考虑应变率效应的不同配筋率钢筋混凝土柱动力性能试验与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正确把握钢筋混凝土柱在动力作用下(例如强震、强风等)的力学性能和动力行为对结构抗震和抗风设计至关重要。然而我国现行的抗震设计规范并没有充分考虑应变率对材料本构关系、结构构件的承载能力、变形、耗能能力以及破坏模式的影响。虽然少数研究者已经开展了高应变率下钢筋混凝土构件的动力试验研究,但目前为止还没有获得到足够的试验数据充分理解混凝土结构和构件的动力性能。
     因此,本文对钢筋混凝土柱在快速加载下的动力性能和数值计算方法进行了深入研究,具体工作如下:
     (1)进行了三个不同配筋率的钢筋混凝土柱构件快速加载试验,研究了混凝土柱在不同加载速率下的滞回性能、骨架曲线、延性指标、耗能性能以及破坏模态,为钢筋混凝土柱非线性纤维模型分析提供了试验数据。
     (2)通过在混凝土本构关系中考虑应变率效应的方法,采用纤维模型实现了钢筋混凝土柱在不同加载速率的单调荷载下的动力行为的数值模拟。模型考虑了二阶效应、塑性铰区域和剪切变形的影响。通过比较已有研究和本文中混凝土柱子试件的试验结果和数值模拟结果,验证了考虑应变率效应的动力纤维单元模型的有效性,结果显示了动力纤维单元模型能够准确地预测混凝土柱的动力性能,特别是在模型中考虑了剪切变形的模拟得到的变形能力与试验更为接近。
     (3)采用考虑剪切变形影响的模型,研究了混凝土柱的在不同纵向配筋率和体积配箍率下的动力性能。结果显示随着加载速率的增加,柱极限承载力和构件刚度在各个体积配箍率和纵向配筋率下均有不同程度的提高;而低体积配箍率试件的动力极限承载力相对增长率比高体积配箍率试件的要小,高纵向配筋率试件的动力极限承载力相对增长率比低配筋率试件的要小。模拟发现考虑剪切变形与不考虑剪切变形的得到的极限承载力差别很小。
     (4)运用一种基于压电陶瓷的智能骨料健康监测技术,实现了快速加载试验中的钢筋混凝土柱的损伤状况的监测。根据压电陶瓷的测量信号,采用基于小波包分析的损伤指标,评估了混凝土柱在不同加载水平下的损伤发展情况。通过比较试验观测结果,证明了基于压电陶瓷智能骨料的健康监测技术的可行性。
The precise prediction of mechanical properties and behavior of reinforced concrete (RC) columns under dynamic loadings such as severe earthquakes or strong winds is crucial to aseismic design of civil engineering structures. In traditional aseismic design code,the effect of strain rate on materials strength, load carrying capacity, deformation, energy dissipation capacity and failure mode of structural members are not considered properly. Even though tests on dynamic behavior of reinforced concrete members under high strain rate have recently been carried out, there is a far way to accumulate enough test results to understand the dynamic performance of RC structures and members.
     This paper describes the seismic behaviors and numerical method of reinforced concrete columns under fast loading. The main achievements can be summarized as follows:
     (1) Experiments of three reinforced concrete columns with various reinforcement ratios under constant axial loads and fast cyclic lateral reversed loads are presented in this paper. Meanwhile, the characters of hysteretic loops, skeleton curves, displacement ductility coefficient, energy dissipation capacity and the failure mode at different loading rate are studied, and the experiment results can be provided for the nonlinear analysis of the reinforced concrete columns.
     (2) Numerical simulations on the dynamic behavior of a typical RC column specimen under monotone dynamic loading were performed. A recently developed constitutive model of concrete considering the strain rate effect was introduced into a dynamic fiber model to characterize the nonlinear strain rate dependent behavior of concrete. The effects of second order, plastic hinge zone and shear deformation are considered in the fiber model. Then the developed dynamic fiber element model is validated by comparing the simulated results of RC column specimens with the test results reported in related literatures and the fast loading test results in this paper. Results show that the developed fiber element model can predict the behavior of RC columns with acceptable accuracy. Especially in the model considered shear deformation, the simulated deformation capacity is much closer to the experimental results.
     (3) The dynamic properties of the RC column considered the influence of reinforcement ratio were simulated. Utilizing the developed model, the ultimate bearing capacity of columns with various longitudinal reinforcement ratios and volumetric stirrup ratios were investigated. As the loading rate increases, the ultimate carrying capacity and stiffness of columns, with various hoop or longitudinal reinforcement ratio, also increase; the ultimate bearing capacity growth factors relative to static loading of the specimens with lower volumetric stirrup ratios are smaller than the ones with higher ratios; the ultimate carrying capacity growth factors relative to static loading of the specimens with higher longitudinal reinforcement ratios are smaller than the ones with lower ratios. It is found the differences of simulated ultimate carrying capacity between the model considering the shear deformation and the model not considering are minute.
     (4) Utilizing an innovative smart aggregate approach based on piezoceramic, damage status of one column in the fast loading experiment was monitored. According to the measured signal, wavelet-packet-based damage index evaluates the damage development in concrete columns under fast loading. The experimental results show that the developed smart aggregate-based approach can effectively evaluate the health status of concrete columns during the loading procedure.
引文
[1]高志兵,陶小三,孔建国等.北川县城汶川地震震害特征及其成因探讨.防灾减灾工程学报,2009,29(1):114-118
    [2]梁兴文,董振平,王应生等.汶川地震中离震中较远地区的高层建筑的震害.地震工程与工程振动,2009,29(1):24-31
    [3]林旭川,潘鹏,叶列平等.汶川地震中典型RC框架结构的震害仿真与分析.土木工程学报,2009,42(5):13-20
    [4]Reinhardt HW. Testing and monitoring techniques for impact and impulse loading of concrete structures. In:Concrete Structures under Impact and Impulsive Loading. Berlin,1982,65-87
    [5]李杰.混凝土随机损伤力学的初步研究.同济大学学报,2004,32(10):1270-1277
    [6]Abrams DA. Effect of the rate of application of load on the compressive strength of concrete. ASTM J,1917,17:364-377
    [7]Biscoff PH, Perry SH. Compression behavior of concrete at high strain rates. Material and Structures,1991,144(24):425-450
    [8]Malvar LJ, Ross CA. Review of strain rate effects for concrete. ACI Materials Journal,1998,95(6):735-739
    [9]阚永魁.混凝土在快速变形下的抗拉强度.北京:清华大学出版社,1986,84-89
    [10]肖诗云,林皋,王哲等.应变率对混凝土抗拉特性影响.大连理工大学学报,2001,41(6):721-725
    [11]Bischoff PH, Perry SH. Impact behavior of plain concrete loaded in uniaxial compression. Journal of Engineering Mechanics,1995,121(6):685-693
    [12]Soroushian P, Choi K B, Alhamad A. Dynamic constitutive behavior of concrete. ACI Journal,1986,83(2):251-262
    [13]唐志平,田兰桥,朱兆祥等.高应变率下环氧树脂的力学性能.见:第二届爆炸力学会议论文集.扬州,1981,4-12
    [14]Perzyna P. Fundamental problems in visco-plasticity. Advances in Applied Mechanics,1971,11:313-354
    [15]Duvaut G, Lions IJ. Les inequations en mechanique et en physique. Paris, France: Dunod,1972,122-136
    [16]Suaris W, Shah SP. A rate sensitive damage theory for brittle solids. Journal of Engineering Mechanics,1984,10:803-826
    [17]Bui H D, Ehrlacher A. Propagation of damage in elastic and plastic solids. Advances in Fracture Research,1981,2:533-551
    [18]李庆斌,张楚汉,王光纶.单压状态下混凝土的动态损伤本构模型.水利学报,1994,3:85-89
    [19]何长江,于志鲁.混凝土动态冲击问题的一种欧拉数值方法.爆炸与冲击,2002,22(2):152-157
    [20]李庆斌,邓宗才,张立翔.考虑初始弹性模量变化的混凝土动力损伤本构模型.清华大学学报.43(8):1088-1091
    [21]王道荣,胡时胜.冲击载荷下混凝土材料损伤演化规律的研究.岩土力学与工程学报,2003,22(2):223-226
    [22]陕西省建筑设计院.钢筋混凝土框架柱抗震性能的试验研究(译文集).北京:地震出版社,1979,256-322
    [23]Jame K Wight, Mete A. Sozen. Strength decay of RC columns under shear reversals. Journal of the Structural Division,1975,5:1053-1065
    [24]Bayrak O, Sheikh SA. High-Strength Concrete Columns under Simulated Earthquake Loading. ACI Structural Journal,1997,94(6):708-722
    [25]沈聚敏,翁义军,冯世平.周期反复荷载下钢筋混凝土压弯构件的性能.科学研究报告第三集.北京:清华大学出版社,1981,72-95
    [26]徐贱云,吴健生,铃木计夫.多次循环荷载作用下钢筋混凝土柱的性能.土木工程学报,1991,2(3):57-70
    [27]钱国芳,童岳生,白国良等.配置不同形式箍筋的钢筋混凝土短柱抗震性能试验研究.西安冶金建筑学院学报,1991,23(3):248-257
    [28]王湘清,赵国藩,林立岩.高强混凝土柱延性的试验研究.建筑结构学报,1994,4(16):22-31
    [29]Hiroshi Hosoya, Tuneo Okada, Yoshikazu Kitagawa, et al. Fiber model analysis of reinforced concrete members with consideration of the strain rate effect. Journal of Structural & Constructive Engineering,1996,482:83-92
    [30]Tagami J, Suzuki N, Kaneko T, et al. Dynamic Loading Test of Reinforced Concrete Columns for Identification of Strain Rate Effect. In:Proceedings of the First NEES/E-Defense Workshop on Collapse Simulation of Reinforced Concrete Building Structures. Berkeley, California,2005,1075-1086
    [31]Otani S, Kaneko T, Shiohara H. Strain Rate effect on performance of reinforced concrete members. In:Proceedings of fib symposium, Concrete Structures in Seismic Regions. Athens,2003,983-995
    [32]Dhakal R P, Pan T C, Irawan P, et al. Experimental study on the dynamic response of gravity-designed reinforced concrete connections. Engineering Structures,2007,27:75-87
    [33]陈肇元,罗家谦.钢筋混凝土轴压和偏压构件在静载和快速变形下的性能.见:科学研究报告集第4集钢筋混凝土结构构件在冲击荷载下的性能.北京:清华大学出版社,1986:33-44
    [34]陈云涛.钢筋混凝土结构恢复力特性的分析研究和数字化:[硕士学位论文].上海:同济大学,2002,60-65
    [35]高菲,刘文锋,李春晖.钢筋混凝土压弯构件恢复力模型的研究.青岛理工大学学报,2008,29(2):40-46
    [36]Clough R W, Johnston S B. Effect of stiffness degradation on earthquake ductility requirements. In:2th Proceedings of Japan Earthquake Engineering Symposium. Tokyo, Japan,1966,526-537
    [37]Takeda T, Sozen MA, Nielsen NN. Reinforced concrete response to simulated earthquakes. Journal of the Structural Division.1970,96:2557-2573
    [38]Roufaiel MSL, Meyer C. Analytical modeling of hysteretic behavior of RC frames. Structural Engineering,1987,113(3):429-444
    [39]朱伯龙,张琨联.矩形及环形截面压弯构件恢复力特性的研究.同济大学学报.1981,2:1-10
    [40]杜修力,欧进萍.钢筋混凝土结构低周疲劳效应对地震累积破坏的影响.结构工程学报.1991,3:56-62
    [41]Jennings P C. Periodic response of general yielding structure. Journal of Engineering Mechanical Division,1994,90(EM2):131-165
    [42]谷资信.铁混工耐震要索复元力特性.日建论报,1973,5:33-45
    [43]Bouc R. Forced vibrations of mechanical systems with hysteresis. In: Proceedings of the Fourth International Conference on Nonlinear Oscillations. Prague,1967,2365-2379
    [44]Park YJ, Ang AHS. Mechanistic seismic damage model for reinforced con crete. Journal of Structural Engage Diver,1985,114(4):722-739
    [45]Lai SS, Will GT. RC space frames with column axial force and biaxial bending moment interactions. Journal of Structural Engorge,1986,112(7):1553-1572
    [46]梁兴文,叶艳霞.混凝土结构非线性分析.中国建筑工业出版社,2007,236-245
    [47]Lai S S, Will G T, Otani S. Model for inelastic biaxial bending of concrete member. Journal of Structural Engineering,1984,110(11):2563-2584
    [48]Sun FP. Automated real-time structure health monitoring via signature pattern recognition. In:Proceeding of SPIE-The International Society for Optical Engineering. Inderjit Chopra,1995,2443:236-247
    [49]Soh CH, Tseng KK, Bhalla S, et al. Performance of smart piezoceramic patches in health monitoring of a RC bridge. Smart Materials and Structures,2000,9(4): 533-542
    [50]Song GB, Gu H, Mo YL, Hsu TTC, et al. Concrete structural health monitoring using embedded piezoceramic transducers. Smart Materials and Structures,2007, 16:959-968
    [51]Miller T, Hauser CJ, Kundu T. Nondestructive inspection of corrosion and delamination at the concrete-steel reinforcement interface. American Society of Mechanical Engineers,2002,23:121-128
    [52]陶湘华.异形柱抗震性能试验与理论研究:[硕士学位论文].上海:同济大学,2005,54-58
    [53]朱伯龙.结构抗震试验.北京:地震出版社,1989,128-130
    [54]中华人民共和国国家标准. 《混凝土结构试验方法标准》(GB 50152-92).北京:中国建筑工业出版社,1992
    [55]过镇海,时旭东.钢筋混凝土原理和分析.北京:清华人学出版社,2003,256-259
    [57]Haruo Takizawa, HiroyukI Aoyama. Biaxial effects in modeling earthquake response of RC structures. Earthquake Engineering and Structural Dynamics, 1976(4):523-552.
    [58]Graham H. Powell.3D beam-column element with generalized plastic hinges. Journal of Engineering Mechanics,1986,112 (7):627-641
    [59]朱伯龙,董振祥.钢筋混凝土非线性分析.上海:同济大学出版社,1985,15-18
    [60]吕西林.钢筋混凝土结构非线性有限元理论与应用.上海:同济大学出版社,1997,26-35
    [61]过镇海.钢筋混凝土原理.北京:清华大学出版社,1999,198-201
    [62]Comite Euro-International du Beton, CEB-FIP Code 1990, London:Thomas Telford,1993
    [63]Kent DC, Park R. Flexural members with confined concrete. Journal of the Structural Division,1971,97 (ST7):1969-1990
    [64]Xiao JZ, and Zhang Ch. Seismic behavior of RC columns with circular, square and diamond sections. Construction and Building Materials 2008,22:801-810
    [65]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性理论与应用.上海:同济出版社,1997,87-92
    [66]帕克,波利.钢筋混凝士结构.重庆:重庆人民出版社,1985,286-292
    [67]王福明,曾建民,段炼.钢筋混凝士压弯构件塑性铰的试验研究.太原工业大学学报,1989,20(4):20-28
    [68]陈忠汉,朱伯龙,钮宏.斜向受力钢筋混凝土压弯构件的非线性分析.土木工程学报,1984,17(4):67-78
    [69]Xiao J. Study on the limit value of axial compressive stress ratio for RC frame columns:[Ph.D. Thesis]. Shanghai:Tongji University,85-102
    [70]杨大智.智能材料与智能结构.天津:天津大学出版社,2000,77-83
    [71]Sun F, Chaudhry Z, Liang C, et al. Truss structure integrity identification using PZT sensor-actuator. Journal of Intelligent Material Systems and Structures, 1995,16(2):134-139
    [72]夏昌敬,谢和平,鞠杨.孔隙岩石的SHPB试验研究.岩石力学与工程学报,2006,25(5):896-900
    [73]胡昌华,李国华,刘涛等.基于MATLAB 6.X的系统分析与设计-小波分析(第二版).西安:西安电子科技大学出版社,2004:24-25
    [74]Tseng KK, Naidu ASK. Non-parametric damage detection and characterization using smart piezoceramic material. Smart Materials and Structures,2002,11(3): 317-329

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700