UV/H_2O_2对铜绿微囊藻抑制特性及其对微囊藻毒素降解机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化及其引发的有害藻类水华是我国当前主要面临的环境问题之一‘。有关有害藻类污染治理的方法和技术的研究一直以来是水污染控制领域的热点。在UV/H2O2光氧化体系中,H202光解产生强氧化剂·OH,其具有高效杀灭微生物、快速降解有机化合物的特点,因而UV/H2O2在有害水华藻类防治领域的运用潜力巨大。本论文系统地研究了UV/H2O2对水华铜绿微囊藻抑活机理及效应、UV/H2O2处理后藻胞内/外毒素变化、UV/H2O2对微囊藻毒素的降解动力学和降解机理。
     本论文的主要研究如下:
     1. UV/H2O2抑藻机理及抑藻效应研究
     建立了水杨酸捕获法测定·OH的HPLC检测条件:流动相为20%甲醇+80%水(含0.03’M乙酸和0.03 M柠檬酸),流速为1mL/min;同时证实了UV/H2O2体系中生成的·OH参与了藻细胞的氧化损伤过程。基于藻细胞基因转录水平和生理生化指标分析得出结论,UV/H2O2对藻细胞的损伤机理主要是通过·OH氧化损伤藻细胞膜,使其发生脂质过氧化反应,进而损伤藻细胞DNA及蛋白质等生物大分子和光合作用系统。藻毒素合成相关基因的转录表达量受到UV/H2O2处理的抑制,因而UV/H2O2抑制藻生长的同时可抑制胞内毒素的合成量,从而减少释放至水体的毒素含量。
     本论文同时研究了铜绿微囊藻分别经UV254、H2O2及UV/H2O2处理后继续培养过程中的生长情况,研究结果表明:H202和UV254对铜绿微囊藻生长抑制效应均随作用剂量的增加而增强;UV/H2O2对铜绿微囊藻的抑制存在明显的协同效应,在实验室条件下,0.2 mM H2O2结合38 mJ/cm2 UV254辐照剂量是抑藻效应最强的组合;结合扫描电镜分析表明,UV/H2O2处理对铜绿微囊藻细胞形态结构造成破坏。藻液经0.2 mM H2O2结合38 mJ/cm2 UV254辐照剂量联合处理后第10d,几乎所有藻细胞凹陷变形,很多藻细胞细胞壁破裂,细胞质外溢而死亡。
     2. UV/H2O2抑藻过程中铜绿微囊藻胞内/外毒素变化研究
     本论文结合HPLC和ESI-MS/MS技术对铜绿微囊藻905胞内毒素鉴定结果表明,胞内毒素除MCLR以外,还存在去甲基MCLR (Demethyl MCLR)。根据双电荷分子离子(M+2H)2~+m/z=491.3的MS/MS图谱初步推测Demethyl MCLR的分子结构是:[D-Asp3]mcyst-LR、[Dha7]mcyst-LR、[D-Asp3,(E)-Dhb7]mcyst-LR或者[D-Asp3,(Z)-Dhb7]mcyst-LR。对结合固相萃取(SPE)技术的藻细胞的胞内毒素提取流程进行了优化。优化后的毒素提取流程如下:离心收集纯培养藻液,于藻浆中加入w(甲醇)=75%提取液,反复冻融3次,后辅以超声破碎0.5h,离心收集上清液并过C18固相萃取柱进行富集,然后用w(甲醇)=10%淋洗液对C18固相萃取柱进行淋洗以除去杂质,最后用w(甲醇)=80%+w(TFA)=0.05%洗脱液将毒素洗脱收集。
     结合对MCLR和Demethyl MCLR具有良好交叉反应性的酶联免疫试剂盒,测定并分析UV/H2O2抑藻过程中胞内胞外毒素的变化。结果表明,UV/H2O2主要通过产生的·OH迅速降解藻细胞的胞外毒素,同时通过抑制藻细胞生物量和藻毒素合成相关基因转录表达量从而减少藻细胞的胞内毒素合成量。实验结果表明,藻液在经38 mJ/cm2 UV254辐照结合0.2 mM H2O2处理后的培养过程中,藻细胞生长受到抑制,在此过程中胞内毒素逐渐释放至水体,胞外毒素逐渐增加,藻液总毒素含量基本保持不变。
     3. UV/H2O2对微囊藻毒素的降解动力学研究
     本论文对比研究了UV254、H2O2及UV/H2O2对MCLR的降解效率,结果表明:1)H202几乎不能氧化降解MCLR, UV254直接光解以及UV/H2O2都能较好的降解MCLRO当pH值为8.0、UV254辐照强度为1738μW/cm2、H202浓度为5mM时,第40 min三种处理对MCLR的降解效果存在明显差异,其中H202对MCLR的降解率仅为8.4%±2.1%、UV254直接光解去除率为73.6%±3.4%、UV/H2O2处理效果最好(去除率为98%±4.8%)。2)三个处理过程均能较好的拟合表观一级动力学方程,其表观一级动力学常数分别为kH2O2=0.0021 min-1、kUV=0.045 min-1和kUV/H2O2=0.082 min-1。kUV/H2O2值超过k_(H2O2)与Kuv之和,表明UV/H2O2具有明显的协同作用。
     UV/H2O2对MCLR的降解过程受初始H202浓度、UV254辐照强度、MCLR初始浓度以及溶液pH值的影响。当H202在0-10mM浓度范围内,UV/H2O2对MCLR降解的表观一级动力学常数与H202浓度呈正相关关系k=-0.007×[H202]+0.0446,(R2=0.9918);UV/H2O2对MCLR的降解效率随UV254辐照强度的提高而增加,随MCLR初始浓度的提高而降低,MCLR降解的表观一级动力学常数与MCLR初始浓度呈负相关关系:k=.0.0056×[MCLR]0+0.1771(R2=0.8528)。
     此外,本论文选取硝基苯(NB)作为竞争参考物质,根据UV254光解和·OH氧化MCLR的原理和·OH稳态理论建立UV/H2O2降解MCLR的竞争动力学模型,并结合模型测定了·OH与MCLR的二级动力学常数(k=-2.8(±0.21)×1010 M-1s-1)。
     4. UV/H2O2降解微囊藻毒素的中间产物及途径研究
     结合LC-MS分析,基于总离子流图谱(TIC)及(M+H)~+m/z数据,结果表明UV/H2O2降解MCLR过程主要生成9种中间产物,其正离子质荷比分别为(M+H)+m/z 1029.5、(M+H)+ m+z 1011.5、(M+H)+ m/z795.4、(M+H)+ m/z835.4、(M+H)+ m/z 811.3、(M+H)+ m/z 1027.5、(M+H)+ m/z 1009.5、(M+H) + m/z 965.5和(M+H)+ m/z 1045.5.
     UV/H2O2降解MCLR过程中主要涉及·OH降解、氧化降解以及UV254直接光解作用。·OH主要进攻MCLR分子Adda侧链上的共轭双键、苯环及甲氧基。根据中间产物的分子量信息及·OH与多肽和蛋白质反应机理等资料信息,推测UV/H2O2对MCLR降解途径主要有3条,分别如下:1)·OH进攻Adda侧链共轭双键,通过亲电加成反应生成4,5-二羟基衍生MCLR或者6,7-二羟基衍生MCLR,然后相应的Adda侧链C4-C5双羟基键或C6-C7双羟基键氧化断裂,生成醛或酮衍生中间产物,这些中间产物进一步被氧化生成相应的羧酸衍生物;2)·OH进攻Adda侧链苯环,通过亲电取代反应生成(ortho、meta或para)苯环羟基衍生MCLR或苯环双羟基衍生MCLR,然后进一步氧化生成醛或酮衍生中间产物;3)·OH进攻Adda侧链甲氧基,通过夺氢反应生成甲酸酯衍生MCLR,然后与·OH进一步反应,生成去甲氧基MCLR (DmADDA).结合中间产物含量的时间变化过程,表明·OH攻击共轭双键及苯环的反应为主要途径,其占总反应途径的90%以上。结合UV/H2O2降解MCLR的作用机理、MCLR降解中间产物结构和已有的文献资料分析,表明UV/H2O2降解MCLR的产物毒性基本消失。
Recently, eutrophication and harmful algae blooms (HABs) are the major environmental problems in China. Therefore, seeking effective methods to control the HABs has always been of great interest. The UV/H2O2 involves the production of reactive oxidative species, especially the hydroxyl radicals (·OH) which are able to effectively damage microorganisms and organic substances. Therefore, UV/H2O2 has broad application prospect for controlling HABs. In this study, it was systematically studied that the damage mechanism and effect of UV/H2O2 on Microcystis aeruginosa, the concentration variation of extracellular and intracellular microcystins cause by damaged algae, the degradation kinetics and mechanism of MCLR by UV/H2O2 treatment. The main contents and achievements of this study are as follows.
     1. Research of the inhibiton mechanism and growth inhibitioin effect of UV/H2O2 on Microcystis aeruginosa
     The HPLC detection conditions for·OH through salicylic acid trapping were established: the mobile phrase was 20% methol and 80% water, in which 0.03M acetic acid and 0.03M citric acid was included; the flowrate was 1mL/min. Meanwhile, the produced·OH in UV/H2O2 system participated in oxidative damage of alga. Base on the gene transcription level of alga、MDA content and the SOD activity, the damage mechanism of UV/H2O2 to alga could be as follows:alga cell membrane was oxidative damaged through lipid peroxidation reaction and then the DNA and protein molecular was damaged and photosynthesis activity was inhibited. The transcription expression of microcystin synthesis related gene was also inhibited under UV/H2O2 treatment and the synthesis content of microcystin could be reduced by UV/H2O2.
     In this study, Microcystis aeruginosa was respectively treated with H2O2, UV254 and UV/H2O2, and then continued to culture for 10 days. It was found that the inhibition effect of H2O2 treatment and UV254 irradiation treatment on algae were both enhanced with the corresponding increase of dosage.
     UV/H2O2 had a synergic inhibition effect on the growth of algae. Moreover, it was indicated that the combined treatment of 0.2 mM H2O2 and 38 mJ/cm2 UV254 irradiation had the best algal inhibition activity in this study. The analysis with scanning electron microscope (SEM) showed that UV/H2O2 were able to damage the morphology of Microcystis aeruginosa. After algae was treated by UV254 irradiation (38 mJ/cm2) combined with H2O2 (0.2 mM) almost all of the algae became sag deformation on the 10th day of the culture period, with cell wall lysis and cell cytoplasm release.
     2. Research of the concentration variation of extracellular and intracellular microcystins of Microcystis aeruginosa treated by UV/H2O2
     Using HPLC and ESI-MS/MS analysis, the microcystins (MCs) produced by Microcystis aeruginosa 905 were determined. The result indicated that besides the production of MCLR, Microcystis aeruginosa 905 also has a demethylated MCLR (Demethyl MCLR), which can be assigned to [D-Asp3]mcyst-LR, [Dha7]mcyst-LR, [D-Asp3, (E)-Dhb7]mcyst-LR or [D-Asp3, (Z)-Dhb7]mcyst-LR.
     The extraction procedure, employed in solid-phase extraction on intracellular microcystin extraction, was studied and optimized. The optimized extraction procedure of MCLR was as follows. First, algae slurry was collected through centrifugation, and w (methanol)=75% was added as extraction solvent. Then the mixed liquid was treated with freeze-thawing for 3 times followed by ultrasonication for 0.5 h, and the supernatant was collected for solid phase extraction (SPE). C18 cartridge was eluted with w (methanol)=10% and then washed with w (methanol) =80%+w (TFA)=0.05%.
     ELISA kit which shows very good cross-reactivity with MCLR and Demethyl MCLR was chosen for detecting MCs. It was indicated that UV/H2O2 could effectively degrade the extracellular MCs and decrease the yield of MCs by inhibiting the growth of algae. After being treated with 0.2 mM H2O2 combined with 38 mJ/cm2 UV254 irradiation, the algae were inhibited and its intracellular MCs released gradually into water. The concentration of extracellular MCs increased gradually, while the sum of the MCs almost kept constant.
     3. Research of the effect of operation parameters on the degradation of MCLR and degradation kinetics
     In this study, the degradation of MCLR in aqueous solutions by UV254、H2O2 and combined UV/H2O2 processes was investigated. The result was as follows. H2O2 had little effect on degrading MCLR while UV254 direct photolysis and UV/H2O2 could both degrade MCLR effectively. On the condition of pH 8.0,1738μW/cm2 UV254 and 5 mM H2O2, at 40 min, the MCLR degradation ratio was 8.4%±2.1% by H2O2 treatment,73.6%±3.4% by UV254 treatment and 98%±4.8% by UV/H2O2 treatment. The degradation process by UV254, H2O2 and combined UV/H2O2 treatment could be well fitted with pseudo-first-order kinetic, respectively. The three pseudo-first-order kinetic constant (k) was kH2O2(0.0021 min-1),kUV(0.045 min-1) and kUV/H2O2(0.082 min-1) respectively.kUV/H2O2 was higher than the sum of kH2O2 Plus KUV, suggesting a synergetic effect between UV254 radiation and H2O2 oxidation.
     The effect of initial concentrations of H2O2, UV254 irradiation intensity, initial concentrations of MCLR and solution pH values on the degradation efficiency of MCLR was studies respectively. The results showed that H2O2 and UV254 indeed facilitated MCLR degradation in a dose and intensity dependent manner respectively. The relationship between pseudo-first-order kinetic constant (k) and H2O2 concentration could be expressed as follows: k=0.007×[H2O2]+0.0446, (R2=0.9918). The reaction rate constant of MCLR degradation was found to be negatively correlated with the initial concentration of MCLR as follows: k=-0.0056×[MCLR]0+0.1771(R2=0.8528). The optimum range of pH was found to be between 7 and 8.
     In addition, on the basis of nitrobenzene (NB) as competition reference compound, the competition kinetic model for the degradation of MCLR by UV/H2O2 was developed using the pseudo-first-order equation and steady-state approximation. With the help of the competition kinetic model, the second-order rate constant of the reaction between MCLR and·OH was determined to be 2.8 (±0.21)×1010 (M-1s-1).
     4. Research of intermediates and pathways of MCLR degradation by UV/H2O2
     The degradation products of MCLR were studied in detail by employing liquid chromatography-mass spectrometry (LC-MS) analysis and 9 intermediates products were found. They are as follows:(M+H)+at m/z 1029.5, (M+H)+at m/z 1011.5, (M+H)+at m/z 795.4, (M+H)+at m/z 835.4, (M+H)+at m/z 811.3, (M+H)+at m/z 1027.5, (M+H)+at m/z 1009.5, (M+H)+at m/z 965.5 and (M+H)+at m/z 1045.5 respectively.
     The main process of MCLR degradation by UV/H2O2 treatment involved·OH attack, oxidation and UV254 direct photolysis. The main sites of MCLR molecule attacked by·OH were the conjugated diene bond, benzene ring and methoxy group of the Adda side chain.
     Based on the molecular weight of the products and the reaction mechanism between·OH and pepetides or protein, three main degradation pathways were proposed as follows:1)·OH attacked on the conjugated diene bond of Adda side chain through electrophilic addition reaction and produced dihydroxylated-MCLR, and then the hydroxylated C4-C5 or C6-C7 bond of Adda was cleaved through further oxidation to form aldehyde or ketone peptide residues which were subsequently oxidized into the corresponding carboxylic acids; 2)·OH attacked on the benzene ring and formed benzene hydroxylation and/or benzene dihydroxylation through electrophilic substitution reaction, followed by further oxidation to form aldehyde or ketone peptide residues. 3)·OH attack on the methoxy group of the Adda side chain through hydrogen abstraction reaction to form formic acid-(MCLR), and then experienced complete removal of the methoxy group. The pathway 1 and pathway 2 probably accounted for over 90% of total degradation reactions. Meanwhile, on the basis of previous research, it was inferred that the toxicity of intermediates products almost disappeared.
引文
[1]张金屯.应用生态学.北京:科学出版社,2003.
    [2]陈水勇,吕一锋.水体富营养化的形成、危害和防治.环境科学与技术,1999,2:11-15.
    [3]Glibert, P.M., Anderson, D.M., Gentien, P., Graneli, E., Sellner, K.G. The global, complex phenomena of harmful algal blooms. Oceanography,2005,18(2):136-147.
    [4]Glibert, P.M., Burkholder, J.M. The complex relationships between increasing fertilization of the Earth, coastal eutrophication, and HAB proliferation. Ecology of Harmful Algae,2006,189:341-354.
    [5]Parsons, M.L., Dortch, Q., Turner, R.E. Sedimentological evidence of an increase in Pseudo-nitzschia (Bacillariophyceae) abundance in response to coastal eutrophication. Limnology and Oceanography,2002,47:551-558.
    [6]Anderson, D.M., Glibert, P.M., Burkholder, J.M. Harmful algal blooms and eutrophication:nutrient sources, composition and consequences. Estuaries and Coasts, 2002,25:562-584.
    [7]Heisler, J., Glibert, P.M., Burkholder, J.M., Anderson, D.M., Cochlan, W., Dennison, W.C., Dortch, Q., Gobler, C.J., Heil, C.A., Humphries, E., Lewitus, A., Magnien, R., Marshall, H.G., Sellner, K., Stockwell, D.A., Stoecker, D.K. and Suddleson, M. Eutrophication and harmful algal blooms:A scientific consensus. Harmful Algae,2008,8(1):3-13.
    [8]Smayda, T.J. Harmful algal blooms:their ecophysiological and general relevance to phytoplankton blooms in the sea. Limnology and Oceanography,1997, 42:1137-1153.
    [9]Hodgkiss, I.J., Ho, K.C. Are changes in N:P ratios in coastal waters the key to increased red tide blooms? Hydrobiologia,1997,352,141-147.
    [10]Burkholder, J.M., Glibert, P.M., Skelton, H.M. Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae,2008,8:77-93.
    [11]Seitzinger, S.P., Sanders, R.W., Styles, R.V. Bioavailability of DON from natural and anthropogenic sources to estuarine plankton. Limnology and Oceanography,2002, 47:353-366.
    [12]Berman, T, Bronk, D.A. Dissolved organic nitrogen:a dynamic participant in aquatic ecosystems. Aquatic Microbial Ecology,2003,31:279-305.
    [13]Cochlan, W.P., Herndon, J., Kudela, R.M. Inorganic and organic nitrogen uptake by the toxigenic diatom Pseudo-nitzschia australis (Bacillariophyceae). Harmful Algae,2008,8:111-118.
    [14]Kudela, R.M., Lane, J.Q., Cochlan, W.P. The potential role of anthropogenically derived nitrogen in the growth of harmful algae in California, USA. Harmful Algae, 2008,8:103-110.
    [15]Armstrong-Howard, M.D., Cochlan, W.P., Ladzinsky, N.L., Kudela, R.M. Nitrogenous preference of toxogenic Pseudo-nitzschia australis (Bacillariophyceae) from field and laboratory experiments. Harmful Algae,2007,6:206-217.
    [16]Chen, Q.W., Arthur, E.M. Predicting phaeocystis globosa bloom in Dutch coastal waters by decision trees and nonlinear piecewise regression. Ecological Modeling, 2004,176:277-290.
    [17]徐宁,陈菊芳,王朝晖.广东大亚湾藻类水华的动力学分析(Ⅰ)—藻类水华的生消过程及其与环境因子的关系.海洋环境科学,2001,20(2):2-6.
    [18]王淑娟.水体的富营养化及其防治.锦州师范学院学报(自然科学版).2003,24(2):16-18.
    [19]Bernhardt, H., Clasen J. Flocculation of microorganisms. Aqua-Journal of Water Supply:Research and Technology,1991,40(2):76-87.
    [20]Briley, D.S., Knappe, D.R.U. Optimizing ferric sulfate coagulation of algae with streaming current measurements. Journal American Water Works Association,2002, 94(2):80-90.
    [21]Graham, N.J.D., Wardlaw, V.E., Perry, R., Jiang, J.Q. The significance of algae as trihalomethane precursors. Water Science and Technology,1998,37(2):83-89.
    [22]Hitzfeld, B.C., Hoger, S.J., Dietrich, D.R. Cyanobacterial toxins:removal during drinking water treatment, and human risk assessment,2000,108:113-122.
    [23]Lakshmana, R., Bhattacharya, R. The cyanobacterial toxin microcystin-LR induces DNA damage in mouse liver in vivo. Toxicology,1996,114:29-36.
    [24]Lin, T.F., Chang, D.W., Lien, S.K., Tseng, Y.S., Chiu, Y.T., Wang, Y.S. Effect of chlorination on the cell integrity of two noxious cyanobacteria and their releases of odorants. In:Suffet, M. Journal of Water Supply:Research and Technology,2009, 58(8):539-551.
    [25]Fang, J.Y., Ma, J., Yang, X., Shang, C. Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa. Water Research,2010,44(6):1934-1940.
    [26]Fang, J.Y., Yang, X., Ma, J., Shang, C., Shang, Q. Characterization of algal organic matter and formation of DBPs from chlor(am)ination. Water Research,2010, 44(20):5897-5906.
    [27]Ghernaout, B., Ghernaout, D., Saiba, A. Algae and cyanotoxins removal by coagulation/flocculation:A review. Desalination and water treatment,2010,20(1-3): 133-143.
    [28]刘丽娟,汪琳,李明玉,林浩添,陈冠宏,熊德甫,任刚.不同混凝剂强化除藻、除浊的研究.中国给水排水,2010,5:80-83.
    [29]Chen, J.J., Yeh, H.H., Tseng, I.C. Effect of ozone and permanganate on algae coagulation removal-Pilot and bench scale tests. Chemosphere,2009,6:840-846.
    [30]Verhoeven, R.L., Eloff, J.N. Effect of lethal concentrations of copper on the ultrastructure and growth of Microcystis. Proc. Electron. Microsc. Soc. S. Afr,1979,9: 161-162.
    [31]Barrington, D.J., Ghadouani, A. Application of Hydrogen Peroxide for the Removal of Toxic Cyanobacteria and Other Phytoplankton from Wastewater. Environmental Science and Technology,2008,42(23):8916-8921.
    [32]Qian, H.F., Xu, X.Y., Chen, W., Jiang, H., Jin, Y.X., Liu, W.P., Fu, Z.W. Allelochemical stress causes oxidative damage and inhibition of photosynthesis in Chlorella vulgaris, Chemosphere.2009,75:368-375.
    [33]Qian, H.F., Yu, S.Q., Sun, Z.Q., Xie, X.C., Liu, W.P., Fu, Z.W. Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa. Aquatic Toxicology,2010,99(3):405-412.
    [34]Miao, H.F., Tao W.Y. The mechanisms of ozonation on cyanobacteria and its toxins removal. Separation and Purification Technology,2009,66(1):187-193.
    [35]Yun, Y.S., Lim, S.R., Cho, K.K., Park, J.M. Variations of photosynthetic activity and growth of freshwater algae according to ozone contact time in ozone treatment. Biotechnology Letters,1997,19:831-833.
    [36]Liang H., Nan J.N., He W.J., Li G.B. Algae removal by ultrasonic irradiation-coagulation. Desalination,2009,239(1-3):191-197.
    [37]Zhang, G.M., Zhang, P.Y., Liu, H., Wang, B. Ultrasonic damages on cyanobacterial photosynthesis,2006,13(6):501-505.
    [38]Zhang, G.M., Zhang, P.Y., Wang, B., Liu, H. Ultrasonic frequency effects on the removal of Microcystis aeruginosa. Ultrasonics Sonochemistry,2006,13(5):446-450.
    [39]Tao, Y, Zhang, X.H., Aub, D.W.T., Mao, X.Z., Yuan, K. The effects of sub-lethal UV-C irradiation on growth and cell integrity of cyanobacteria and green algae. Chemosphere,2010,78(5):541-547.
    [40]Sakai, H., Oguma, K., Katayama, H., Ohgaki, S. Effects of low-or medium-pressure ultraviolet lamp irradiation on Microcystis aeruginosa and Anabaena variabilis. Water Research,2007,41(1):11-18.
    [41]Sakai, H., Oguma, K., Katayama, H., Ohgaki, S. Effects of low or medium-pressure UV irradiation on the release of intracellular microcystin. Water Research,2007,41(15):3458-3464.
    [42]赵志伟,李文明,高晗,王云波.气浮工艺强化除藻中试试验研究.沈阳大学学报,2007,19(2):62-65.
    [43]董文艺,范洁,张金松.微滤膜与活性炭联用工艺去除富营养化水源水中藻类.环境污染治理技术与设备,2004,5(3):74-79.
    [44]Hung, M.T., Liu, J.C. Microfiltration for separation of green algae from water. Colloids and Surfaces B:Biointerfaces,2006,51(2):157-164.
    [45]袁蓉,刘建武,成旦红.风眼莲对多环芳烃(萘)有机废水的净化.上海大学学报(自然科学版),2004,10(3):272-276.
    [46]唐萍,吴国荣,陆长梅.太湖水域几种高等水生植物的克藻效应.农村生态环境,2001,17(3):42-44.
    [47]李锋民,胡洪营.大型水生植物浸出液对藻类的化感抑制作用.中国给水排水,2004,20(11):18-21.
    [48]Lee, S., Kato, J., Takiguchi, N. Involvement of an extracellular protease in Algicidal activity of the marine bacterium Pseudoalteromonas sp. Strain A28. Applied and Environment Microbiology,2000,66(1):4334-4339.
    [49]Imamura, N. Motoike, I., Shimada, N. An efficient screening approach for anti-Microcystis compounds based on knowledge of aquatic microbial ecosystem. Journal of Antibiotics,2001,54(7):582-587.
    [50]吴刚,席宇,赵以军.溶藻细菌研究的最新进展.环境科学研究,2002,15(5):43-46
    [51]赵以军,刘永定.有害藻类及其微生物防治的基础——藻菌关系的研究动态.水生生物学报,1996,20(2):173-181.
    [52]Shilo, M. Lysis of blue green algae by mycobacterium. Journal of Bacteriology, 1970,140:453-461.
    [53]Kang, Y, Kim, H.J.D., Kim, B. H., Kong, D., Han, M.S. Isolation and characterization of a bio-agent antagonistic to diatom, Stephanodiscus hantzschii. Journal of Applied Microbiology,2005,98:1030-1038.
    [54]Yoshikawa, K., Adachi, K., Nishijima, M. β-Cyanoalanine production by marine bacteria on cyanide-free medium and its specific inhibitory activity toward cyanobacteria. Applied and Environment Microbiology,2000,66(2):718-722.
    [55]Yamamoto, Y., Kouchiwa, T., Hodoki, Y. Distribution and identification of actinomycetes lysing cyanobacteria in a eutrotrophic lake. Journal of Applied Phycology,1998,10(2):391-397.
    [56]Dakhama A. Isolation and identification of antialgal substances produced by Pseudomonas aeruginosa. Journal of Applied Phycology,1993,5(9):297-306.
    [57]Imamura, N., Motoike, I., Noda, N. Argimicin A, a novel anti-cyanobacterial compound produced by an algae-lysing bacterium. Journal of Antibiotics,2000, 53(11):1317-1319.
    [58]Paul, S., Jinnque, Rho., Haim, B.G. Bacterial suppression of Chlorella by hydroxylamine production. Water Research,1979,13(1):267-273.
    [59]瞿建宏,刘韶斌.水体中芽孢杆菌和微囊藻的生长及其资源竞争.湛江海洋大学学报,2002,22(3):13-18.
    [60]赵传鹏,浦跃朴,尹立红.溶藻细菌及其测定评价方法的研究进展.东南大学学报(医学版),2005,24(3):203-206.
    [61]Furusawa, G., Yoshikawa, T., Yasuda, A. Algicidal activity and gliding motility of Saprospira sp. SS98-5. Canadian Journal of Microbiology,2003,49:92-100.
    [62]郭亚新,程凯,赵以军.淡水噬藻体及其他溶藻因子的分布与感染力.中国环境科学,2003,23(2):167-170.
    [63]Howard A., Foster, I.b., Ditta, S.V., Alex, S. Photocatalytic disinfection using tit-anium dioxide:spectrum and mechanism of antimicrobial activity. Applied Microbio-logy and Biotechnology,2011,90:1847-1868.
    [64]Salih, F.M. Enhancement of solar inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. Journal of Applied Microbiology,2002,92: 920-926.
    [65]Bai, M.D., Zhang, Z.T., Xue, X.H., Yang, X.L., Hua, L.S., Fan, D. Killing Effects of Hydroxyl Radical on Algae and Bacteria in Ship's Ballast Water and on Their Cell Morphology. Plasma Chemistry and Plasma Processing,2010,30(6):831-840.
    [66]Codd, G.A., Lindsay, J., Young, F.M., Morrison, L.F., Metcalf, J.S. Harmful cyanobacteria:from mass mortalities to management measures. In:Huisman, J., Matthijs, H.C.P., Visser, P.M. Harmful Cyanobacteria. Netherlands:Springer, Dordrecht,2005:1-23.
    [67]Kaebernick, M., Neilan, B.A. Ecological and molecular investigations of cyanotoxin production. FEMS Microbiology Ecology,2001,35(1):1-9.
    [68]Banker, R., Carmeli, S., Werman, M., Teltsch, B., Porat, R., Sukenik, A. Uracil moiety is required for toxicity of the cyanobacterial hepatotoxin cylindrospermopsin. Journal of Toxicology & Environmental Health:Part A,2001,62(4):281-288.
    [69]Nicholson, B.C., Shaw, G.R., Morrall, J., Senogles, P. J., Woods, T.A., Papageorgiou, J., Kapralos, C., Wickramasinghe, W., Davis, B.C., Eaglesham, G.K., Moore, M.R. Chlorination for degrading saxi-toxins (paralytic shellfish poisons) in water. Environmental Technology,2003,24(11):1341-1348.
    [70]Van-Apeldoorn, M.E., Van-Egmond, H.P., Speijers, G.J.A., Bakker, G.J.I. Toxins of cyanobacteria. Molecular Nutrition and Food Research,2007,51(1):7-60.
    [71]Chiswell, R. K., Shaw, G. R., Eaglesham, G., Smith, M. J. Stability of cylindrospermopsin, the toxin from the cyanaobacterium, Cylindrospermopsis raciborskii, effect of pH, temperature, and sunlight on decomposition, Environmental Toxicology,1999,14:155-161.
    [72]Duy, T. N., Lam, P. K. S., Shaw, G., Connell, D. W., Toxicology and risk assessment of freshwater cyanobacterial (blue-green algal) toxins in water, Reviews of Environmental Contamination and Toxicology,2000,163:113-186.
    [73]Goldberg, J., Huang, H.B., Kwon, Y.G., Greengard, P. Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature, 1995,376:745-753.
    [74]Gupta, N., Pant, S.C., Vijayaraghavan, R., Rao, P.V.L. Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice. Toxicology,2003,188 (2-3):285-296.
    [75]Kuiper-Goodman, T., Falconer, I., Fitzgerald, J. Human health aspects. In: Chorus, I., Bartram, J. Toxic Cyanobacteria in Water:A Guide to their Public Health Consequences, Monitoring and Management. London:E & FN Spon,1999:113-153.
    [76]Froscio, S.M., Humpage, A.R., Wickramasinghe, W., Shaw, G., Falconer, I.R. Interaction of the cyanobacterial toxin cylindrospermopsin with the eukaryotic protein synthesis system. Toxicon,2008,51 (2):191-198.
    [77]蔡俊鹏,程璐,吴冰,宋志萍.鱼腥藻毒素及其检测、去除方法研究进展.水利渔业,2006,26(3):3-6.
    [78]Yu, S.Z. Primary prevention of hepatocellular carcinoma. Journal of Gastroenterology and Hepatology,1995,10:674-682.
    [79]Merel, S., Clement, M., and Thomas, O. State of the art on cyanotoxins in water and their behaviour towards chlorine. Toxicon,2010,55(4):677-691.
    [80]Gorchev, H.G., Ozolins, G. W. H. O. guidelines for drinking-water quality. World Health Organization Chronicle,1984,38(3):104-108.
    [81]Dawson, R.M. The toxicology of microcystins. Toxicon,1998,36(7):953-962.
    [82]Hudder, A., Song, W.H., O'Shea, K.E., Walsh, P.J. Toxicogenomic evaluation of micro-cystin-LR treated with ultrasonic irradiation. Toxicology and Applied Pharmacology,2007,220(3):357-364.
    [83]盛建武,何苗,施汉昌,钱易.水环境中微囊藻毒素检测技术研究进展.环境污染与防治,2006,28(2):132-136.
    [84]Kari, E.F., Margrethe H.S. Sensitive detection of apoptogenic toxins in suspension cultures of rat and salmon hepatocytes. Toxicon,1998,36(8):1101-1114.
    [85]Chu, F.S., Huang, X., Wei, R.D. Enzyme-linked immunosorbent assay for microcystins in blue-green algal blooms. Journal-Association of Official Analytical Chemists,1990,73(3):451-456.
    [86]蔡冲,李志凌.饮用水中微囊藻毒素检测研究进展.现代预防医学,2008,35(6):1140-1144.
    [87]陈海燕,陆怀初,陈云霞.化学分析法在微囊藻毒素检测中的应用.中国卫生检验杂志,2010,09:2388-2390.
    [88]金静,刘小真.水环境中微囊藻毒素分析技术进展.环境科学与技术,2007,30(11):111-114.
    [89]Blom, J.F., Juttner, F. High crustacean toxicity of microcystin congeners does not correlate with high protein phosphatase inhibitory activity. Toxicon,2005,46:465-470.
    [90]Yang, M.S., Lam P.K.S., Huang, M. Effects of microcystins on phosphorylase-a binding to phosphatase-2A:kinetic analysis by surface plasmon resonance biosensor. Biochimica et Biophysica Acta (BBA)-General Subjects,1999,1427(1):62-73.
    [91]姚玉玲,蒋文菁,屈秋,但德忠.地表水和饮用水中微囊藻毒素检测方法的研究进展.现代科学仪器,2008,5:86-90.
    [92]Fastner, J., Flieger, I., Neumann, Uwe. Optimised extraction of microcystins from different solvent and procedures. Water Research,1998,32(10):3177-3181.
    [93]Rapala, J., Erkomaa, K., Kukkonen, J. Detection of microcystins with protein phosphatase inhibition assay, high-performance liquid chromatography-UV detection and enzyme-linked immunosorbent assay Comparison of methods. Analytica Chimica Acta,2002,466:213-231.
    [94]Meriluoto, J. Chromatography of microcystins. Analytica Chimica Acta,1997, 352:277-298.
    [95]王蕾,李小艳,薛文通,张惠,张泽俊.微囊藻毒素检测方法研究进展.食品科,2005,26(增刊):135-138.
    [96]Dahlmann, J., Budakowski,W.R.,Luckas, B. Liquid chromatography-electrospray ionisa-tion-mass spectrometry based method for the simultaneous determination of algal and cyanobacterial toxins in phytoplankton from marine waters and lakes followed by tentative structural elucidation of microcystins. Journal of Chromatogra-phy A,2003,994:45-57.
    [97]Allis, O., Dauphard, J., Hamilton, B., Shuilleabhain, A.N., Lehane, M, James, K.J., Furey, A. Liquid Chromatography-Tandem Mass Spectrometry Application, for the Determination of Extracellular Hepatotoxins in Irish Lake and Drinking Waters. Analytical Chemistry,2007,79(9):3436-3447.
    [98]张昱,杨敏,李宗来,张晶,郭召海.液相色谱-电离质谱法测定微囊藻毒素.中国给水排水,2005,21(4):94-96.
    [99]Aguete, E.C., Gago-Martinez, A., Rodriguez-Vazquez, J. A., O'Connell, S., Moroney, C., K. James, J. Application of HPLC and HPCE to the analysis of cyanobacterial toxins. Chromatographia,2000:254-259.
    [100]Gupta V.K. Application of low-cost adsorbents for dye removal:A review. Journal of Environmental Management,2009,90(8):2313-2342.
    [101]刘成,黄廷林,赵建伟.混凝、粉末活性炭吸附对不同分子量有机物的去除.净水技术.2006,25(1):31-33.
    [102]刘倩辉,裴海燕,胡文容,蒋波.活性炭去除水体中微囊藻毒素的研究进展.工业水处理.2010,11:8-11.
    [103]Warhurst, A.M., Raggett, S.L., McConnachie, G.L. Adsorption of the cyanobacterial hepatotoxin microcystin-LR by a low-cost activated carbon from the seed husks of the pan-tropical tree, Moringa oleifera. Science of the Total Environment,1997,207(2/3):207-211.
    [104]朱光灿.生物活性炭去除微囊藻毒素的研究.中国给水排水,2005,21(2):14-17.
    [105]Fawell, J.K., Hart, J., James, H.A., Parr, W. Blue-green algae and their toxins-analysis, toxicity, treatment and environmental control. Water Supply,1993,11: 109-122.
    [106]Lee, J.W., Walker, H. Effect of Process Variables and Natural Organic Matter on Removal of Microcystin-LR by PAC-UF. Environmental Science and Technology, 2006,40 (23):7336-7342.
    [107]Lahti,K., Hiisvirta, L. Removal of cyanobacterial toxins in water treatment processes:Review of studies conducted in Finland. Water Supply,1989:149-154.
    [108]Ho, L., Meyn, T., Keegan, A., Hoefel, D., Brookes, J., Saint, C.P., Newcombe, G. Bacterial degradation of microcystin toxins within a biologically active sand filter. Water Research,2006,40:768-774.
    [109]Bourne, D.G., Blakeley, R.L., Riddles, P., Jones, G.J. Biodegradation of the cyanobacterial toxin microcystin LR in natural water and biologically active slow sand filters. Water Research,2006,40(6):1294-1302.
    [110]Bourne, D.G., Jones, G.J., Blakeley, R.L., Jones, A., Negri, A.P.,Riddles, P. Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin-LR. Applied and Environmental Microbiology,1996,62 (11): 4086-4094.
    [111]Imanishi, S., Kato, H., Mizuno, M., Tsuji, K., Harada, K.I. Bacterial degradation of microcystins and nodularin. Chemical Research in Toxicology,2005,18 (3):591-598.
    [112]Bourne, D.G, Riddles, P., Jones, GJ., Smith, W., and Blakeley, R.L. Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR. Environmental Toxicology,2001,16:523-534.
    [113]Ho L., Hoefel D., Christopher P. S., Newcombe G Isolation and identification of a novel microcystin-degrading bacterium from a biological sand filter. Water Research, 2007,41:4685-4695.
    [114]Saitou, T., Sugiura, N., Itayama, T., Inamori, Y., and Matsumura, M. Degradation characteristics of microcystins by isolated bacteria from Lake Kasumigaura. Journal of Water Supply:Research and Technology-Aqua,2003,52: 13-18.
    [115]Onstad, G.D., Strauch, S., Meriluoto, J., Codd, G.A. Selective Oxidation of Key Functional Groups in Cyanotoxins during Drinking Water Ozonation. Environmental Science and Technology,2007,41(12):4397-4404.
    [116]Miao, H.F., Qin, F., Tao, G.J., Tao, W.Y., Ruan, W.Q. Detoxification and degradation of microcystin-LR and-RR by ozonation. Chemosphere,2010,79: 355-361.
    [117]Brooke, S., Newcombe, G., Nicholson, B. and Klassa, G. Decrease in toxicity of microcystins LA and LR in drinking water by ozonation. Toxicon,2006,48(8): 1054-1059.
    [118]Aceroa, J.L., Rodrigueza, E., Meriluotob, J. Kinetics of reactions between chlorine and the cyanobacterial toxins microcystins. Water Research,2005,39(8): 1628-1638.
    [119]Xagoraraki, I., Harrington, GW., Zulliger, K., Zeier, B., Krick, W., Karner, D. A., Standridge, J.H., Westrick, J.A. Inactivation kinetics of thecyanobacterial toxin microcystin-LR by free chlorine. Journal of Environmental Engineering,2006,132(7): 818-823.
    [120]Tsuji, K., Watanuki, T., Kondo, F., Watanabe, M.F., Nakazawa, H., Suzuki, M., Uchida, H., Harada, K.I. Stability of Microcystins from cyanobacteria-iv. effect of chlorination on decomposition. Toxicon,1997,35(7):1033-1041.
    [121]Lawton, L.A., Robertson, P.K.J. Physico-chemical treatment methods for the removal of microcystins(cyanobacterial hepatotoxins) from potable waters. Chemical Society Reviews,1999,28:217-224.
    [122]Merel, S., LeBot, B., Clement, M., Seux, R., Thomas, O. Ms identification of microcysin-LR chlorination by-products. Chemosphere,2009,74(6):832-839.
    [123]Rodriguez, E.M., Acero, J.L., Spoof, L. and Meriluoto, J. Oxidation of MC-LR and -RR with chlorine and potassium permanganate:Toxicity of the reaction products. Water Research.2008,42(6-7):1744-1752.
    [124]Ma, J., Graham, N., Li, G., Effect of permanganate preoxidation in enhancing the coagulation of surface water—laboratory case studies. Journal of Water Supply: Research and Technology-Aqua,1997,46:1-10.
    [125]Rodriguez, E., Majado, M.E., Meriluoto, J.J., Acero, L. Oxidation of microcystins by permanganate:Reaction kinetics and implications for water treatment. Water Research,2007,41(1):102-110.
    [126]Rositano. The destruction of cyanobacterial peptide toxins by oxidants used in water treatment. Melbourne:Urban Water Research Association of Australia.1996.
    [127]Yan, Y.E., Schwartz, F.W. Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate. Journal of Contaminant Hydrology,1999, 37(3-4):343-365.
    [128]Huang, K. C., Hoag, G.E., Chheda, P., Woody, B.A., Dobbs, G.M. Kinetics and mechanism of oxidation of tetrachloroethylene with permanganate. Chemosphere, 2002,46(6):815-825.
    [129]Chen, X.G., Xiao, B.D., Liu, J.T., Fang, T. Xu, X.Q. Kinetics of the oxidation of MCRR by potassium permanganate. Toxicon,2005,45(7):911-917.
    [130]马宁,雷庆铎,陈志冉.高锰酸钾氧化池塘藻毒素的研究.水生态学杂志,2008,28(6):28-30.
    [131]Kull, T.P.J., Backlund, P.H., Karlsson, K.M., Meriluoto, J.A.O. Oxidation of the Cyanobacterial Hepatotoxin Microcystin-LR by Chlorine Dioxide:Reaction Kinetics, Characterization, and Toxicity of Reaction Products. Environmental Science and Technology,2004,38 (22):6025-6031.
    [132]Kull, T.P. J., Sjovall, O.T., Tammenkoski, M.K., Backlund, P.H., Meriluoto, J.A.O. Oxidation of the Cyanobacterial Hepatotoxin Microcystin-LR by Chlorine Dioxide:Influence of Natural Organic Matter. Environmental Science and Technology, 2006,40(5):1504-1510.
    [133]Antoniou, M.G., Shoemaker, J.A., Delaceuz, A.A., Dionysiou, D.D. Unveiling New Degradation Intermediates/Pathways from the Photocatalytic Degradation of Microcystin-LR. Environmental Science and Technology,2008,42:8877-8883.
    [134]Lawton, L.A., Robertson, P.K.J., Cornish, B.J.P.A., Jaspars, M. Detoxification of Micro-cystins (Cyanobacterial Hepatotoxins) using TiO2 Photocatalytic Oxidation. Environmental Science and Technology,1999,33:771-775
    [135]Song, W.H., Xu, W.L., Cooper, Dionysios, D., Dionysiou, Armah, A., Delacruz, and O'shea, K.E. Radiolysis Studies on the Destruction of Microcystin-LR in Aqueous Solution by Hydroxyl Radicals. Environmental Science and Technology,2009, 43:1487-1492.
    [136]Merel, S., LeBot, B., Clement, M., Seux, R., Thomas, O. Ms identification of micro-cystin-LR chlorination by-products. Chemosphere,2009,74:832-839.
    [137]Miao, H.F., Qin, F., Tao, G.J., Tao, W.Y., Ruan, W.Q. Detoxification and degradation of microcystin-LR and-RR by ozonation. Chemosphere,2010,79: 355-361.
    [138]Rodriguez, E., Onstad, G.D., Kull, T.P.J., Metcalf, J.S., Acero, J.L., Von-Gunten, U. Oxidative elimination of cyanotoxins:Comparison of ozone, chlorine, chlorine dioxide and permanganate.Water Research,2007,41(15):3381-3393.
    [139]Feitz, A.J., Waite, T.D., Jones, GJ. Photocatalytic degradation of the blue green algal toxin mieroeystin-LR in a natural organic-aqueous matrix. Environmental Science and Technology,1999,33:243-249.
    [140]Antoniou, M.G., Nicolaou, P.A., Shoemaker, J.A., Delacruz, A.A., Dionysiou, D.D. Impact of the morphological properties of thin TiO2 photocatalytic films on the detoxification of water contaminated with the cyanotoxin, microcystin-LR. Applied Catalysis B:Environmental,2009,91(1-2):165-173.
    [141]Liu, I., Lawton, L.A., Bahnemann, D.W., Liu, L., Proft, B. and Robertson, P.K.J. The photocatalytic decomposition of microcystin-LR using selected titanium dioxide materials. Chemosphere,2009,76(4):549-553.
    [142]Shephard, G.S., Stockenstrom, S., Villiers, D.D., Engelbrecht, W.J., and Wessels, G.F.S. Degradation of microcystin toxins in a falling film photocatalytic reactor with immobilized titanium dioxide catalyst. Water Research,2002,36(1):140-146.
    [143]Lawton, L.A., Robertson, P.K.J., Cornish, B.J.P.A., Marr, I.L., Jaspars, M. Processes influencing surface interaction and photocatalytic destruction of microcystins on titanium dioxide photocatalysts. Journal of Catalysis,2003,213(1): 109-113.
    [144]Liu, I., Lawton, L.A., Cornish, B., Robertson, P.K.J. Mechanistic and toxicity studies of the photocatalytic oxidation of microcystin-LR. Journal of Photochemistry and Photobiology A:Chemistry,2002,148(1-3):349-354.
    [145]王其仓,刘有智,白雪,申红艳.Fenton试剂法处理有机废水的技术进展.化工中间体,2009,12:25-29.
    [146]贾胜娟,杨春风,赵东胜.Fenton氧化技术在废水处理中的研究与应用进展.工业水处理,2008,28(10):5-9.
    [147]Zhong, Y., Jin, X.C., Qiao, R.P., Qi, X.H., Zhuang, Y.Y. Destruction of microcystin-RR by Fenton oxidation. Journal of Hazardous Materials,2009,167(1-3): 1114-1118.
    [148]尤特,唐运平.Photo-Fenton技术处理难降解有机废水的研究进展.天津工业大学学报,2010,29(4):68-73.
    [149]Bandala, E.R., Martinez, D., Martinez, E., Dionysiou, D.D. Degradation of microcystin-LR toxin by Fenton and Photo-Fenton processes. Toxicon,2004,43(7): 829-832.
    [150]乔瑞平.微污染水中微囊藻毒素的脱除技术研究.天津:南开大学,2005.
    [151]Song, W.H., Teshiba, T., Rein, K., O'Shea, K.E. Ultrasonically Induced Degradation and Detoxification of Microcysin-LR (Cyanobacterial Toxin). Environmental Science and Technology,2005,39(16):6300-6305.
    [152]Song, W.H., Delacruz, A.A., Rein, K., O'Shea, K.E. Ultrasonically induced degradation of microcysint-LR and -RR:identification of products, effect of pH, formation and destruction of peroxides. Environmental Science and Technology,2006, 40:3941-3946.
    [153]Song, W., Ravindran, V., Pirbazari, M. Process optimization using a kinetic model for the ultraviolet radiation-hydrogen peroxide decomposition of natural and synthetic organic compounds in groundwater. Chemical Engineering Science,2008, 63(12):3249-3270.
    [154]Legrini, O., Oliveros, E., Braun, A.M. Photochemical processes for water treatment. Chemical Reviews,1993,93(2):671-698.
    [155]Hovorka, S.W., Schoneich, C., Oxidative degradation of pharmaceuticals: Theory, mechanisms and inhibition. Journal of Pharmaceutical Sciences,2001,90(3): 253-269.
    [156]Yuan, F., Hu, C., Hu, X.X., Wei, D.B., Chen, Y, Qu, J.H. Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process. Journal of Hazardous Materials,2011,185(2-3):1256-1263.
    [157]Nienow, A.M., Bezares-Cruz, J.C., Poyer, I.C., Hua, I., Jafvert, C.T. Hydrogen peroxide-assisted UV photodegradation of Lindane. Chemosphere,2008,72: 1700-1705.
    [158]Ravera, M., Musso, D., Gosetti, F., Cassino, C., Gamalero, E., Osella, D. Oxidative degradation of 1,5-naphthalenedisulfonic acid in aqueous solutions by UV-photolysis in the absence and presence of H2O2. Chemosphere,2010,79: 144-148.
    [159]Kim, I., Yamashita, N., Tanaka, H. Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments. Chemosphere,2009,77: 518-525.
    [160]Chelme-Ayala, P., El-Din, M.G., Smith, D.W. Degradation of bromoxynil and trifluralin in natural water by direct photolysis and UV plus H2O2 advanced oxidation process. Water Research,2010,44:2221-2228.
    [161]Jiraroj, D., Unoba, F., Hagege, A. Degradation of Pb-EDTA complex by a H2O2/UV process. Water Research,2006,40:107-112.
    [162]Chin, W.H., Roddick, F.A., and Harris, J.L. Grey water treatment by UVC/H2O2. Water Research,2009,43(16):3940-3947.
    [163]Chang, P.B.L., Young, T.M. Kinetics of methyl tert-butyl ether degradation and by product formation during UV hydrogen peroxide water treatment. Elsevier Science Ltd,2000,34(8):2233-2240.
    [164]Chu, W.H., Gao, N.Y., Deng, Y. Performance of A Combination Process of UV/ H2O2/Micro-Aeration for Oxidation of Dichloroacetic Acidin Drinking Water. Clean-Soil, Air, Water,2009,37(3):233-238.
    [165]Wu, C.L., Linden, K.G. Degradation and byproduct formation of parathionin aqueous solutions by UV and UV/H2O2 treatment. Water Research,2008,42(19): 4780-4790.
    [166]郭建伟,张永吉,曾果,周玲玲,高乃云.H202与UV工艺对铜绿微囊藻灭活特点比较.环境科学,2010,31(8):1801-1806.
    [167]薛晓红,白敏冬,杨波,张拿慧,范丹,华六三.羟基自由基致死小新月菱形藻的生化机制.科技导报,2010,9:80-83.
    [168]Bai, M.D., Zhang, Z.T., Bai, M.D., Yang, B., Bai, X.Y. Effects of Hydroxyl Rad-icals on Introduced Organisms of Ship's Ballast Water Based Micro Gap Discharge. Plasma Science and Technology,2007,9(2):206-210.
    [169]Halli W, Lo C C.1997. Fenton process for treatment of desizing wastewater [J]. Water Research,31(8):2050-2056.
    [170]Teismann P, Ferger B.2000. The salicylate hydroxylation assay to measure hydroxyl free radicals induced by local application of glutamate in vivo or induced by the Fenton reaction in vitro [J]. Brain Research Protocols,5:204-210.
    [171]邵从本,罗广华,王爱国.几种检测超氧化物岐化酶活性反应的比较[J].植物生理学通讯,1983,19(5):46-49.
    [172]BRADFORD M. A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding [J]. Analytical Biochemistry,1976,72 (1/2):248-254.
    [173]王家岭.环境微生物学实验.北京:高等教育出版社,1989.
    [174]Khil, P.P., Camerini-Otero, R.D.,2002. Over 1000 genes are involved in the DNA damage response of Escherichia coli. Molecular Microbiology,44,89-105.
    [175]Zavilgelsky, G.B., Kotova, V.Y., Manukhov, I.V.,2007. Action of 1,1-dimethyl-lhydrazine on bacterial cells is determined by hydrogen peroxide. Mutation Research, 634,172-176.
    [176]VanBogelen, R.A., Kelley, P.M., Neidhardt, F.C.,1987. Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. Journal of Bacteriology,169,26-32.
    [177]Gawande, P.V., Griffiths, M.W.,2005. Effects of environmental stresses on the activities of the uspA, grpE and rpoS promoters of Escherichia coli O157:H7. International Journal of Food Microbiol,99:91-98.
    [178]Santos, P.M., Benndorf, D., Isabel, S.C.,2004. Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Prote-omics 4,2640-2652.
    [179]Wood, Z.A., Schroder, E., Robin, H.J., Poole, L.B.,2003. Structure, mechanism and regulation of peroxiredoxins. Trends in Biochemical Sciences,28,32-40.
    [180]Kim, H.K., Kim, S.J., Lee, J.W., Cha, M.K., Kim, I.H.,1996. Identification of promoter in the 50-flanking region of the E. coli thioredoxin-liked thiol peroxidase gene:evidence for the existence of oxygen-related transcriptional regulatory protein. Biochemical Biophysical Research Communications,221,641-646.
    [181]Stork, T., Michel, K.P., Pistorius, E.K., Dietz, K.J.,2005. Bioinformatic analysis of the genomes of the cyanobacteria Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 for the presence of peroxiredoxins and their transcript regulation under stress. Journal of Experimental Botany,422,3193-3206.
    [182]Latin, A., Ruiz, M., Jeanjean, R., Zhang, C.C.,2007. PrxQ-A, a member of the peroxiredoxin Q family, plays a major role in defense against oxidative stress in the cyanobacterium Anabaena sp. strain PCC7120. Free Radical Biology and Medicine, 42:424-431.
    [183]Qian, H.F., Sheng, G.D., Liu, W.P., Lu, Y.C., Liu, Z.H., Fu, Z.W.,2008a. Inhibi-tory effects of atrazine on Chlorella vulgaris as assessed by real-time polymerase chain reaction. Environmental Toxicology Chemistry,27:182-187.
    184 Beatriz, M.L., Sevilla, E., Hernandez, J.A., Bes, M.T., Fillat, M.F., Peleato, M.L., 2006. Fur from Microcystis aeruginosa binds in vitro promoter regions of the micro-cystin biosynthesis gene cluster. Phytochemistry 67,876-881.
    [185]Kaebernick, M., Neilan, B.A., Borner, T., Dittmann, E.,2000. Light and the transcriptional response of the microcystin biosynthesis gene cluster. Applied Environmental Microbiology,66:3387-3392.
    [186]Dziga, D., Suda, M., Bialczyk, J., Urszula, C.P., Lechowski, Z.,2007. The alteration of Microcystis aeruginosa biomass and dissolved microcystin-LR concentration following exposure to plant-producing phenols. Environmental Toxicology,22:341-346.
    [187]Spinks, J.W.T. and Woods, R.J. (1990) An Introduction to Radiation Chemistry. pp.243-313. New York:Wiley.
    [188]Smirnoff, N.,1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol.125,27-58.
    [189]Liu, B.Y., Jiang, P., Zhou, A.E., Tian, J.R., Jiang, S.Y.,2007. Effect of pyrogall-ol on the growth and pigment content of cyanobacteria-blooming toxic and nontoxic Microcystis aeruginosa. Bulletin of Environmenatl Contamination and Toxicology,78:499-502.
    [190]Alam, Z.B., Otaki, M., Furumai, H., Ohgaki, S. Direct and indirect inactivation of Microcystis aeruginosa by UV-radiation. Water Research,2001,35(4):1008-1014.
    [191]Chandrasekhar, D., Houten, B.V. In vivo formation and repair of cyclobutane pyrimidine dimers and 6-4 photoproducts measured at the gene and nucleotide level in Escherichia coli. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,2000,450:19-40.
    [192]Singh, S.P., Hader, D.P., Sinha, R.P. Cyanobacteria and ultraviolet radiation (UVR) stress:Mitigation strategies. Ageing Research Reviews,2010,9:79-90.
    [193]Price, N.M., Harrison, P.J. Specific selenium containing macromolecules in the marine diatom Thalas siosira pseudonana. Plant Physiology,1988,86:192-199.
    [194]Danon, A., Delorme, V., Mailhac, N., Gallois, P. Plant programmed cell death:A common way to die. Plant Physiology and Biochemistry.2000,38(9):647-655.
    [195]Hoeberichts, F.A., Woitering, E.J. Multiple mediators of plant programmed cell death:interplay of conserved cell death mechanisms and plant-specific regulators. Bioessays,2003,25(1):47-57.
    [196]Ross, C., Vazquez, L.S., Paul, V. Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aeruginosa. Aquatic Toxicology,2006,78(1):66-73.
    [197]Xenopoulos, M.A., Bird, D.F. Effect of Acute Exposure to Hydrogen Peroxide on the Production of Phytoplankton and Bacterioplankton in a Mesohumic Lake. Photochemistry and Photobiology,1997,66(4):471-478.
    [198]DRAABKOVAA, M., ADMIRAAL, W, MARSyAALEK, B. Combined Exposure to Hydrogen Peroxide and Lights Selective Effects on Cyanobacteria, Green Algae, and Diatoms. Environmental Science and Technology,2007,41:309-314.
    [199]Chow, C.W.K., Drikas, M., House, J., Burch, M.D., Velzeboer, R.M.A. The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa. Water Research,1999,33:3253-3262.
    [200]Daly, R.I., Ho, L., Brookes, J.D. Effect of Chlorination on Microcystis aeruginosa Cell Integrity and Subsequent Microcystin Release and Degradation. Environmental Science and Technology,2007,41 (12):4447-4453.
    [201]Yuan, M., Namikoshi, M., Otsuki, A. Rinehart, K.L., Sivonen, K., Watanabe, M.F. Low-energy collisionally activated decomposition and structural characterization of cyclic heptapeptide microcystins by electrospray ionization mass spectrometry. Journal of Mass Spectrometry,1999,34(1):33-43.
    [202]Spoof, L., Vesterkvist, P., Lindholm, T., Meriluoto, J. Screening for cyanobacterial hepatotoxins, microcystins and nodularin in environmental water samples by reversed-phase liquid chromatography-electrospray ionisation mass spectrometry. Journal of Chromatography A,2003,1020(1):105-119.
    [203]Barco, M., Flores, C., Rivera, J., Caixach, J. Determination of microcystin variants and related peptides present in a water bloom of Planktothrix (Oscillatoria) rubescens in a Spanish drinking water reservoir by LC/ESI-MS. Toxicon,2004,44(8): 881-886.
    [204]Kaya, K., Sano, T., Inoue, H., Takagi, H. Selective determination of total normal microcystin by colorimetry, LC/UV detection and/or LC/MS. Analytica Chimica Acta, 2001,450(1-2):73-80.
    [205]Humberto, V.F., Maria, A.M., Karina, H.M.C., Valdemir, M.C. Use of electrospray tandem mass spectrometry for identification of microcystins during a cyanobacterial bloom event. Biochemical and Biophysical Research Communications, 2006,344:741-746.
    [206]Park, H.D., Iwami, C., Watanabe, M.F., Harada, K., Okino, T., Hayashi, H. Temporal variabilities of the concentrations of intra-and extracellular microcystin and toxic Microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991-1994). Environmental Toxicology and Water Quality,1998,13(1):61-72.
    [207]Pearson, L.A., Hisbergues, M., Borner, T., Dittman, E., Neilan, B.A. Inactivation of an ABC Transporter Gene, mcyH, Results in Loss of Microcystin Production in the Cyanobacterium Microcystis aeruginosa PCC 7806. Applied and Environmental Microbiology,2004,70(11):6370-6378.
    [208]Sakai, H., Katayama, H., Oguma, K., Ohgaki, S. Kinetics of Microcystis aeruginosa Growth and Intracellular Microcystins Release after UV Irradiation. Environmental Science and Technology,2009,43 (3):896-901.
    [209]Perez, S., Aga, D.S. Recent advances in the sample preparation, liquid chromatography tandem mass spectrometric analysis and environmental fate of microcystins in water. TrAC Trends in Analytical Chemistry,2005,24(7):658-670.
    [210]Chen, Y.M., Lee,T.H., Lee, S.J., Lin, J.Z., Huang, R. Chou, H.N. Potential of a simple solid-phase extraction method coupled to analytical and bioanalytical methods for an improved determination of microcystins in algal samples. Journal of Chromatography B,2006,844(1):134-141.
    [211]Gj(?)lme, N., Utkilen, H. The extraction and stability of microcystin-RR in different solvents. Phycologia.1996,35(6):80-82.
    [212]Ward, C.J., Beattie, K.A., Lee, E.Y.C., Codd, G.A. Colorimetric protein phosphatase inhibition assay of laboratory strains and natural blooms of cyanobacteria: comparisons with high-performance liquid chromatographic analysis for microcystins. FEMS Microbiology Letters,1997,153(2):465-473.
    [213]Ramanan, S., Tang, J., Velayudhan, A. Isolation and preparative purification of microcystin variants. Journal of Chromatography A,2000,883(1-2):103-112.
    [214]Gert-Jan de Maagd, P., Jan Hendriksb, A., Willem S., Sijm, D. pH-Dependent hydrophobicity of the cyanobacteria toxin microcystin-LR. Water Research,1999, 33(3):677-680.
    [215]Van-der Westhuizena, A.J., Eloffa, J.N. Toxin extraction from the blue-green alga microcystis aeruginosa by different extraction media. Journal of the Limnological Society of Southern Africa,1982,8(2):76-77.
    [216]Barco, M., Lawton, L.A., Rivera, J., Caixach, J. Optimization of intracellular microcystin extraction for their subsequent analysis by high-performance liquid chromatography. Journal of Chromatography A,2005,1074(1-2):23-30.
    [217]Ramanan, S., Tang, J., Velayudhan, A. Isolation and preparative purification of microcystin variants. Journal of Chromatography A,2000,883(1-2):103-112.
    [218]Sangolkar, L.N., Maske, S.S., Chakrabarti, T. Methods for determining microcystins (peptide hepatotoxins) and microcystin-producing cyanobacteria. Water Research,2006,40:3485-3496.
    [219]Zhang, L.F., Ping, X.F., Yang, Z.G. Determination of microcystin-LR in surface water using high-performance liquid chromatography/tandem electrospray ionization mass detector. Talanta,2004,62(1):191-198.
    [220]Harada, K.I., Nakano, T., Fujii, K., Shirai, M. Comprehensive analysis system using liquid chromatography-mass spectrometry for the biosynthetic study of peptides produced by cyanobacteria. Journal of Chromatography,2004,1033(1):107-113.
    [221]陈国永,林少彬,杨振波,丁昌明,马昱,陶茂萱.微囊藻毒素高效液相色谱检测方法的建立.中国卫生检验杂志,2007,17(8):1359-1361.
    [222]冯小刚.环境中微囊藻毒素的检测、提纯及其紫外光助催化降解的研究.南京:东南大学,2006.
    [223]McElhiney, J., Lawton, L.A. Detection of the cyanobacterial hepatotoxins microcystins. Toxicology and Applied Pharmacology,2005,203(3):219-230.
    [224]Fischer, W.J., Garthwaite, I., Miles, C.O., Ross, K.M., Aggen, J.B., Chamberlin, A.R. Towers, N.R., Dietrich, D.R. Congener-Independent Immunoassay for Microcystins and Nodularins. Environmental Science and Technology,2001,35 (24): 4849-4856.
    [225]Hoeger, S.J., Schmid, D., Blom, J.F., Ernst, B., Dietrich, D. R. Analytical and Functional Characterization of Microcystins [Asp3]MC-RR and [Asp3,Dhb7]MC-RR: Consequences for Risk Assessment? Environmental Science and Technology,2007, 41 (7):2609-2616.
    [226]Li, L., Gao, N.Y., Deng, Y., Yao, J.J. Zhang, K.J., Li, H.J., Yin, D.D., Ou, H.S., Guo, J.W. Experimental and model comparisons of H2O2 assisted UV photodegradation of Microcystin-LR in simulated drinking water. Journal of Zhejiang University-Science A,2009,10(11):1660-1669.
    [227]Qiao, R.P., Li, N., Qi, X.H., Wang, Q.S., Zhuang, Y.Y Degradation of microcystin-RR by UV radiation in the presence of hydrogen peroxide. Toxicon,2005, 45:745-752.
    [228]Zalazar, C.S, Labas, M.D, Brandi, R.J, Cassano, A.E. Dichloroacetic acid degradation employing hydrogen peroxide and UV radiation. Chemosphere,2007,66: 808-815.
    [229]Beltran, F.J., Ovejero, G, Rivas, J. Oxidation of polynuclear aromatic hydrocarbons in water.3.UV radiation combined with hydrogen peroxide. Industrial & Engineering Chemistry Research,1996.35:883-890.
    [230]Echigo, S., Yamada, H., Matsui, S., Kawanishi, S., Shishida, K. Comparison between 03/vuv, O3/H2O2, vuv and O3 processes for the decomposition of organophosphoric acid triesters. Water Science and Technology,1996,34 (9):81-88.
    [231]Gao, N.Y., Deng, Y, Zhan, D.D. Ametryn degradation in the ultraviolet (UV) irradiation/hydrogen peroxide (H2O2) treatment. Journal of Hazardous Materials,2009, 164:640-645.
    [232]Xu, B., Gao, N.Y., Cheng, H.F., Xia, S.J., Rui, M., Zhao, D.D. Oxidative degradation of dimethyl phthalate (DMP) by UV/H2O2 process. Journal of Hazardous Materials,2009,162:954-959.
    [233]Chin, W.H, Roddick, F.A, Harris, J.L. Greywater treatment by UVC/H2O2. Water Research,2009,43:3940-3947.
    [234]Sarzanini, C, Sacchero, G., Mentasti, E., Hajos, P. Studies on the retention behaviour of metal-EDTA complexes in cation chromatography. Journal of Chromatography A,1995,706(1-2):141-147.
    [235]Liao, C.H., Gurol, M.D. Chemical Oxidation by Photolytic Decomposition of Hydrogen Peroxide. Environmental Science and Technology,1995,29(12): 3007-3014.
    [236]Glaze, W.H., Lay Y., Kang, J.W. Advanced oxidation processes:a kinetic model for the oxidation of 1,2-dibromo-3-chloropropane in water by the combination of hydrogen peroxide and UV radiation. Industrial and Engineering Chemistry Research, 1995,34(7):2314-2323.
    [237]Ince, N.H., Gonenc, D.T. Treatability of a textile azo dye by UV/H2O2. Environmental Technology,1997,18(2):179-185.
    [238]乔瑞平,漆新华,李楠,庄源益,王启山.UV/H2O2氧化微囊藻毒素-LR的动力学模型.安全与环境学报,2005,5(3):33-36.
    [239]Arantegui, J., Prado, J., Chamarro, E., Esplugas, S. Kinetics of the UV degradation of atrazine in aqueous solution in the presence of hydrogen peroxide. Journal of Photochemistry and Photobiology A:Chemistry,1995,88(1):65-74.
    [240]Rivasseau, C., Martins, S., Hennion, M.C. Determination of some physicochemical parameters of microcystins (cyanobacterial toxins) and trace level analysis in environmental samples using liquid chromatography. Journal of chromatography A,1998,799:155-169.
    [241]Schwarzenbach, R.P., Gschwend, P., Imboden, D. M. EnVironmental Organic Chemistry, New York:A Wiley-Interscience Publication JOHN WILEY & SONS, 1993.
    [242]Yuan, F., Hu, C., Hua, X.X., Qu, J.H., Yang, M. Degradation of selected pharmaceuticals in aqueous solution with UV and UV/H2O2. Water Research,2009, 43(6):1766-1774.
    [243]Liu, I., Lawton, L.A., Robertson, P.K.J. Mechanistic studies of the photocatalytic oxidation of microcystin-LR:an investigation of byproducts of the decomposition process. Environmental Science and Technology,2003,37:3214-3219.
    [244]Tsuji, K., Watanuki, T., Kondo, F., Watanabe, M., Suzuki, S., Nakazawa, H., Suzuki, M., Uchida, H., Harada, K.I. Stability of microcystins from cyanobacterial-Ⅱ.effect of UV light on decomposition and isomerization. Toxicon,1995,33: 1619-1631.
    [245]Kaya, K., Sano, T. A photodetoxification mechanism of the cyanobacterial hepatotoxin microcystin-LR by ultraviolet irradiation. Chemical research in toxicology,1998,11:159-163.
    [246]Saha, A., Mandal, P.C., Bhattacharyya, S.N. Radiation-induced inactivation of enzymes-A review. Radiation Physics and Chemistry,1995,46(1):123-145.
    [247]Butler, J., Land, E.J., Swallow, A.J., Prutz, W. The azide radical and its reaction with tryptophan and tyrosine. Radiation Physics and Chemistry,1984,23(1-2): 265-270.
    [248]Brodskaya, G.A, Sharpatyi, V.A. Radiolysis of Aqueous Solutions of Phenylalanine. Russian Journal of Physical Chemistry(English trans),1967,41:583.
    [249]Hawkins, C.L., Davies, M.J. Generation and propagation of radical reactions on proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2001,1504:196-219.
    [250]Garrison, W.M. Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chemical Reviews,1987,87(2):381-398.
    [251]Davies, M.J. Protein and peptide alkoxyl radicals can give rise to C-terminal decarbo-xylation and backbone cleavage. Archives of Biochemistry and Biophysics, 1996,336(1):163-172.
    [252]Hawkins, C.L., Davies, M.J. Generation and propagation of radical reactions on proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics,.2001,1504:196-219.
    [253]Goldberg, J., Huang, H.B., Kwon, Y.G., Greengard, P., Nairn, A. C., Kuriyan, J. Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature,1995,376,745-753.
    [254]Harada, K.I. Chemistry and detection of microcystins.Toxic Microcystis,1996: 103-148.
    [255]Harada, K.I., Imanishi, S., Kato, H., Mizuno, M., Ito, E., Tsuji, K. Isolation of Adda from microcystin-LR by microbial degradation, Toxicon,2004,44(1):107-109.
    [256]Takenaka, S., Tanaka, Y. Decomposition of cyanobacterial microcystins by iron(III) chloride. Chemosphere,1995,30(1):1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700