing furnace. Based on preliminary studies, promoting SNCR process with methane additive in the grate-firing furnace was simulated by integrating CFD and simplified reaction dynamics, and the simulated results indicate that NOx removal efficiency is increased by 9% approximately and ammonia slip is lowered to 50ppm approximately with methane additive.
引文
[1]中华人民共和国国家统计局.中国统计年鉴, 2007.
    [2]中国能源发展战略与政策研究课题组.中国能源发展战略与政策研究.北京:经济科学出版社, 2004.
    [3]郝吉明,田贺忠.中国氮氧化物排放现状、趋势及控制对策. 2004中国国际脱硫脱硝技术与设备展览会暨技术研讨会论文集. 2004: 240-247.
    [4] Xu X C, Chen C H, Qi H Y, et al. Development of coal combustion pollution control for SO2 and NOx in China. Fuel Processing Technology, 2000, 62: 153-160.
    [5]国家环境保护总局,国家质量监督检验检疫总局.火电厂大气污染物排放标准. 1996.
    [6]国家环境保护总局,国家质量监督检验检疫总局.火电厂大气污染物排放标准. 2003.
    [7]北京市质量技术监督局.锅炉大气污染物排放标准. 2002.
    [8]苏亚欣,毛玉如,徐璋.燃煤氮氧化物排放控制技术.北京:化学工业出版社, 2005.
    [9]黄家瑶,夏家喜.我国工业锅炉行业概况及产品发展趋势.能源与环境, 2004. 1.
    [10]钟北京,傅维标.燃烧过程中快速型氯化氮形成机理及其影响因素.燃烧科学与技术, 1997(6).
    [11]钟北京,傅维标.锅炉低NOx排放煤粉分级燃烧的优化.电站系统工程, 1997.
    [12]王俊杰,邱广明,孙喜平.燃煤电厂的脱硝技术研究Ⅰ-燃煤过程NOx的脱除原理及技术.内蒙古石油化工, 1999, 4: 126-129.
    [13]毛健雄.煤的清洁燃烧.科学出版社, 2000, 209.
    [14] Lwendt J.O., Mechanisms Governing the Formation and Destruction of NOx and other Nitrogenous Species in Low NOx Coal Combustion Systems, Combustion Science and Technology, 1995.
    [15]宣小平,姚强,岳长涛,等.选择性催化还原法脱硝研究进展.煤炭转化, 2002, 25(3): 26-31.
    [16] SNCR Committee Institute of Clean Air Companies INC. Selective non-catalytic reduction (SNCR) control of NOx emissions white paper. 2000.
    [17] Tree D, Clark A. Advanced reburning measurements of temperature and species in a pulverized coal flame. Fuel, 2000, 79: 1687-1695.
    [18] Smoot L D, Hill S C, Xu H. NOx control through reburning. Progress in Energy Combustion Science, 1998, 24(5): 385-408.
    [19]沈伯雄,孙幸福.影响先进再燃脱硝效率的因素分析.煤炭转化, 2004, 27(4): 47-50.
    [20] Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion. Progress in Energy Combustion Science, 1989, 15:287-338.
    [21] Alzueta M U, Bilbao R, Millera A, et al. Interactions between nitric oxide and urea under flow reactor conditions. Energy and Fuels, 1998, 12:1001-1007.
    [22]卢志民. SNCR及混合特性研究.浙江大学博士论文, 2006. 9.
    [23] Lyon R K. The NH3-NO-O2 reaction. International Journal of Chemical Kinetics, 1976, 8: 315-318.
    [24] Schemidt C C. Flow reactor study of the effect of pressure on the thermal DeNOx reaction [D]. US. Stanford University, 2001.
    [25] Rota R, Antos D, Everton F, et al. Experimental and modeling analysis of the NOxOUT process. Chemical Engineering Science, 2002, 57:27-38.
    [26] Glarborg P, Dam-Johansen K, Miller J A, et al. Modeling the thermal DeNOx process in flow reactors. Surface effects and nitrous oxide formation. International Journal of Chemical Kinetics, 1994, 26: 421-436.
    [27] Glarborg P, Dam-Johansen K, Miller J A. The reaction of ammonia with nitrogen dioxide in a flow reactor: Implication for the NH2+NO2 reaction. International Journal of Chemical Kinetics, 1995, 27: 1207-1220.
    [28] Zabetta C, Kilpinen P, Hupa M, et al. A kinetic modeling study on the potential of staged combustion in gas turbines for the reduction of nitrogen oxide emissions from biomass IGCC plants. Energy & Fuels, 2000, 14: 751-761.
    [29] Zabetta C, Kilpinen P. Gas-phase conversion of NH3 to N2 in gasification. Part II: testing the kinetic model. IFRF Combustion Journal, 2001.
    [30] Bhattacharjee B, Schwera D A, Barton P I, et al. Optimally-reduced kinetic models: reaction elimination in large-scale kinetic mechanisms. Combustion and Flame, 2003, 135(3): 191-208.
    [31] Peters N, Rogg B. Reduced kinetic mechanisms for applications in combustion systems. Springer-Verlag, New York, 1993.
    [32] Han X H, Wei X, Schnella U, et al. Detailed modeling of hybrid reburn/SNCR processes for NOx reduction in coal-fired furnaces. Combustion and Flame, 2003, 132: 374-386.
    [33] Lyon R K. Method for the reduction of the concentration of NO in combustion effluents using ammonia. US. Patent 3900554. 1975.
    [34] Lodder P, Lefers J B. Effect of natural gas, C2H6 and CO on the homogenous gas phase reduction of NOx by NH3. The Chemical Engineering Journal, 1985, 30: 161-167.
    [35] Wenli D, Dam-Johansen K, Ostergaard K. The influence of additives on selective non-catalytic reduction of nitric oxide with NH3. Achemasia, Beijing, 1989.
    [36] Leckner B, Karlsson M, Johansen K D, et al. Influence of additives on selective noncatalytic reduction of NO with NH3 in circulating fluidized bed boilers. Industrial and Engineering Chemistry Research, 1991, 30:2396.
    [37]张彦文,蔡宁生.对用烃类和氨为还原剂的脱硝技术的计算分析.热能动力工程, 2006. 11.
    [38] Javed M T, Irfan N, Gibbs B M. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. Journal of Environmental Management, 2007, 83(3): 251-289.
    [39] Rasmussen M S S, Christensen O H, Ostberg M, Christensen T.S., Johannessen T., Jensen A.D., Glarborg P., Livbjerg H., 2004. Post processing of detailed chemical kinetic mechanisms onto CFD simulations. Computers and Chemical Engineering 28, 2351-2361.
    [40] Heggemann M., Wintergerste T., 2004. Combination of CFD and chemical reactions for process engineering. Chemical Engineering and Technology 27, 982-987.
    [41] Kee R.J., Rupley F.M., Miller J.A., 1994. CHEMKIN-II: a FORTRAN chemical kinetics package for analysis of gas phase chemical kinetics. Sandia Report, SAND89-8009.UC-706, Sandia National Laboratories, Livermore, CA.
    [42] Brouwer J., Heap M. P., Pershing D. W., and Smith P. J., A model for prediction of Selective Non-Catalytic Reduction of Nitrogen Oxides by ammonia, urea, and cyanuric acid with mixing imitation in the presense of CO. Proc. Combust. Inst. 26:2117-2124 (1996).
    [43] Cremer M., Heap M., Zoccola M., Ciarlante V., 1999. CFD modeling of SNCR performance in Conective’s Indian River unit 3 and 4. In: DOE Conference on SCR and SNCR for NOx Control, May, pp. 201-221.
    [44]顾正萌,郭烈锦,高晖.沉流式滤筒除尘器气固两相流动的数值模拟与分析.化工机械, 2002, 29(4):197-202.
    [45]范贤振,郭烈锦,等. 200MW四角切向燃烧煤粉炉炉内过程的数值模拟.西安交通大学学报, 2002, 36(3):241-245.
    [46]由长福,祁海鹰,徐旭常, Bernard Baudoin.采用不同湍流模型及差分格式对四角切向燃烧煤粉锅炉内冷态流场的数值模拟.动力工程, 2001, 21(2):1128-1131.
    [47]路涛.四角切圆燃烧锅炉中SNCR的数值模拟.华北电力大学硕士论文, 2004. 2.
    [48] S?ren K. Numerical modeling of a staw-fired grate boiler. Fuel, 2004, 83(9): 1183-1190.
    [49] Van der Lans R P, Pedersen L T, Jensen A, etal. Modeling and experiments of staw combustion in a grate furnace. Biomass and Bioenergy 2000, 19(3): 199-208.
    [50] Colomba Di Blasi. Modeling wood gasification in a coutercurrent fixed-bed reactor, Environmental and Energy Engineering, 2004, 50(9): 2306-2319.
    [51]刘茂俊.燃煤工业锅炉节能实用技术.北京:中国电力出版社, 2000.
    [52]傅维镳.煤燃烧理论及其宏观通用规律.北京:清华大学出版社, 2003, 21-73.
    [53] Cooper, J., W. L. Hallet. A numerical model for packed-bed combustion of char particles, Chem. Eng. Sci., 55, 4454(2000).
    [54]李政.循环流化床锅炉通用整体数学模型、仿真与性能测试.清华大学博士学位论文, 1994: 53-65.
    [55] Makino A., Law C. K. 21th Symposium (International) on Combustion, The Combustion Institute. Pittsburgh. PA, 1987.
    [56]常兵.配风方式对层燃炉燃烧特性影响的试验研究.上海交通大学硕士学位论文, 2007.
    [57]王清成,罗永浩等.二次风对层燃炉燃烧特性影响的实验研究.动力工程, 2006, 26(6): 781-807.
    [58]张泽,吴少华,秦裕昆,徐旭常.炉内流场中复杂结构喷嘴射流的近流线数值模拟.中国电机工程学报, 2001, 21(8):108-113.
    [59]秦裕琨.炉内传热.北京:机械工业出版社, 1992.
    [60]王福军.计算流体动力学分析(CFD软件原理与应用).清华大学出版社, 2004.
    [61]吴玉新.气流床煤气化炉数值模拟及颗粒-涡团作用建模研究.清华大学博士学位论文, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700