谷物中重要真菌产毒预测微生物学和扩增片段长度多态性分型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     (1)对安徽、江苏、河北、河南四省部分地区2008年产小麦、玉米的真菌污染状况和菌相分布进行调查,为进行粮食中主要污染真菌产毒预测微生物学研究提供菌株;
     (2)对可能影响禾谷镰孢产毒的关键因子进行筛选,为不同自然条件下预测禾谷镰孢的产毒情况提供资料,为粮食防霉提供实验手段;
     (3)对从安徽、江苏、河北、河南四省小麦、玉米样品中分离出的50株串珠镰孢进行AFLP分型,通过DNA指纹图谱鉴定来自我国不同地区同一作物、同一地区不同作物中串珠镰孢纯化株的种群亚型和菌株的亲缘关系。
     方法:
     (1)将小麦、玉米样品消毒后点种于PDA培养基上,28±1℃培养5-7天后进行菌落计数并鉴定菌相;
     (2)以禾谷镰孢为研究对象,以玉米和小麦为研究基质,构建L18-Hunter和Plackett-Burman模型,筛选对禾谷镰孢毒素产量有较大影响的重要因素变量(温度、通气量、水分含量、pH值、光照、培养基量、基质成分、培养时间等)。同时进行毒素产量随时间而变化的趋势研究;
     (3)对从安徽、江苏、河北和河南四省玉米和小麦样品中分离的50株串珠镰孢进行DNA提取纯化,经PstⅠ和MseⅠ双酶切,对酶切片段进行预扩增和选择性扩增后进行聚类分析。
     结果:
     (1)安徽、江苏、河北和河南四省小麦样品真菌污染率几乎100%,优势菌是交链孢霉,其次为根霉和镰孢;玉米样品全部被真菌污染,优势菌四省各异,镰孢均是四省玉米污染的重要优势菌,其中串珠镰孢最常见;
     (2)L18-Hunter设计的实验结果表明,按a=0.05标准,三株禾谷镰孢中仅菌株3.4522产3-A-DON、15-A-DON以及10种毒素总和的模型拟合结果有统计学意义(P分别为0.0425、0.0118和0.0401),模型R2分别为0.80、0.86和0.81。回归方程系数效应检验结果显示,水分含量(P值分别为0.0293、0.0074和0.0189)和培养时间(P值分别为0.0302、0.0074和0.0189)是影响禾谷镰孢3.4522产3-A-DON、15-A-DON及10种毒素总量的关键因子。
     以L18-Hunter设计实验结果为基础进行的Plackett-Burman设计实验结果表明,按a=0.05标准,就DON绝对值、DON对数值、ZEN对数值、DON及其衍生物的对数值、B类单端孢霉烯族化合物对数值、毒素总量绝对值及毒素总量对数值而言,该模型显著(P值分别为0.0345、0.0022、0.0029、0.0068、0.0067、0.0148和0.0006)。模型R2分别为0.81、0.93、0.92、0.89、0.90、0.86和0.95。回归方程系数显著性检验结果显示,在不同的培养条件下,培养时间、温度和初始pH值是影响禾谷镰孢3.4522产毒的关键因子。禾谷镰孢产毒量随培养时间延长而增加,多在14-28天达高峰,此后下降。
     (3)50株串珠镰孢的AFLP分型结果显示,8对引物共扩增出1346个条带,其中多态性条带1322个,每对引物产生的多态性位点百分率在95.21%~100%之间,表明串珠镰孢在DNA水平上存在较大变异,其中来自河北玉米样品的串珠镰孢较其它省份多态性高。
     50株串珠镰孢菌株间的相似系数在36%~81%,在相似系数为0.63时,50株串珠镰孢菌株可分为5组,其中49株来自玉米,其种群分5个组,一株来自小麦。AFLP分型结果显示,不同作物别、不同区域同一作物来源的串珠镰孢存在较大遗传差异,但该差异与样品种类和来源没有明显相关关系。
     结论:
     (1)四省2008年产小麦样品真菌污染严重,优势菌是交链孢霉;玉米样品全部被真菌污染,串珠镰孢为重要的优势菌相。
     (2)培养时间、一定范围(20~50%)内的水分含量、温度和初始pH值是影响禾谷镰孢产毒的关键因子。禾谷镰孢产毒量随时间延长而增加,产毒高峰多在14-28天。
     (3)串珠镰孢在DNA水平上存在较大变异,其中分离自河北玉米样品的串珠镰孢较其它省份多态性高。不同作物别来源(玉米或小麦)、不同区域同一作物来源串珠镰孢存在较大遗传差异,但该差异与样品种类和来源没有明显相关关系。
Objective:
     (1) To study fungi invasion of wheat and corn collected from Anhui, Jiangsu, Hebei and Henan provinces harvested in 2008 and provide fungal strains for predictive microbiology studies.
     (2) Screening of the key factors which may affect the toxin production by Fusarium graminearum in order to predict the toxin production under different natural conditions. The results obtained from predictive microbiology offer the technical support for controlling the cereal invasion by fungi.
     (3) Fifty strains of F. moniliforme isolated from wheat and corn from 4 provinces were employed in amplified fragment length polymorphism (AFLP) molecular typing studies to identify the subtype and analyze the homology similarity among them.
     Method:
     (1) Wheat and corn kernels were inoculated onto PDA medium after sterilization with 75% ethanol followed by being rinsed with distilled water. The colony forming unit of fungi were counted and identified after incubation at 28±1℃for 5-7 days.
     (2) F. graminearum inoculated on wheat kernals and corn flakes was used in predictive microbiological test. The L18-Hunter and Plackett-Burman model were constructed to screen the important factors (temperature, ventilatory capacity, water content, pH value, illumination, the amount and ingredients of the medium, incubation time etc.) which may affect the toxin production by F. graminearum. The time course of toxin production was also studied.
     (3) Fifty purified F. moniliforme strains isolated from wheat and corn collected from Anhui, Jiangsu, Hebei and Henan provinces were extracted for DNA. The DNA was cut by both Pst I and Mes I enzymes and the fragments were analyzed after pre-amplification and amplification.
     Results:
     (1) Fungi were isolated from almost all of wheat samples and the predominant is Alternaria species. While, all corn samples were positive for fungi and the major is Fusarium species. Among which, F. moniliforme was the important.
     (2) The L18-Hunter experimental results showed that only the model fitting results of 3-A-DON、15-A-DON and total of 10 kinds of toxins produced by the strain 3.4522 were statistically significant (P=0.0425,0.0118 and 0.0401 respectively) according to a=0.05 criterion and R2 of the model was 0.80,0.86 and 0.81, respectively. The coefficients of the regression equations were had a effect test and it showed that water content (P=0.0293, 0.0074 and 0.0189, respectively) and incubation time (P=0.0302,0.0074 and 0.0189, respectively) were the key factors that affected the level of 3-A-DON,15-A-DON and total of 10 kinds of toxins produced by F. graminearum strain 3.4522.
     The results of Plackett-Burman experiment designed on the basis of L18-Hunter showed that the model fitting results of the absolute value of DON, logarithm value of DON, ZEN, DON and its derivatives and type B trichothecenes as well as the absolute and logarithm value of total toxin were statistically significant (P=0.0345,0.0022,0.0029,0.0068,0.0067,0.0148 and 0.0006, respectively) according to a=0.05 criterion and R2 of the model was 0.81,0.93, 0.92,0.89,0.90,0.86 and 0.95, respectively. The coefficients of the regression equations were had a effect test and it showed that incubation time, temperature and initial pH value of the media were the key factors that affected toxin production by F. graminearum strain 3.4522. The level of toxins produced by F. graminearum increased with the incubation time extended and reached the highest at the time of between 14 and 28 days.
     (3) Based on AFLP results,50 strains of F. moniliforme generated 1346 bands and 1322 bands were polymorphic. Percentage of polymorphism fragments produced by each pair of AFLP primer varied between 95.21% and 100%. The considerable variation existed among F. moniliforme at DNA level. The F. moniliforme strains from Hebei corns had a higher polymorphism than those from other provinces.
     The similarity coefficients of the strains were between 36% and 81%. The 50 F. moniliforme strains could be divided into 5 groups on the basis of the similarity coefficient of 0.63, in which 49 strains from corns and only 1 strain from wheat. The cluster analysis showed obvious differences in homology similarity of F. moniliforme strains isolated from different crops harvested in the same region and that from the same crop harvested in different regions, but these differences showed no obvious relations with the species and source of the samples.
     Conclusion:
     (1) Wheats collected from four provinces were seriously invaded by fungi and the majority was Alternaria species. While all corn samples were positive for fungi and Fusarium moniliforme was the predominant.
     (2) Incubation time, water activity within a certain range (20~50%), temperature and pH value were the key factors that affected toxin production of F. graminearum. The level of toxin production by Fusarium Graminearum increased with the incubation time extended and reached the highest at the time of between 14 and 28 days.
     (3) Considerable genetic variation existed in 50 strains of F. moniliforme at DNA level. The F. moniliforme strains from Hebei corns had a higher polymorphism than those from other provinces. There were obvious differences in homology similarity of F. moniliforme strains from different crops harvested in the same region and that from the same crop harvested in different regions, but these differences showed no obvious relations with the species and source of the samples.
引文
[1]居乃琥.黄曲霉毒素[M].北京:轻工业出版社,1990.
    [2]Whiting R C. Microbiological modeling[J]. Critical Reviews in Food Sci. and Nutri.,1995,35: 467-494.
    [3]WALLS I, SCOTT V N. Use of predictive microbiology in microbial food safety risk assessment[J]. International Journal of Food Microbiology,1997,36(2-3):97-102.
    [4]Vos P, Hogers R, Bleeker M, et al. AFLP:a new technique for DNA fingerprinting[J]. Nucleic Acids Research,1995,23(21):4407-4414.
    [5]Majer D., Mithen R., Lewis B.G., et al. The use of AFLP fingerprinting for detection of genetic variation in fungi[J]. Mycol. Res.,1996,100:1107-1111.
    [6]王吉瑛.甘肃仓储粮食中的常见真菌[J].兰州大学学报(自然科学版),1992,28(3):140-144.
    [7]张祥宏,王凤荣,谢同欣,等.磁县食管癌高发区居民食用粮食霉菌污染情况[J].卫生研究,1996,25(3):166-167.
    [8]林朝,蔡海珊,张荣,等.粮食中霉菌与霉菌毒素污染情况调查[J].中国卫生检验杂志,1998,8(4):228-229.
    [9]邓明林,陈虹,罗刚.江油市粮食中霉菌污染调查[J].现代预防医学,1997,24(1):100-104.
    [10]王南志,龙泽萍,付达芙,等.宜宾地区主要粮食霉菌分布情况调查[J].预防医学情报杂志,1997,14(4):45-46.
    [11]陆鸣,王裕中,陈怀谷,等.禾谷镰刀菌产毒素培养条件及粗毒素提取法[J].江苏农业学报,1992,8(1):30-34.
    [12]石晓燕,邓福友.禾谷镰刀菌液体培养产毒条件研究初报[J].河北农业大学学报,1992,15(4):34-38.
    [13]鲍文生,李群伟.镰刀菌的培养及其毒素的分离和提纯[J].中国地方病防治杂志,2002,17(1):32-34.
    [14]王裕中,J.D.米勒.中国小麦赤霉病菌优势种—禾谷镰刀菌产毒素能力的研究[J].真菌学报,1994,13(3):229-234.
    [15]李群伟,李德安,孟宪清.影响镰刀菌生长与产毒的基本因素的研究[J].中国地方病学杂志,1998,17(6):355-358.
    [16]Lu Shihua, Wei Chunmei, Xue Weilong, et al. OPTIMAL CONDITIONS FOR PRODUCTION OF DEOXYNIVALENOL IN LIQUID MEDIUM BY ISOLATES OF FUSARIUM GRAMINEARUM[J].上海农业学报,1991,7(增刊):50-59.
    [17]GB/T 5009.3-2003食品中水分的测定[S].北京:中国标准出版社,2003.
    [18]Miller A, Sitter R R. Using the folded-over 12-run placket-burman design to consider interactions[J]. Technometrics,2001,3:44-54.
    [19]田雪亮,陈锡岭,王洪亮.串珠镰刀菌产生毒素条件研究[J].微生物学杂志,2006,26(6):45-47.
    [20]Groves F D, Zhang Lianchang, Yun Sheng, et al. Fusarium mysotoxins in corn and corn products in a high-risk area for gastric cancer in Shandong Province, China[J]. Journal of AOAC International,1999, 82(3):657-662.
    [21]侯然然,张敏红.霉菌毒素对畜禽的危害及其防控方法的研究进展[J].中国畜牧兽医,2007,34(1):13-16.
    [22]单妹,许梓荣,冯建蕾.饲料中镰刀菌毒素的危害和控制[J].饲料工业,2006,27(5):48-49.
    [23]单堂胜,李琳.谷物中的霉菌毒素[J].国外畜牧科技,1997,24(3):12-14.
    [24]何四旺,冯定远.霉菌及霉菌毒素对畜牧业的影响[J].中国禽业导刊,2001,18(19):8-9.
    [25]江涛,罗雪云,计融.伏马菌素的研究进展[J].中国食品卫生杂志,1998,10(4):28-30.
    [26]崔国庭,侯玉泽,向进乐.伏马菌素研究进展[J].粮食与油脂,2006,(9):40-42.
    [27]徐艺,王治伦,吕旌乔,等.串珠镰刀菌素(MON)研究进展[J].地方病通报,1998,13(3):109-113.
    [28]赵献军.串珠镰刀菌素研究进展[J].动物医学进展,2002,23(4):19-22.
    [29]Zebeau M, Vos P. Selective restriction fragment amplification:a general method for DNA fingerprinting[P]. European.1993,6355-5790.
    [30]Blears M J, Gmndis S A, Lee H, et al. Amplified fragment length polymorphism (AFLP):a review of the procedure and its applications [J]. Industrial M icrobiology and Biotechnology,1998,21:99-114.
    [31]Travis S E, Ritland K, Whitham T G, et al. A genetic linkage map of Pinyon Pin (Pinus edulis) based on amplified fragment length polymorphism[J]. Theor and App Genet,1998,97:871-880.
    [32]Perry M, Davey M, Power J B, et al. DNA isolation and AFLPTM genetic fingerprinting of Theobroma cacao (L.)[J]. Plant Mol Biol Rep,1998,16:49-59.
    [33]Zimnoch-Guzowska E, Marczewski W, Lebecka R, et al. QTL analysis of new sources of resistance to Erwinia carotovora ssp. Atroseptica in potato done by AFLP, RFLP and resistance-gene-like markers[J]. Crop Sci,2000,40:1156-1167.
    [34]陈洪,朱立煌,李冬梅,等.致病性念珠菌DNA的AFLP指纹图谱[J].科学通报,1996,41(10):934-938.
    [35]Nakajima Y. Characterization of genetic diversity of nuclear and mitochondrial genomes in Daucus varities by RAPD and AFLP[J]. Plant Cell Reports,1998,17:848-853.
    [36]Thomas C, Vos C, Zabeau M, et al. Identification of amplification restriction fragment length polymorphism (AFLP) markers lightly linked to the tomato Cf-9 gene for resistence to Cladosporium fluvum[J].The Plant Jour,1995,8:785-794.
    [37]Simons G, Vander L T, Diergaarde P, et al. AFLP-based fine mapping of the Mlo gene to a 30-kb DNA segment of the barley genome[J]. Genetics,1997,44:61-70.
    [38]Bai G, Kolb F L, Shaner G, et al. Amplified fragment length polymorpgism markers linked to a major quantitative trait locus controlling scab resistance in wheat[J]. Phytopathology,1999,89:343-348.
    [39]Bragard C, Singer E, Alizadeh A, et al. Xanthomonas trnslucens from small grains:diversityand phytopathological relevance[J]. Phytopathology,1997,87:1111-1117.
    [40]Baayen R P, O'Donnell K, Bonants P J M, et al. Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae specials causing wilt and rot disease[J]. Phytopathology,2000,90:891-900.
    [41]陈广进,李红叶,张志芳.《一种快速提取真菌DNA的SLS裂解液及其应用》发明专利申请公布说明书.中华人民共和国国家知识产权局.[51] Int. Cl. Cl2N 15/10 (2006.01).申请号200810059177.3.公开号CN 101230344A.
    [1]Whiting R C. Microbiological modeling[J]. Critical Rev. Food Sci. and Nutri.,1995,35:467-494.
    [2]WALLS I, SCOTT V N. Use of predictive microbiology in microbial food safety risk assessment[J]. INT J FOOD MICROBIOL,1997,36(2-3):97-102.
    [3]Mark L., Tamplin. Predictive microbiology research capability [J]. The Australian Journal of Dairy Technology,2007,62(2):76-77.
    [4]Roberts, T. A. Combination of antimicrobials and processing methods[J]. Food Technol.,1989,43: 156-162.
    [5]Roels, J. A., Kossen, N. W. F. On the modeling of microbial metabolism[J]. Progress in Industrial Microbiology,1978,14:45-58.
    [6]Whiting, R.C., and Buchanan, R. L. A classification of models in predictive microbiology-a reply to K. R. Davey[J]. Food Microbiol.,1993,10:175-177.
    [7]WHITING R C. Predictive Microbiology in Food[J]. CRC CR REV FOOD SCI,1995,35:467-494.
    [8]K. MacDonald, D.-W. Sun, Predictive food microbiology for the meat industry:a review[J]. International Journal of food Microbiology,1999,52:1-27.
    [9]Lebert Isabelle, Lebert Andre. Quantitative prediction of microbial behavior during food processing using an integrated modelling approach:a review[J]. International Journal of Refrigeration,2006,29: 968-984.
    [10]李柏林,郭剑飞,欧杰.预测微生物学数学建模的方法构建[J].食品科学,2004,25(11):52-57.
    [11]周康,刘寿春,李平兰,等.食品微生物生长预测模型研究新进展[J].微生物学通报,2008,35(4):589-59.
    [12]McClure P J, Beaumont A L, Sutherland J P, et al. Predictive modelling of growth of Listeria monocytogenes:The effects on growth of NaCl, pH, storage temperature and NaNO2 [J]. International Journal of Food Microbiology,1997,34(3):221-232.
    [13]杨宪时,许钟,郭全友.食源性病原菌预报模型库及其在食品安全领域的应用[J].中国食品学报,2006,6(1):372-376.
    [14]Jones JE, Walker SJ. Advances in modelling microbial growth[J]. Indust Microbiol,1993,12: 273-276.
    [15]Paw Dalgaard, Ole Mejlholm, Hans Henrik Huss. Application of an iterative approach for development of a microbial model predicting the shelf-life of packed fish[J]. International Journal of Food Microbiology,1997,38:169—179.
    [16]Mark L. Tamplin. Predictive microbiology research capability [J]. The Australian Journal of Dairy Technology,2007,62(2):76-77.
    [17]B. Leporq, J.M. Membre, C. Dervin, et al. The "Sym'Previus" software, a tool to support decisions to the foodstuff safety[J]. International Journal of Food Microbiology,2005,100:231-237.
    [18]龙文玲,姚开,贾冬英.肉制品预测微生物模型的研究进展[J].食品科技,2007,6:27-30.
    [19]M.M. Gil, P.M. Pereira, T.R.S. Brandao, et al. Integrated approach on heat transfer and inactivation kinetics of microorganisms on the surface of foods during heat treatments-software development[J]. Journal of Food Engineering,2006,76:95-103.
    [20]韩北忠,李敏,,张琳,等.预测微生物学与食品质量安全[J].中国酿造,2005(9):1-3.
    [21]Whiting RC, Buchanan RL. Microbial modeling[J]. Food Technology,1994,48(6):113-120.
    [22]CAYREME, VIGNOLOG. Modeling lactic acid bacteria growth in vacuum-packaged cooked meat emulsions stored at three temperatures[J]. FOOD MICROBIOL,2003,20:561-566.
    [23]GARCIA R M. Determination of packaged green asparagus shelf-life[J]. FOOD MICROBIOL,1998, 15:191-198.
    [24]MARTTNE K, CHRISTINE C. Combined effects of pH and sugar on growth rate of Zygosaccharomyces rouxii, a bakery product spoilage yeast[J]. APPL ENVIRON MICROB,1999,65 (11): 4921-4925.
    [25]BATTEY A S, DUFFY S, Schaffne D W. Modelling mould spoilage in cold-filled ready-to-drink beverages by Aspergillus niger and Penicillium spinulosum[J]. FOOD MICROBIOL,2001,18:521-529.
    [26]Zwietering M H, Jongenburger I, Rombouts F M, et al. Modeling of the bacterial growth curve[J]. Appl Environ Microbial,1990,56:1875-1881.
    [27]Baker D A, Genigeorgis C A. Predicting the safe storage of flesh fish under modified atmospheres with respect to Clostridium botulinum toxigenesis by modeling length of the lag phase of growth[J]. J Food Protec,1990,53:131-140.
    [28]Sapru AC, Teixeira A A. Predicting thermonphilic spore population dynamics for UHT sterilization processes[J]. J Food Sci,1992,57:1248-1252.
    [29]FREDERICO V P, FLEMING H P. Modeling growth of Saccharomyces rosei in cucumber fermentation[J]. FOOD MICI BIOL,2001,14:533-542.
    [30]Neil H Armitage. Use of predictive microbiology in meat hygiene regulatory activity[J]. International Journal of Food Microbiology,1997,36:103-109.
    [31]朱中亮,郑大青,李正云.真空调理冷藏卤鸡翅产品中微生物生长之动力学[J].食品科学,1998,25(1):32-45.
    [32]褚小菊,冯力更,张筠,等.巴氏牛奶中腊样芽孢杆菌的风险评估[J].中国乳品工业,2006,34(6):23-26.
    [33]董庆利,郭黎洋,屠康,等.不同试验条件下生孢梭菌孢子生长预测方程的建立[J].浙江大学学报(农业与生命科学版),2007,33(2):162-168.
    [34]周艳明,王琦,于维军.猪肉中小肠结肠炎耶尔森氏菌存活/失活预测模型及控制研究[J].猪业科学,2007,12:78-80.
    [35]Hariklia Vaikousi, Costas G. Biliaderis, Konstantinos P. Koutsoumanis, et al. Development of a Microbial Time/Temperature Indicator Prototype for Monitoring the Microbiological Quality of Chilled Foods[J]. APPLIED AND ENVIROMENTAL MICROBIOLOGY,2008,74:3242-3250.
    [36]L. Rosso, T.P. Robinson. A cardinal model to describe the effect of water activity on the growth of moulds[J]. International Journal of Food Microbiology,2001,63:265-273.
    [37]E.Z. Panagou, P.N. Skandamis, G.-J.E. Nychas. Modelling the combined effect of temperature, pH and aw on the growth rate of Monascus ruber,a heat-resistant fungus isolated from green table olives[J]. Journal of Applied Microbiology,2003,94:146-156.
    [38]E.Z. Panagou, V. Kodogiannis, G.J.-E. Nychas. Modelling fungal growth using radial basis function neural networks:The case of the ascomycetous fungus Monascus ruber van Tieghem[J]. International Journal of Food Microbiology,2007,117:276-286.
    [39]E. Pardo, S. Marin, A. Solsona, et al. Modelling of germination and growth of ochratoxigenic isolates of Aspergillus ochraceus as affected by water activity and temperature on a barley-based medium[J]. Food Microbiology,2004,21:267-274.
    [40]E. Pardo, S. Marin, V. Sanchis, et al. Impact of relative humidity and temperature on visible fungal growth and OTA production of ochratoxigenic Aspergillus ochraceus isolates on grapes[J]. Food Microbiology,2005,22:383-389.
    [41]E. Pardo, M. Malet, S. Marin, et al. Effects of water activity and temperature on germination and growth profiles of ochratoxigenic Penicillium verrucosum isolates on barley meat extract agar[J]. International Journal of Food Microbiology,2006,106:25-31.
    [42]D. Mitchell, R. Parra, D. Aldred, et al. Water and temperature relations of growth and ochratoxin A production by Aspergillus carbonarius strains from grapes in Europe and Israel[J]. Journa of Applied Microbiology,2004,97:439-445.
    [43]S. Samapundo, F. Devlieghere, B. De Meulenaer, et al. Predictive Modelling of the Combined Effect of Water Activity and Temperature on the Radial Growth of Fusarium verticilliodes and F. Proliferatum on Corn[J]. Acta Horticulturae,2005,674:421-427.
    [44]S. Samapundo, F. Devlieghere, A. H. Geeraerd, et al. Modelling of the individual and combined effects of water activity and temperature on the radial growth of Aspergillus flavus and A. Parasiticus on corn[J]. Food Microbiology,2007,24:517-529.
    [45]彭坚,韩北忠.小麦中黄曲霉生长的预测模型[J].河南工业大学学报(自然科学版),2005,26(2):51-54,57.
    [46]Francisco Noe Arroyo Lopez, M.C. Duran Quintana, Antonio Garrido Fernandez. Use of the generalized z-value concept to study the effects of temperature, NaCl concentration and pH on Pichia anomala, a yeast related to table olive fermentation[J]. International Journal of Food Microbiology 2006, 106:45-51.
    [47]C.C. Tassou, E.Z. Panagou, P. Natskoulis, et al. Modelling the effect of temperature and water activity on the growth of two ochratoxigenic strains of Aspergillus carbonarius from Greek wine grapes[J]. Journal of Applied Microbiology,2007,103:2267-2276.
    [48]A.W. Schaafsma, D.C. Hooker. Climatic models to predict occurrence of Fusarium toxins in wheat and maize[J]. International Journal of Food Microbiology,2007,119:116-125.
    [49]Hooker, D.C., Schaafsma, A.W., Tamburic-Ilincic, L.. Using weather variables pre-and postheading to predict deoxynivalenol in winter wheat[J]. Plant Disease,2002,86:611-619.
    [50]Schaafsma, A.W., Hooker, D.C., Pineiro, M., et al. Pre-harvest forecasting of deoxynivalenol for regulatory action in wheat grain in Uruguay using readily available weather inputs. In:Njapau, et al. (Ed.), Mycotoxins and Phycotoxins:Advances in Determination, Toxicology and Exposure Management. Wageningen Academic Publishers of the Netherlands,2006,227-238.
    [51]白凤翎.预测微生物学在传统白酒酿造中的应用构想[J].酿酒科技,2006,7:31-33.
    [52]陈娟,李建锋,林敏刚,等.预测微生物学及其在粮食储藏中的应用[J].农业工程技术,2007,5:12-14.
    [53]宁喜斌,王璐华.水产品安全现状与预警技术[J].食品工业科技,2007,28(10):203-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700