羽毛液体过滤材料吸附Cu~(2+)机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cu2+广泛存在于电镀厂、线路板厂、印染厂等工业的废水中,对农作物污染严重。Cu2+是重金属离子,能使蛋白质变性失去活性,人一旦过量摄取,会发生恶心、呕吐、急性溶血等中毒现象,因此净化工业废水中的Cu2+势在必行。常用的除去的方法有化学沉淀法、离子交换法、电解法、重金属螯合剂法等,但是成本较高。而生物吸附材料成本低、效果好,近年来受到广泛关注。在我国,羽毛作为一种廉价的自然资源,多数作为废弃物。已经有研究发现羽毛中的角蛋白具有高活性基团、形态复杂等特点,对Cu2+有较好的吸附作用,但是吸附机理尚不明确。因此,研究羽毛过滤材料对Cu2+的吸附机理,为羽毛在净化含Cu2+废水的应用上奠定理论基础,对节约资源、环境保护意义重大。
     本课题主要采用光谱法研究羽毛对CuSO4溶液中Cu2+的吸附机理。首先采用测量吸光度的方法测得羽毛纤维对Cu2+的吸附量,用电子顺磁共振、红外光谱、广角X衍射分析吸附前后羽毛纤维内部结构的变化。然后用酸、碱、超声波分别对羽毛改性,设法提高羽毛的吸附性能。接着用红外光谱和广角X衍射分析改性引起的羽毛结构变化,进一步推断Cu2+的吸附机理。再通过吸附-解吸附的反复实验,检验羽毛用于Cu2+吸附的可循环利用性。结果发现未改性羽毛纤维有一定的吸附Cu2+的能力但是不高。Cu(Ⅱ)在羽毛纤维中主要有3种配位结构,其中一种以S原子为主,成共价键配位;另两种以N原子为主,共价键和离子键共存。β折叠结晶结构上的胱氨酸可能与Cu(Ⅱ)形成了配位结构。吸附Cu2+后,羽毛蛋白中出现了更多的α螺旋构型,而β折叠构型相对减少。对于改性1小时的羽毛,NaOH改性羽毛的吸附性能最佳,1小时的改性使β折叠结晶结构和α螺旋结晶结构都被破坏,共同发生吸附作用。NaOH改性时间延长到一定程度时,主要发生β折叠结晶结构向α螺旋结晶结构的转化作用,α螺旋结晶结构的吸附能力可能超过β折叠结晶结构。反复的吸附-解吸附使吸附点增多,吸附能力提高。在实际应用中,由于羽毛纤维易飘散,因此一般制成非织造羽毛毡后再使用,本课题将羽毛和ES纤维制作成羽毛毡,用碱改性,比较不同ES纤维含量的毡吸附Cu2+的能力。由于印刷电路板的废水中,Cr(VI)和Cu2+为主要污染物,因此本课题还探讨羽毛毡对Cu2+的吸附能力与初始溶液中添加的Cr的含量的关系。结果表明只要羽毛纤维的含量相同,ES纤维所占比例对NaOH改性羽毛毡的吸附性能影响不大。未改性羽毛毡的Cu2+吸附量明显小于改性羽毛毡的。羽毛毡的吸附性能与羽毛纤维原料差别不大。随着初始CuSO4溶液中Cr的加入量增多,NaOH改性羽毛毡对Cu的吸附量逐渐减少,对Cr的吸附量随之增多。
     本课题的创新点是使用EPR分析吸附Cu2+后羽毛的化学结构以及检验羽毛的可循环利用性。
Cu2+ is widespread in the industrial effluent such as Electroplating factory, circuit board factory, printing and dyeing mill, which pollute crops severely. Cu2+, a kind of heavy ions,can make proteins lose activity. Those who take in it excessively may exhibit poisoned phenomena like nausea, vomiting, acute hemolysis.Therefore, it is imperative to purify Cu2+ in the industrial effluent.The average methods are chemical sedimentation, ion exchange, electrolyzation, metal chelation and so on.However,the cost is too much. By contrast, biological absorption materials,which cost low with good effect, are widespreadly concerned in recent years.In our country,feahers, a kind of cheap natural resources, are mainly treated as waste.There have been studied that feather keratin,with high-activity groups and the complex shapes,is a very good adsorption to Cu2+, but the uptake mechanism is not explicit.Therefore, the research of Cu2+ uptake mechanism by feather liquid filtered material in industrial waste water,is in favor of providing theoretical basis for purifying industrial effluent with Cu2+ and is significant for resources economy and environmental protection.
     This topic mainly studies the Cu2+ uptake mechanism of feathers in CUSO4 solution by Spectroscopy.First,test the Cu2+ uptake amount of feathers by measuring absorbancy and analyse the inner structure change of feathers before and after Cu2+ absorption by EPR、FT-IR、XRD.Next,modify feathers by acid、alkali and ultrasonic respectively to improve the absorptive ability of feathers.And then,analyse the inner structure change of feathers due to modification by FT-IR、XRD,in order to further deduce the the Cu2+ uptake mechanism.Next test the cyclic utilization of feathers'Cu2+ absorption by repeating absorption and desorption. After research,I find that the non-modified feather fibers immersed into CUSO4 solution have the Cu2+ absorption ability but not strong. Cu(Ⅱ) exist in feather with 3 coordinating structure.One of them is main S, coordinated in covalent bonds,another two mainly coordinate with N atoms and the covalent bonds exist as well as electrovalent bonds.After absorbing Cu2+,αhelical structures increase butβsheet structures decrease.After one hour's modification with acid、alkali and ultrasonic respectively,the uptake ability of NaOH modified feathers is best. To them,both a helical structures andβsheet structures are destroyed and take part in absortption.When feathers are modified with NaOH extending to a certain time,the main reaction is the change of (3 sheet structures to a helical structures.Maybe a helical structures are more absorptive thanβsheet structures Repeating absorption and desorption increase the absorption sites and the absorption ability.
     In practical applications, feather fibers are easy to disperse,so it is usually using feather nonwoven material.In this topic,feather mixed with ES are made into nonwovens,modified with NaOH,to compare the Cu2+ absorption ability of feather nonwovens with different ES contents.Because in printed circuit board factory waste water,Cr(VI) and Cu2+ are main pollution,so this topic also research the relationship between Cu2+ uptake ability of feather nonwovens and initial Cr contents.The results show that as long as the content of feather fibers are equal,the proportion of ES fibers does not affect NaOH modified felt very much.Non-modified felt has less Cu2+ absorption ablity than modified felt.The absorption ablity difference of feather fibers and feather felt is not much. As the initial Cr content increases,NaOH modified feather felt absorbs less Cu but more Cr.
     This topic's innovation is analysing feathers'structure by EPR after Cu2+ absorption and test the cyclic utilization of feathers.
引文
[1]雷兆武,孙颖,含铜废水处理技术现状[J],中国环境管理干部学院学报,2009,19(1):61-63
    [2]金阳,李薇雅,几种天然蛋白质纤维结构与性能的研究[J],毛纺科技,2000(1):23-26
    [3]杨崇岭,赵耀明,刘立进,天然纺织材料—羽毛纤维的形态结构[J],纺织导报,2005,(3):56-59
    [4]Davies A,Micromorphology of Feathers Using Scanning ElectronMicroscope[J],J Forensic Sci,1970(010):165-171
    [5]金阳,李薇雅,羽绒纤维结构与性能的研究[J],毛纺科技,2000(2):14-18
    [6]高晶,羽绒纤维及其集合体结构和性能的研究[D],东华大学博士学位论文:2006
    [7]高晶,于伟东,羽绒纤维的吸湿性能[J],纺织学报,2006,27(11):28-31
    [8]陈增,家禽羽毛的利用及加工[J],养殖技术顾问,2002(5):38
    [9]王利伟,俞镇慌,羽毛纤维与化纤混合非织造絮片服用性能研究[J],产业用纺织品,2005(6):32-35
    [10]刘伟时,刘维锦,羽毛纤维织物的退浆研究[J],化纤与纺织技术,2006(4):1-5
    [11]张建春等,羽绒絮毡及其与PTFE薄膜层压保暖新材料的研究与开发,国际化纤,2002(2):65-67
    [12]Gaignard C,Darcourt A.Building insulation material has filling made from poultry feathers and down combined with thermoplastic fibers for bonding and structure.Patent Number(s):FR2844816-A1,2004.03.24
    [13]Kami Shojikk,Oil absorption natural feather textile mat for absorbing oil leaked in factories,comprises natural feather fiber as main constituent,with specific density,Patent Number(s):JP2002105938-A,2004,04,10
    [14]韩润平,石杰,李建军等,生物材料对重金属离子的吸附富集作用[J],化学报,2000(7):25
    [15]谢嘉,水污染控制原理[M],四川:四川大学出版社,1994:84-85
    [16]O.Keskinkan,M,Z,L,Goksu,M,Basibuyuk,etal, Heavy metal adsorption properties of a submerged aquaticplant (Ceratophyllum demersum)[J], Bioresource Technology 2004(92):197-200
    [17]常秀莲,王文华,冯咏梅,海藻吸附重金属离子的研究[J],海洋通报,2003(2):39
    [18]Crist R H,Martin J R,Guptill et al,Interactions of metals and protons with algae,2,Ion exchange in adsorption and metal displacement by protons[J],Environ Sci Technlol,1990(24):337-342
    [19]陈林,戴玉华,海带吸附电解废液中铜的试验研究[J],节能与环保,2003(20):32
    [20]Majidi V,Laude D A,Holcombe U A,Investigation of the metal-algae binding site with Cd nuclear magnetic resonance[J],Environ Sci Technol,1990(24): 1300-1312
    [21]Crist R H,Oberholser K,McGarrity Jet al,Interaction of metals and protons with algae 3,Marine algae,with emphasis on lead and aluminum[J],Environ Sci Technol,1992(26):496-502
    [22]Gardea-Torresday J,Becker-Hapak M K,Hosea,J M,etal,Effect of chemical modification of algal groups on metal ion binding[J],Environ Sci Technol,1990(24):1372-1378
    [23]王保军,杨惠芳,微生物与重金属的相互作用[J],重庆环境科学,1996,18(1):35-39
    [24]Wang J L, Biosorption of copper(Ⅱ) by chemically modified biomass of Saccharomyces cerevisiae, Process[J], Biochemistry,2002,37(8):847-850
    [25]韩润平,张敬华,石杰,等,羧基在酵母菌生物吸附铅时的作用[J],郑州大学学报(理学版),2004,36(1):86-91
    [26]Simmons P, Singleton I, Amethod to increase silver biosorption by an industrial strain of Saccharomyces cerevisiae[J], Applied Microbiology and Biotechnology,1996,45(1-2):278-280
    [27]Brady D, StollA D, Starke L, et al,Chemical and enzymatic extraction of heavy-metal binding polymers from isolated cell-walls of Saccharomyces cerevisiae[J], Biotechnology and Bioengineering,1994,44(3):297-300
    [28]Kratochvil D, Volesky B, Advances in the biosorption of heavy metals[J], Trends in Biotechnology,1998,16(7):291-300
    [29]Y.Nuhoglu,E.Malkoc.A,Gurses,etal, The removal of Cu(Ⅱ)from aqueous solutions by Ulothrix zonata[J],Bioresource Technology 2002(85):331-333
    [30]杨崇岭,关丽涛,赵耀明等,羽毛的化学改性及其对Cu2+的吸附[J],农业环境科学学报,2007,26(1):344-349
    [31]Sameer A,Fawzi B,Deaya A,Benefical reuse of chicken feathers in removal of heavy metals from waste water [J], Journal of Cleaner Production,2003(11):321-326
    [32]刘莲,羽毛非织造液相过滤材料的工艺[D],东华大学硕士学位论文:2009
    [33]S.A.Sayed,S.M.Saleh,E.E.Hasan,Removal of some polluting metals from industrial water using chicken feathers[J],Desalination,2005(181):243-255
    [34]刘瑞霞,汤鸿霄,劳伟雄,重金属的生物吸附机理及吸附平衡模式研究[J],化学进展,2002,14(2):87-92
    [35]王建龙,韩英健,钱易,微生物吸附金属离子的研究进展[J],微生物学通报,2000,27(6):449-452
    [36]王建龙,生物固定化技术与水污染控制[M],北京:科学出版社,2002:233-248
    [37]B.A.Calfa,M.L.Torem,On the fundamentals of Cr(Ⅲ) removal from liquid streams by abacterial strain[J],Minerals Engineering,2008(21):48-54
    [38]R,Djeribi,O,Hamdaoui,Sorption of copper(II)from aqueous solutions by cedar sawdust and crushed brick[J],Desalination,2008(225):95-112
    [39]Y,Ho,Review of second-order models for adsorption systems[J],Journal of Hazardous Materials,2006(136):681-689
    [40]Jonathan Febrianto, Aline Natasia Kosasih, Jaka Sunarso,etal,Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent:A summary of recent studies[J],Journal of Hazardou Materials,2009(162):616-645
    [41]杨崇岭,关丽涛,赵耀明,天然纺织材料——羽毛纤维的理化性[C]//2006中国国家毛纺织会议暨IWTO羊毛论坛论文集,西安,2006:528-532
    [42]钟巧芳,羽毛角蛋白降解菌的分离、鉴定、发酵条件优化及其酶应用特性的初步研究[D],云南师范大学硕士学位论文:2007
    [43]杨崇岭,关丽涛,赵耀明,等,羽毛的化学改性及其对Cu2+的吸附[J],农业环境科学学报2007,26(1):344-349
    [44]徐元植,刘嘉庚,固体催化剂的研究方法[J],石油化工,2002,31(4):316-321,
    [45]徐元植,实用电子顺磁共振波谱学——基本原理和实际应用[M],北京:科学出版社,2008:27-117
    [46]张俊生,马志东,尤美云,红外光谱法在高分子科学中的应用[J],内蒙古农业科技2010(2):119-120
    [47]梁治齐,红外光谱在纺织纤维鉴别上的应用[J],北京联合大学学报,2000,14:13-15
    [48]CCNMTL, Fourier Transform Spectrometer(2005), Availablefrom http://scienceworld,wolfram,com/physics/FourierTrans-formSpectrometer,html
    [49]Miller RGJ, Stace BC,红外光谱学的实验方法(2ed)[M],北京:机械工业出版社,1972
    [50]Dey SK, Mukherjee SK, Bhattacharya A, An Infrared Techniquefor Rapid Analysis of Ramie-Acrylic Blends[J], Textile ResearchJournal 2003, 73:1062-1065
    [51]Sarannya V, Sivasamy P. Study of thermal properties of intumescent additive [J],Journal of Thermal Analysis and Calorimetry,2000,(102),3:1071-1077.
    [52]苏少明,红外光谱法无损检验微量化学纤维[J],刑事技术,1994,11-13
    [53]李树棠,金属X射线衍射与电子显微分析技术[M],北京:冶金工业出版社,1980
    [54]SAKAGUCHI U,ADDISON A W,Spectroscopic and Redox Studies of Some Copper(II) Complexes with Biomimetic Donor Atoms:Implications for Protein Copper Centers[J],Chem Soc Dalton Trans,1979,(4),600-608
    [55]MCGARVEY B R,Transition Metal Chemistry [M],New York,Marcel Dekker,1966:90
    [56]GERSMANN H R,SWALE J D,Electron Paramagnetic Resonance (EPR) Spectra of Copper Complexes[J],Chem PhyS,1962,(36):3221-3233
    [57]林青松,铜化合物ESR g张量和A张量的相关性及其与结构的关系[J],波谱学杂志,1989(6),2:201-208
    [58]SWARTZ H M, BOLTO J R,Borg D C,Biological Application of Electron Spin Resonance[M],New York, Wiley-Interscience,1972:165
    [59]FRASER R D B,PARRY D A D,The Molecular Structure of Reptilian Keratin[J], International Journal of Biological Macromolecules,1996,(19):207-211
    [60]FRASER R D B,MACRAE T P, Molecular Structure of Keratin [C]// Proc 16th Int Ornith, Congress,Canberra:Australian Academy of Sciences,1976:443
    [61]赵耀明,杨崇岭,蔡婷,等,羽毛纤维的结构、性能及应用[J],针织工业,2007,(2):20-23
    [62]LUIGI S,HARALD N, WOLFGANG L,ESR and Optical Absorption Studies on the Copper(Ⅱ) Interaction with Small Peptides Containing Aromatic Amino Acids[J],Biophys Struct Mecha-aism,1977,(3):317-326
    [63]LUO J X,ZHAN N Z, Introduction of Bioinorganic Chemistry [M],Beijing,Chemical Industry Press,1987:571-572
    [64]关丽涛,杨崇岭,赵耀明,羽毛纤维的耐化学试剂性能[J],纺织学报,2008(29),4:27-31
    [65]孙平,生物质废弃羽毛的改性及应用研究[D],陕西师范大学博士学位论文:2009
    [66]席细平,马重芳,王伟,超声波技术应用现状[J],山西化工,2007,27:25-29
    [67]冯若,超声手册[M],南京:南京大学出版社,1999,10:78-91
    [68]王育慷,超声波原理与现代应用探讨[J],贵州大学学报(自然科学版),2005,22:287-290
    [69]陈思忠,我国功率超声技术近况与应用进展[J],声学技术,2002,21:46-49
    [70]高守雷,翟启杰,戚飞鹏,富知愚,龚永勇,超声波在金属凝固中的应用与发展,材料导报[J],2002,16:5-6,12
    [71]Wang Jun,Han Jiantao,Zhang Yang,The application of ultrasound technology in chemical production,Contemporary Chemical Industry[J],2002,12(4):187-189
    [72]陆志,姚晔,连之伟,超声波技术在暖通空调领域的应用,建筑热能通风空调[J],2007,26:19-22
    [73]何道清,传感器与传感技术[M],北京:科学出版社,2004,8:418
    [74]E.Wojciechowska.A,Wlochowicz.A,Wesel/ucha-Birczyn ska,Application of ourier-transform infrared and Raman spectroscopy to study degradation of the wool fiber keratin[J], Journal of Molecular Structure,1999(12):307-318
    [75]石晓丽,张宝松,电感耦合等离子体原子发射光谱法测定镍合金及铁合金中微量铜[J],冶金分析,2008,28(6):63-65
    [76]丘仔平善,王桂芳,郭立伟,材料近代分析测试方法实验指导[M],哈尔滨工程大学出版社,哈尔滨,2001(8)
    [77]柯勤飞,靳向煜,非织造学[M],上海:东华大学出版社,2004:21-22,66-68,142-143
    [78]王利伟,羽毛/化纤混合保暖絮片的开发及其性能的研究[D],东华大学硕士学位论文,2004
    [79]陈锦文,刘丹,二段混凝沉淀-曝气氧化-砂滤处理印刷电路板废水[J],四川环境,200(24),6:28-30
    [80]王彩冬,生物吸附剂处理含Cr(Ⅵ)废水的基础研究[D],昆明理工大学硕士学位论文,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700